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ABSTRACT: 
 
Neural networks were explored to achieve a binary classification for determining land corresponding to peat for a study area in 
the boreal forest of northern Ontario, Canada.  Environmental covariates were employed as predictors and obtained from multiple 
sources, which included multispectral imagery, LiDAR, SAR, and aeromagnetic data.  A dense neural network (DNN), as well as 
a convolutional neural network (CNN), were each implemented.  Logistic regression, support vector machine (SVM) and random 
forest (RF) approaches were also modelled.  Neighboring pixels surrounding the soil sampling sites were incorporated as input 
into the CNN, that permitted training on additional information that was not exploited by other methods.  Preliminary results 
indicate that a CNN can attain improved accuracies for peat classification, when compared against other approaches.   
 
 

                                                             
*  Corresponding author 
 

1.   INTRODUCTION 
 
The accurate identification of physical settings comprising of 
peat is pertinent to digital soil mapping and a variety of 
associated land management activities.  These applications can 
conform to the ascertainment of areas with higher soil carbon 
and organic matter contents (Vitt et al., 2009), as well as 
detecting wetlands (Rapinel et al., 2019; Whitcomb et al., 
2009) and evaluating the extent of environmental impact for 
these respective regions (Sulla-Menashe et al., 2018).  The 
recent availability and enhanced resolution of remotely-sensed 
imagery from multiple platforms, has facilitated digital soil 
mapping research for peatlands (Minasny et al., 2019).  In 
particular, there is an impetus to identify peatlands and assess 
implications within the boreal transition zones, where land 
cover conversion is more anticipated to unfold. 
 
For the classification of soil properties, random forest (RF) 
and support vector machines (SVMs) have been common 
(Minasny et al., 2019), as these methods can attain improved 
accuracies when compared to more traditional approaches 
such as logistic regression (Brungard et al., 2015; Heung et 
al., 2016).  However, for many study areas there exists a 
dearth of soil data for modeling purposes.  This situation can 
arise due to the difficulty of extracting soil samples, especially 
for remote areas within markedly forested terrain.  There is the 
further impediment of the expense of processing soil samples, 
which can impart as prohibitive for obtaining an effective 
quorum of samples for analysis.  Due to implicit connections 
between environmental covariates for digital soil mapping, it 
can be challenging to fit explicit models.  There is also a need 
for improvement with classification accuracy. 
 
Deep learning methods can conceivably advance accuracy, by 
uncovering intricate relations amongst the environmental 

covariates with respect to soil properties.  Neural networks 
can be adopted, but the dense layer form of the conventional 
artificial neural network (ANN, or DNN) may not achieve 
better accuracies than other approaches (Brungard et al., 2015; 
Heung et al., 2016).  Convolutional neural networks (CNNs), 
with a structure consisting of multiple hidden layers 
conforming to convolution and pooling that are ended with a 
dense layer (Buda et al., 2018; Lee and Song, 2019), can 
resolve features that are impractical from regarding just the 
dense layer structure of ANNs.  Employing a filter, 
surrounding imagery pixels within the neighborhood of soil 
sample points can be convoluted, unlocking patterns within 
the imagery that can improve the classification.  Exploiting 
this additional information, a CNN could attain higher 
accuracies than that from other approaches such as RF or 
SVMs. 
 
Setting up and configuring a CNN is not necessarily a trivial 
matter for digital soil mapping applications.  This discipline of 
research generally considers numerous environmental 
covariates obtained from a variety of sensors, that need to be 
aggregated for areas typically encompassing more than a 
couple hundred km2 (Minasny et al., 2019).  The incorporation 
of convolution filters, followed by max pooling and flattening 
layers, can complicate the modelling process.  Preparation of 
data for usage with a CNN can be much more computationally 
intensive when compared to other classification methods, as 
image tensors about each site for each data covariate layer, 
need to be integrated. 
 
