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ABSTRACT: 

 

Smallholders produce about a third of the global crop production. Supporting these smallholder farms is an important lever for poverty 

alleviation. Farm and field sizes are key indicators of many smallholder dynamics, including fragmentation, farm consolidation, and 

interactions between smallholders, medium-scale commercial farming, and large enterprises. Despite the socio-economic, 

environmental, and political importance of these dynamics, spatially explicit data on farms and field sizes are still lacking. Identifying 

small-scale agriculture using satellite imagery is challenging due to the heterogeneity in the crop types and management practices. 

This study compared three unsupervised segmentation approaches that have not been widely explored for delineating smallholder fields: 

mean shift, multiresolution segmentation, and simple non-iterative clustering (SNIC), using PlanetScope imagery. The study area is 

located in northern Mozambique, where 71% of the farms cover less than 2 ha. The results were evaluated using four segmentation 

accuracy metrics based on object geometries: Area Fit Index (AFI), Quality Rate (QR), Oversegmentation (OS), and 

Undersegmentation (US). The results showed that the multiresolution segmentation algorithm outperformed the other methods to 

delineate smallholder fields. This work will support future regional-scale mapping efforts. 

 

 

1. INTRODUCTION 

Farm and field sizes are key indicators of many smallholder 

dynamics, including fragmentation, farm consolidation, and 

interactions between smallholders, medium-scale commercial 

farming, and large enterprises. Farms covering less than 2 ha of 

land occupy an estimated 24% of the gross agricultural area, 

producing 28-31% of the global crop production and 30-34% of 

the food supply, as extrapolated from the 55 countries studied by 

Ricciardi et al. (2018). Small farms have high crop diversity and 

productivity, regulate ecosystem processes, increase system 

resilience, and impact poverty reduction (Wiggins, 2009; van 

Vliet et al., 2015; Ricciardi et al., 2018; Julien et al., 2019; 

Ricciardi et al., 2021). These issues are crucial in Mozambique, 

where ~66% of the population resides in rural areas (INE, 2020), 

71% of the agricultural holdings are <2 ha, and where agriculture 

is the main source of income for 80% of smallholders (CGAP, 

2016). 

 

Despite the socio-economic, environmental, and political 

importance of smallholder dynamics, spatially explicit data on 

small farms is still severely lacking. Identifying small-scale 

agriculture using satellite images is challenging due to high 

fragmentation and heterogeneity in land use, crop types, and 

management practices (Julien et al., 2019; Ruffin et al., 2022).  

 

Unsupervised approaches are particularly valuable in contexts 

where abundant training data for supervised approaches is 

lacking, costly, and difficult to collect. In this study, we 

compared three unsupervised segmentation approaches that have 

not been widely explored for delineating smallholder fields, 

namely mean shift, multiresolution segmentation, and simple 
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non-iterative clustering (SNIC), using PlanetScope imagery with 

a spatial resolution of 3.7 m.  

 

We evaluated the results using four supervised metrics, which use 

reference data to assess segmentation accuracy. This comparison 

will support future regional-scale mapping efforts, where there is 

still a lack of accurate information on field sizes. 

 

 

2. BACKGROUND 

2.1 Mean shift 

The mean shift algorithm, proposed by Fukunaga and Hostetler 

(1975), is a non-parametric method that detects groups of 

samples by characteristic similarity, i.e., it detects groups of 

points in the feature space. This method was later adapted by 

Cheng (1995) for applications in Computer Vision, and more 

recently, this method was extended to be applied in image 

segmentation by Comaniciu and Meer (2002). 

 

The principle of this algorithm is not to make assumptions about 

the shape of the distribution or the number of groups in an image. 

In this way, the groups in the n-dimensional attribute space can 

be modelled through an empirical probability density function, in 

which dense regions in this space correspond to the maximum or 

local modes of distribution (Derpanis, 2005). 

 

The segmentation is created by the grouping of pixels that 

converge to a certain mode in the spatial domain and in the 

attribute space so that the pixel will receive the label of a group 

according to its proximity to this group, considering these two 

domains (Comaniciu and Meer, 2002; Derpanis, 2005). The 
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mean shift algorithm is implemented in the Orfeo Toolbox 

available in QGIS.  

 

2.2 Multiresolution segmentation 

The second algorithm, Multiresolution Segmentation, is a region-

based algorithm that uses a bottom-up region merging technique 

(Baatz and Schäpe, 2000). It starts by considering each pixel as a 

separate object and then merges pairs of objects to form larger 

segments. 