A CNN was formulated to perform a binary classification for 
discerning localities conforming to peat for a study area in a 
boreal biome in northern Ontario, Canada.  A brief review of 
the soil data and environmental covariates is stated, which is 
followed by presenting the implementation of the CNN. A 
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comparison of modelling results among other classification 
methods has been provided.  This paper ends with a discussion 
of limitations or factors to consider when employing a CNN 
for digital soil mapping applications.  
 
 

2.   STUDY AREA AND COVARIATE DATA 
 
The study area encloses the vicinity of Hearst, within the 
District of Cochrane in northern Ontario (ON), Canada.  This 
region consists of roughly 897 km2, with latitudes extending 
from 49.6° N to 49.8° N and longitudes varying from 83.3° W 
to 84.0° W.  The topography for this region is relatively flat, 
with steep slopes along segments of the riverbanks of the 
Mattawishkwia River, which traverses on a northeast 
trajectory through the area.  Elevations range from a minimum 
of 209 m in the north to a maximum of 283 m in the 
southwest.  The largest community in this region is Hearst, 
situated in the center of the study area, which is partially 
surrounded by cleared land comprised of pasture and hay 
fields. This region is depicted in Figure 1, which denotes the 
locations of 157 sites with soil data that were obtained by the 
Ontario Forest Resources Inventory (FRI).  Also shown is 
true-color composite imagery visualized from median satellite 
reflectance from Landsat-8 for cloud-free (less than 1% 
clouds) scenes from June and July of 2018.  Note for this 
composite image, the bands B2 (0.452-0.512 µm), B3 (0.533-
0.590 µm) and B4 (0.636-0.673 µm) were specified for blue, 
green and red, respectively.  The grid coordinates bordering 
the figure are in the NAD 1983 Lambert conformal conic 
projection. 
 

 
 
Figure 1.  True-color composite of the Hearst study area, with 

Ontario Forest Resources Inventory (FRI) sites denoted.   
 
Soil samples were retrieved during field campaigns in August 
and October of 2011 by the Ontario FRI (Paloniemi, 2018).  
These soil samples were extracted near the surface, primarily 
at 5–15 cm depths. Soil texture classification was inferred by 
expert assessment in the field, where samples conforming to 
peat were evaluated according to a van Post (vP) system of 
decomposition (Malterer et al., 1992; Paloniemi, 2018).  For 
this study, the soil texture family classifications were 
condensed into the categories of peat and non-peat. 
 
Environmental covariates relating to various soil formation 
factors were compiled from multispectral satellite imagery, 
LiDAR, SAR, and aeromagnetic data.  These predictors 
included optical surface reflectance and structure for 
vegetation, topographic covariates, and geophysical surveys 

for parent material.  The complete listing of environmental 
covariates utilized is summarized in Table 1.  In total there 
were 72 different covariates exploited.  Each covariate layer 
was rasterized, reprojected and coregistered to a common 
coordinate system, with a cell size of 30 m.  These covariates 
were wielded as predictors for the classification of peat versus 
non-peat, for pixels corresponding to the site locations of 
where soil samples were extracted. 
 

 
 

 
 

Table 1.  Listing of environmental covariates utilized as 
predictors for the models. 

 
Surface reflectance was acquired from Landsat imagery 
coinciding to various seasons throughout the year, with 
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FRI Site

Predictor Spatial Resolution
DEM (derived from LiDAR)

Aspect 30 m
Convergence Index 30 m
Elevation 30 m
General Curvature 30 m
Hillshading 30 m
Mid-Slope Position 30 m
Multiresolution Ridge Top Flatness (MRRTF) 30 m
Multiresolution Valley Bottom Flatness (MRVBF) 30 m
Plan Curvature 30 m
Profile Curvature 30 m
SAGA Topographic Wetness Index (SAGA TWI) 30 m
Sky View Factor 30 m
Slope 30 m
Slope Height 30 m
Slope Length 30 m
Standardized Height 30 m
Stream Power Index 30 m
Terrain Ruggedness Index (TRI) 30 m
Terrain View Factor 30 m
Topographic Wetness Index (TWI) 30 m
Total Curvature 30 m
Valley Depth 30 m
Visible Sky 30 m

Predictor Spatial Spectral
Resolution Resolution

PALSAR
HH 2017 30 m HH Polarization
Density of Water Bodies 30 m HH Polarization
Distance to Water Bodies 30 m HH Polarization

LiDAR
Canopy Height Model (CHM) 10 m 1.064 µm
Gap Fraction 10 m 1.064 µm

Tree Species Maps
Black Spruce Indicator 30 m
Balsam Fir Indicator 30 m

Landsat*
B1 (Winter, May, Summer, Autumn) 2017 30 m 0.435-0.451 µm
B2 (Winter, May, Summer, Autumn) 2017 30 m 0.452-0.512 µm
B3 (Winter, May, Summer, Autumn) 2017 30 m 0.533-0.590 µm
B4 (Winter, May, Summer, Autumn) 2017 30 m 0.636-0.673 µm
B5 (Winter, May, Summer, Autumn) 2017 30 m 0.851-0.879 µm
B6 (Winter, May, Summer, Autumn) 2017 30 m 1.566-1.651 µm
B7 (Winter, May, Summer, Autumn) 2017 30 m 2.107-2.294 µm
B10 Summer 2017 100 m 10.60-11.19 µm
B11 Summer 2017 100 m 11.50-12.51 µm
NDVI (Winter, May, Summer, Autumn) 2017 30 m 0.636-0.673 µm 

0.851-0.879 µm
NDWI (Winter, May, Summer, Autumn) 2017 30 m 0.851-0.879 µm 

1.566-1.651 µm
NRCan**

Gravity Anomaly 2 km
Magnetic Residual 200 m

** First vertical derivatives for each attribute were also included

* Surface reflectance bands; seasons were Winter (January, February, March), May, 
Summer (June, July) & Autumn (Sep. 10 - Oct. 10).  For May & Autumn, median 
surface reflectance was obtained for same period over 5 years (2015-2019).
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normalized difference vegetation index (NDVI) and 
normalized difference water index (NDWI) each calculated.  
LiDAR data collected during the autumn of 2017 for the 
Ontario Ministry of Forestry and Natural Resources was 
wielded to generate rasterized imagery.  A digital elevation 
model (DEM) was constructed from the LiDAR data, which 
was subsequently fielded to compute an assortment of 
topographic covariates using SAGA GIS (Conrad et al., 2015).  
A canopy height model (CHM) and gap fraction were each 
derived from the LiDAR data.  Tree species maps for black 
spruce (Picea mariana) and balsam fir (Abies balsamea) were 
incorporated from previous research by the authors for this 
region.  JAXA PALSAR imagery (Shimada et al., 2014) from 
2017 for L-band SAR (Lucas et al., 2010) was exploited to 
detect surface water, which was applied to calculate distances 
to water bodies. Gravity anomaly and magnetic residual were 
obtained from aeromagnetic data for 2016 from Natural 
Resources Canada (NRCan).   
 
 

3.   METHODOLOGY 
 
3.1  Convolutional Neural Network Image Tensor 
 
The advantage of employing a CNN is that its conformation 
can decipher patterns, commonly known as features within the 
imagery, amongst the neighboring pixels for a site.  In effect, 
one can consider an image tensor about each site pixel, of a 
window set to the initial kernel size for the first convolution 
layer.  For the training and validation data required for 
modelling and evaluating a CNN, respectively, these 
corresponding pixels must be extracted for each site across the 
various covariate layers, as illustrated in Figure 2.   
 

 
 

Figure 2.  Extraction of data pertaining to each sampling site, 
from each of the total n different covariate layers.   

 
For each site, an image tensor window (here 7 pixels by 7 
pixels) is extracted; the pixel matching to the sampling site is 
depicted in the center (colored black), with 3 pixel widths on 
each of the four sides.  The cell size of each pixel corresponds 
to 30 m resolution, which is the spatial resolution of the 
environmental covariate layers.  The size of the image tensor 
indicates the spatial scale of imagery considered for the 
convolution for each sampling location, which here amounts 
to an area of 44,100 m2 for each site.  By incorporating data of 
neighboring pixels within an image tensor window, there is 
the potential for a CNN to more effectively classify a site.  