 

The optimization procedure minimizes the internal weighted 

heterogeneity of each object. The object is incremented until the 

smallest increment exceeds the threshold defined by the scale 

parameter, when this occurs, the process is stopped (Beenz et al., 

2004). The scale parameter defines the heterogeneity of pixels, 

which indirectly determines the object's size. 

 

The homogeneity criterion is defined by weighting two 

parameters of both segment and its border: color/shape (balances 

the homogeneity of the segment color with its shape) and 

compactness/smoothness (balances the smoothness of the 

segment border with its compactness). The algorithm is 

implemented in the eCognition Developer software for Object-

Based Image Analysis (OBIA) applications. 

 

2.3 Simple Non-linear Iterative Clustering (SNIC) 

The Simple Non-linear Iterative Clustering (SNIC) algorithm 

(Achanta and Süsstrunk, 2017) is based on the Simple Linear 

Iterative Clustering (SLIC) (Achanta et al., 2012). This algorithm 

calculates the distance from each group center to pixels that are 

within a predefined search radius. According to Achanta et al. 

(2012), the distance between a group and an element combines 

normalized spatial and color distances. 

 

SNIC creates a regular grid controlled by the approximate 

number of superpixels desired by the user. After that, each pixel 

overlapped by the search radius is associated with the center of 

the nearest cluster. SNIC can update cluster centers online in one 

iteration. Starting from the initial seed point, the SNIC algorithm 

uses a priority queue to select the next pixel to add to a superpixel. 

By normalizing the spatial distance between the centroid and the 

pixel by a constant (equivalent to the dimension of the centroid 

region) and determining a weight factor to define the degree of 

importance for the spatial distance concerning the distance in the 

color space, it is possible to control the compactness of the 

generated segments. So that the smaller the value of the weight 

factor, the more adherent the superpixels will be to the object's 

borders.  

 

When the algorithm is executed, the priority queue is emptied to 

attribute labels at one end and filled with new candidates at the 

other end. The algorithm will terminate when there are no 

remaining unlabeled pixels to add new elements to the queue and 

empty the queue (Achanta and Süsstrunk, 2017). The Simple 

Non-Iterative Clustering algorithm is available in the Google 

Earth Engine platform. 

 

3. MATERIAL AND METHOD 

3.1 Study area 

The study area covers ~35,100 ha in the Gurué district, within 

Zambézia province, Mozambique. This predominantly 
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smallholder region has experienced a surge in foreign agricultural 

investments through large-scale land acquisitions over the last 

decades (Bey et al., 2020), as well as the development of 

medium-scale farming (Baumert and Nhantumbo, 2017) and has 

an increasingly heterogeneous agriculture profile. 

 

The main crops produced on a small scale are maize, cassava, 

beans, pigeon peas, millet, sorghum, peanuts, and now soybeans, 

and those on a large scale are macadamia nuts and tea (Joala et 

al., 2016). 

 

 
 

Figure 1. Study area. (a) Mozambique country-level map, 

(b) Gurué district-level map, (c) PlanetScope imagery of study 

area false-color composite (R: near-infrared, G: red, B: green). 

3.2 Data 

PlanetScope is a satellites constellation comprising 

approximately 130 CubeSats in a sun-synchronous orbit, 

operated by Planet Labs (Planet Labs, 2022). The used 

PlanetScope images contain four spectral bands: blue (455–515 

nm), green (500–590 nm), red (590–670 nm), and near-infrared 

(NIR, 780–860 nm), with a spatial resolution of approximately 3 

m. 

 

This study used Level-3B surface reflectance images 

atmospherically corrected by Planet Labs, collected between 

April and May 2019 (Planet Labs PBC, 2018). The available 

images were combined into a cloud-free mosaic covering the 

study area. 

 

3.3 Method 

The first segmentation algorithm, mean shift, was applied over 

the four PlanetScope bands using Orfeo ToolBox (Grizonnet et 

al., 2017)   in QGIS software. Different thresholds were tested for 

range radius (5 and 15) and minimum region size (20, 40, and 60). 

 

To test the second algorithm, multiresolution segmentation, we 

first used the Estimation of Scale Parameters tool for multiband 

images (ESP2 tool, in eCognition software) to select the scale 

parameter (SP) (Dragut et al., 2014). In addition to the SP values 

calculated by the ESP2 tool, we tested another SP value (SP: 201, 

461, and 75; shape: 0.8; compactness: 0.5). We ran the 

multiresolution segmentation on the four PlanetScope bands.  