Examples of scenarios where there can be this type of 
information gain is conveyed in Figures 3 and 4.   
 
A site bordering a wetland environment is exhibited in Figure 
3, with an image tensor window (here of 7 pixels by 7 pixels) 
considering pixels coinciding to the attributes of the nearby 
wetland.  The darkest pixel intensities depict the lowest 
canopy heights, which here would correspond to cut hayfields 
or the surface of water bodies.  For the boreal biome in 
northern Canada, there is a notable association between 
wetlands and peat (Haynes et al., 2021), where canopy heights 
are generally stunted for trees growing within or along the 
periphery of wetlands.  Even if a site has a taller CHM, the 
site can still conform to peat if it is bordering a wetland, 
populated with the upland variety of black spruce, which can 
grow nearby scrubby lowland black spruce within the wetland 
(El Abidine et al., 1994).      
 

 
 

Figure 3.  CHM pixels for a site adjacent a wetland, with 
variation of heights shown in the image tensor window.   

 
Comparatively, classifications can be challenging for 
secondary forest sites, or for localities which were previously 
cleared but where trees have regrown.  The soil from these 
sites tend to be compacted, and subsequently do not normally 
consist of peat.  There can exist a great deal of variability with 
covariate attribute intensities amongst pixels for this sort of 
site.  An image tensor window can capture a mix of pixel 
intensities, which can pertain to patterns with how the land 
was logged or managed, such as field ridge boundaries from a 
previous agriculture usage.  An example of pixels in the 
neighborhood of a site from a secondary forest plot, again 
with CHM depicted with darker intensities corresponding to 
lower canopy heights, is displayed in Figure 4.  Here the 
canopy is of short to intermediate height, where the image 
tensor window can resolve a site location that was previous 
cleared, which may not be possible to ascertain by just 
considering one pixel.  
 

 
 

Figure 4.  CHM pixels for a site within secondary forest, with 
corresponding image tensor window.   
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The information extracted by the image tensor window for 
each site can be incorporated into a CNN consisting of 2-
dimensional convolution layers.  However, a CNN comprised 
of 1-dimensional convolution layers can be devised by 
considering the pixel selections matching directly for each site 
(across the covariate layers).  The 1-dimensional convolution 
layer would require fewer parameters and computational 
resources.  Rather than integrating neighboring pixels about a 
site, a CNN of this form could unravel data patterns amongst 
the covariates.   
 
 
3.2  Modelling 
 
Keras (Chollet, 2015; Lee and Song, 2019) harnessing 
TensorFlow (Abadi et al., 2015) in RStudio (RStudio Team, 
2020) were utilized for fitting the neural networks.  Torch 
(Collobert et al., 2011; Paszke et al., 2019) was applied for 
preparing data input for the CNN.  The caret package in R 
(Kuhn, 2008) was employed for the other classification 
methods.  The data was split randomly 70:30 for training and 
validation, respectively.  For each model, a total of 72 
predictors were wielded.  With the CNN, an image tensor 
window of 7 pixels by 7 pixels was adopted for each site for 
each of the covariates.  For the other approaches, data was 
extracted for just the pixels directly corresponding to soil 
sampling sites; that is, one pixel per site per covariate layer.   
 
Firstly, a DNN of five dense layers was employed, with 
categorical cross entropy implemented for the loss function.  
Rectified linear unit (ReLU) activation functions were adopted 
for the first four dense layers, with units of 64 followed by 32, 
16 and 8, respectively.  A softmax activation was applied for 
the last layer, as output comprised of two classes (non-peat, 
peat).  The structure of the DNN is presented in Table 2.  The 
corresponding formulation for the CNN is depicted in Table 3.   
 
 

 
 

Table 2.  Structure of DNN.     
 
 

 
 

Table 3.  Structure of CNN.   
 
As expected, the structure for the CNN is more complex than 
that for the DNN.  The CNN consisted of two convolution 
layers, each succeeded by a max pooling layer.  Dropout was 
enacted between the last max pooling and flattening layers, as 

well as before the final dense layer.  The dropout was 
executed so as to reduce the over-fitting of the neural network.  
As with the DNN, for the CNN the loss was set to optimize the 
categorical cross entropy, with ReLU activation functions 
imposed for the respective interior layers, and the final 
activation being softmax (Lee and Song, 2019).  Both the 
DNN and CNN were each trained for 100 epochs. 
 
Other modelling approaches were considered, so as to 
compare the accuracy results.  A logistic regression, a linear 
SVM, and a RF were each implemented.  Repeated cross-
validation was set with 10-folds and 10 repeats.  For the RF, 
the mtry parameter was fixed as the square root of the number 
of predictors, and 1000 trees were utilized for training.  The 
accuracy in the form of percent correct classification (here 
denoted as accuracy) as well as Cohen’s kappa score, were 
calculated for each model from the corresponding confusion 
matrix on the validation data.   
 
 

4.   RESULTS 
 
The validation accuracies for the binary classification of peat 
from the logistic regression, linear SVM, RF, DNN and CNN 
approaches are reported in Table 4.  The poorest accuracy was 
attained from the logistic regression model, which had an 
accuracy of 0.43, and a negative kappa score indicating less 
agreement than expected by chance.  There were convergence 
issues with the training of the logistic regression model on the 
full set of predictors.  The highest accuracies were realized by 
the DNN, RF and CNN approaches.  The CNN achieved an 
accuracy of 0.70 with a corresponding kappa of 0.39, 
indicating fair to moderate agreement.  A prediction map of 
the binary classification from the CNN for the study area is 
rendered in Figure 5.   
 

 
 

Table 4.  Modeling accuracies attained on validation data. 
 
 

 
 

Figure 5.  Prediction map for the binary classification of peat 
for the Hearst study area.   
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Input

Dense Units = 64, Activation = ReLU
Dense Units = 32, Activation = ReLU
Dense Units = 16, Activation = ReLU
Dense Units = 8, Activation = ReLU

Dense Units = 2, Activation = Softmax

Layer Specifications
Input

Convolution 2D Filters = 32, Kernal Size = (7,7), Activation = ReLU
Max Pooling 2D Pool Size = (2,2)
Convolution 2D Filters = 32, Kernal Size = (3,3), Activation = ReLU
Max Pooling 2D Pool Size = (2,2)
Dropout Rate = 0.25
Flatten
Dense Units = 16, Activation = ReLU
Dropout Rate = 0.5

Dense Units = 2, Activation = Softmax

Model Accuracies

Accuracy Kappa
Logistic Regression 0.43 -0.14

Support Vector Machine Linear-basis (SVM Linear) 0.57 0.12
Random Forest (RF) 0.67 0.25

Dense Neural Network (DNN) 0.65 0.30
Convolutional Neural Network (CNN) 0.70 0.39
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The regions with the greatest prevalence of peat correspond to 
wetland regions to the east and southeast of the community of 
Hearst.  The cleared land in the study area, which would 
conform to the pastureland and settlements, is depicted as non-
peat.  This representation is reasonable, as the soil in these 
areas should be compacted, whereas peatlands are generally 
not suitable for agricultural activities or uses. 
 

 
5.   DISCUSSION 

 
Generating a prediction map for a CNN, or related maps for 
the corresponding study area (such as entropy maps for 
determining regions of modelling uncertainty) are a greater 
endeavor than producing the same mapping for other methods.  
This complication is due to having to consider an image tensor 
window about essentially each pixel of the targeted study area, 
for each environmental covariate layer utilized a predictor.  
Due to the size of the image tensor window adopted, one may 
end up with a nominally reduced plot for the targeted study 
area.  In terms of pixels, the study area here comprised of 
1,785 columns by 827 rows.  These dimensions were reduced 
to 1,779 columns by 821 rows, as 3 pixels depth along the 
edge of each side were omitted due to the input image tensor 
window entailing 7 pixels by 7 pixels. 
 