 

We applied the third and final algorithm, the simple non-iterative 

clustering (SNIC), on the Google Earth Engine platform, using 

the four PlanetScope bands, with size: 3, compactness: 0, 
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connectivity: 8, neighborhood size: 256, and seed grid size: 12 

and 14. 

 

3.4 Validation 

We evaluated the segmentation accuracy of all algorithms using 

90 random reference polygon samples digitized using 

PlanetScope images and the very-high-resolution images 

available on the Google Earth platform. For that, we first 

generated 90 random points within the study area. We created a 

5 ha buffer around these points and digitized at least one 

agricultural field inside the buffer. The reference polygon 

geometries were compared with the segmentation results using 

four goodness metrics: Area Fit Index (AFI), Quality Rate (QR), 

Oversegmentation (OS), and Undersegmentation (US) (Lucieer 

and Stein, 2002; Weidner, 2008; Clinton et al., 2010).  

 

The AFI is a global metric used to identify both OS and US. AFI 

equal to 0 indicates a perfect segmentation, where the segments 

correspond exactly to the reference objects. Positive values of the 

AFI metric indicate that the methods result in oversegmentation 

compared to the reference polygons, while negative values 

indicate undersegmentation (Lucieer and Stein, 2002). The 

global QR metric varies between 0 and 1, where the optimal value 

is 0 (Weidner, 2008). The OS metric measures the 

oversegmentation error, which occurs when unnecessary 

boundaries are delimited, i.e., the objects resulting from the 

segmentation are smaller than the reference polygons (Clinton et 

al., 2010). The US metric measures the undersegmentation error, 

which occurs when the segmentation fails to define the 

boundaries of the objects, generating objects larger than the 

reference polygons (Clinton et al., 2010). A perfect match 

between a reference polygon and the segment object results in an 

OS and US equal 0. 

 

These metrics are implemented in the segmetric R package 

(Simoes et al., 2022) and are presented in Table 1. 

 

Metric Range Optimal value 

 

(-∞, ∞) 0 

 

[0, 1] 0 

 

[0, 1] 0 

 

[0, 1] 0 

Table 1. Metrics used to evaluate the segmentation accuracy.  

 refers to reference polygons and  to the segmentation 

objects. 

 

4. RESULTS 

We applied three segmentation methods to delineate agricultural 

fields for a landscape rich in small-size farms in northern 

Mozambique. Figure 2 presents the segments generated by the 

three algorithms in a region with a high concentration of 

smallholder fields (~ < 0.3 ha). We identified for each algorithm 

the best performing set of parameters according to the calculated 

metrics (Figure 2b, d, and g, Table 2). 

 

The mean shift algorithm tends to segment the landscape into 

smaller objects (Figure 2a, b, and c), generating an 

oversegmentation reflected in high OS metrics.  

 

In contrast, the multiresolution algorithm with SP values of 46 

and 75 undersegmented the small crop fields (Figures 2e and f). 

With an SP value of 20, the multiresolution algorithm separates 

trees and small areas containing some vegetation from crop fields 

(Figure 2d). 

 

Figure 3 presents the segmentations generated for an area with 

medium fields (~ 3.6 ha). This Figure shows that all three 

algorithms in the presented parametrization generally 

oversegmented the fields. However, with SP equal to 75, the 

multiresolution algorithm could delineate medium-sized fields 

boundaries more accurately (Figure 3f). 

 

Based on the four goodness metrics (AFI, QR, OS, and US), the 

multiresolution method produced the best performing 

segmentation concerning small fields, which dominate this 

landscape (Table 2). The algorithm that most oversegmented the 

fields was mean shift using the parameters ranges radius equal to 

5 and 15 and minimum region size equivalent to 20 and 40 (see 

AFI and OS metrics, Table 2), as shown in Figures 2 and 3. 

 

The multiresolution algorithm using the ESP2 tool for SP 

estimation was more accurate in delineating the small agricultural 

fields (with SP=20) and medium fields (with SP=75). 

 

We used reference polygons of small and medium fields to assess 

the quality of segmentation algorithms and calculate the metrics 

in Table 2, as there are no large agricultural fields in the study 

area. However, as observed in Figures 2 and 3, it is not possible 

to delineate both small and medium boundary fields 

simultaneously using only one parameter set. Therefore, it will 

be necessary for future studies to develop a method that combines 

different segmentation parametrizations to estimate the field size 

across a range from small to medium to large fields. 

 

Method AFI QR OS US 

(a) Mean shift 0.59 0.92 0.92 0.1 

(b) Mean shift -0.03 0.82 0.78 0.16 

(c) Mean shift 0.31 0.87 0.85 0.13 

(d) Multiresolution 0.15 0.76 0.74 0.18 

(e) Multiresolution -1.78 0.60 0.30 0.39 

(f) Multiresolution -9.29 0.79 0.17 0.72 

(g) SNIC -0.1 0.91 0.89 0.11 

(h) SNIC -0.41 0.89 0.86 0.13 

 

Table 2. Segmentation assessment metrics: Area Fit Index 

(AFI), Quality Rate (QR), Oversegmentation (OS), and 

Undersegmentation (US). The best results are highlighted (with 

zero being the ideal value. (a) Mean shift: range radius = 5, 

minimum region size = 20; (b) Mean shift: range radius = 5, 

minimum region size = 60; (c) Mean shift: range radius = 15, 

minimum region size = 40; (d) Multiresolution: SP = 20, shape: 

0.8, compactness: 0.5; (e) Multiresolution: SP = 46, shape: 0.8, 

compactness: 0.5; (f) Multiresolution: SP = 75, shape: 0.8, 

compactness: 0.5; (g) SNIC: with size = 3, compactness = 0, 

connectivity = 8, neighborhood size = 256, seed grid size = 12; 

(h) SNIC: with size = 3, compactness = 0, connectivity = 8, 

neighborhood size = 256, seed grid size = 14. 
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Figure 2. Segmentation results for smallholder farms. (a) Mean shift: range radius = 5, minimum region size = 20; (b) Mean shift: 

range radius = 5, minimum region size = 60; (c) Mean shift: range radius = 15, minimum region size = 40; (d) Multiresolution: SP = 

20, shape: 0.8, compactness: 0.5; (e) Multiresolution: SP = 46, shape: 0.8, compactness: 0.5; (f) Multiresolution: SP = 75, shape: 0.8, 

compactness: 0.5; (g) SNIC: with size = 3, compactness = 0, connectivity = 8, neighborhood size = 256, seed grid size = 12; (h) 

SNIC: with size = 3, compactness = 0, connectivity = 8, neighborhood size = 256, seed grid size = 14. The best performing set of 

parameters for each algorithm is highlighted by a red square (b: mean shift, d: multiresolution, g: SNIC). 
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Figure 3. Segmentation results for medium farms. (a) Mean shift: range radius = 5, minimum region size = 20; (b) Mean shift: range 

radius = 5, minimum region size = 60; (c) Mean shift: range radius = 15, minimum region size = 40; (d) Multiresolution: SP = 20, 

shape: 0.8, compactness: 0.5; (e) Multiresolution: SP = 46, shape: 0.8, compactness: 0.5; (f) Multiresolution: SP = 75, shape: 0.8, 

compactness: 0.5; (g) SNIC: with size = 3, compactness = 0, connectivity = 8, neighborhood size = 256, seed grid size = 12; (h) 

SNIC: with size = 3, compactness = 0, connectivity = 8, neighborhood size = 256, seed grid size = 14. The best performing set of 

parameters for each algorithm is highlighted by a red square (b: mean shift, d: multiresolution, g: SNIC). 
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5. CONCLUSION 

Segmentation of very high-resolution remote sensing imagery is 

an important step for estimating the field size in a smallholder 

system. In this study, we compared the performance of three 

widely used segmentation algorithms: mean shift, 

multiresolution segmentation, and SNIC, using PlanetScope 

images at a spatial resolution of 3.7 meters. We determined the 

segmentation parameters based on several tests and an 

unsupervised estimation tool (ESP2). 

 

We evaluated the accuracy of the segmentations using four 

goodness metrics commonly used in the literature. We observed 

that most of the combinations of parameters and algorithms 

tested here oversegmented the fields.  

 

Among the three methods evaluated, Multiresolution combined 

with ESP2 for SP selection proved satisfactory and could be 

applied on a regional scale due to its accuracy and operability. 

However, we observed that it is not possible to simultaneously 

delineate small and medium fields boundaries using only one 

parameter in the studied region. Thus, it is necessary to develop 

a method that merges the segmentations of small and medium 

fields according to spectral criteria and field shape. 

 

Nevertheless, by adopting a step-wise approach to identify small 

and medium sized fields sequentially, this study demonstrates 

that unsupervised algorithms – in conjunction with high spatial 

resolution PlanetScope imagery – can effectively delineate 

smallholder fields in contexts where reference data are scarce. 
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