The size of the image tensor window and convolution filter 
adopted should depend upon what is suitable for each study 
area or application.  For this analysis, a max filter size was set 
as 7 pixels by 7 pixels, in part to mitigate data constraints; this 
amounted to an image tensor window of spatial extent of 210 
m per side, that was centered upon each site.  A variogram 
analysis might be warranted to determine appropriate input 
image window dimensions.  It would be sensible to only 
consider neighboring pixels within an image tensor window 
that would conform to the soil properties of the site; if an 
image tensor window is too large, then some of those pixels 
would not correspond to the same soil attributes.   
 
Patterns of the features within an image tensor might be 
specific to a particular application or study area.  There is the 
possibility that a CNN could attain worse results than a DNN 
or other methods, as trends within these features may not 
persist among the sites.  This analysis can be sensitive to the 
number of convolution layers utilized, and the corresponding 
sizes of the filters.  Future work for this research will focus on 
experimentation with the CNN structure, as well as with 
adjustments to the filter windows, so as to maximize accuracy. 
 
A main drawback of neural networks is that it is difficult to 
determine variable importance from amongst the predictors.  
Subsequently, it can be challenging to ascertain what 
predictors are important, and which features are redundant (or 
where their inclusion negatively impacts modelling).  It is 
imperative to implement variable importance for a CNN that 
can take into account the interaction of covariates.  There is a 
possibility that two predictors can attain great significance 
independently, but when acted together can actually diminish 
the accuracy of a model.   
 
CNNs can necessitate the optimization of vast amounts of 
parameters when training.  Due to the involvement of 
extracting soil samples, sample sizes can be very sparse, 
which may not justify the utilization of a CNN.  To alleviate 
issues of over-fitting, alternatively one can implement 1-
dimensional convolution layers, as these would entail fewer 

parameters and resources.  Image tensors are not required for a 
1-dimensional convolution layer, and instead site pixel data as 
used for less complex methods can be inputted.  Another 
possibility is to evaluate a CNN trained with just a few 
covariate layers, but then one would foremost have to 
determine what covariates have the greatest significance.  
Taking into account these considerations, a CNN might not be 
a feasible method of choice.  If viable models can be achieved 
from less complicated approaches, specifically SVM or RF, 
then employing those methods might be more appropriate.   
 
Peat modelling can be intrinsic to a location, as what 
environmental covariates are important for one biome may not 
be veritable for another.  Even within the boreal biome, there 
can exist dissimilarities between wetlands in the boreal shield 
of eastern Canada in northern Ontario, versus the boreal plain 
of western Canada in Saskatchewan.  In northern Ontario, peat 
is commonly encountered in wetland environments, coinciding 
with black spruce.  In part because of a lack of economic 
incentives, peatlands are generally avoided and directly spared 
from human activities.  However, peatlands are vulnerable to 
environmental change (Minasny et al., 2019), and hence 
should be researched to monitor these potential future impacts. 
 
 

6.   CONCLUSION 
 
A CNN was able to achieve gains in modelling accuracy when 
evaluated against conventional classification methods, for the 
prediction of localities with peat for a boreal biome.   The 
highest accuracy was 0.70 and attained from a CNN, 
compared to 0.65 and 0.67 from a DNN and RF, respectively.  
 
The incorporation of neighboring pixels via image tensor 
windows about a site pixel point, which was subsequently 
convoluted and pooled, added information for use in the 
classification of peat.  However, more analysis might have to 
be performed in order to determine optimal sizes of input 
image tensor windows and filters.  A CNN approach 
necessitates greater computational resources, and might not be 
suitable for low site counts due to over-fitting.  With regards 
to application, the features unlocked from the image tensors 
would be specific in context to each study area. 
 
For peat prediction within the Hearst study area, the localities 
conforming to peat are primarily the wetlands, situated to the 
east and southeast of the community of Hearst.  As expected, 
the agricultural and settled locations correspond to non-peat. 
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