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ABSTRACT: 

 

Estimating area of impervious land cover is the most useful and one of the ecological assessment indexes of urban and regional 

environment.  Global land cover maps are inevitably misclassified, which affects the quality and application of the data. Statistical 

approach for assessing the accuracy is critical to understand the global change information and area estimation is usually based on 

sample data with a probability-based estimator. However, research on evaluation of multi-temporal global impervious land cover 

maps has not been implemented. In this study, spatial characteristics of the data are considered to assess the thematic map accuracy 

with a two-stage stratified random sampling plan. The first stage of stratification is determined by the global urban ecoregion and the 

second one is determined by land cover classes. Additionally, sample size of both map stage and pixel stage are calculated using a 

probability sampling model. A response design is constructed for a per-pixel accuracy assessment and blind interpretation is 

implemented using sample pixels and its surrounding area. Our method is applied to the multi-temporal global impervious land cover 

maps between 2000 and 2010 with a time interval of 5 years and the estimated area in different epoch are listed in detail. The main 

contribution of our research is illustrating the details for calculating the proportion area of impervious land cover and corresponding 

confidence intervals based on the reference classification. The experimental results show that the increasing area of the impervious 

surface according to the sample unit shows good agreement with the urbanization and descriptive accuracy assessments by user’s, 

producer’s and overall accuracy are shown respectively. 
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1. INTRODUCTION 

Area estimation is one of the most critical indicators to assess 

the accuracy of the land cover data from the remotely sensed 

imagery, which plays an important role in the development of 

productive economy and establishing scientifically accounting 

application to policy approaches for global ecological 

sustainability. 

 

Attempts to estimate the area of the single land cover map or 

land cover change has a far-reaching impact on societies and 

environments, reflecting the range of human activities on 

natural environment and ecosystem (Schneider et al., 2010).  

Area estimation should follow a good practice principle, i.e., 

neither over- nor underestimating global urban and global urban 

change area, and reduce uncertainties as far as possible 

(Olofsson 2014). The aim of area estimation is estimating the 

reference area of land cover class or that of a land cover change 

(Stehman, 2009). 

 

Estimating area of global land cover products is obviously very 

challenging, expensive, and time consuming. Area estimation 

based on a sample of reference observations, and design-based 

inference for the entire population (Stehman, 1997) can be a 

good choice when the estimation refers to a large scale region or 

some ground surveys are difficult to reach. In addition, stratified 

sampling design with the consideration of data features and will 

provide a good result of area estimation. The stratified random 

sampling is defined as selecting a random sample from each 

stratum, and implemented with the map classes defined as a 

stratum.  

 

A variety of area estimators approaches had been proposed, for 

example, a bias-adjusted estimator, a model-assisted area 

estimator, calculating area from the map and so on. For 

stratified random sampling, three sample-based approaches 

were direct estimation from the estimated sample error matrix 

yield the same area estimators (Stephen, 2013). Additionally, 

the land cover dataset produced by the classification of the 

remote sensing data such as Landsat and other satellites imagery 

has classification errors (Olofsson, 2020), indicating that area 

estimation directly from counting the classified pixels is totally 

biased. Instead of obtaining the estimated area of category i 

directly from the map classification, an area estimator can be 

constructed based on the reference classification of each sample 

unit. The reference classification is defined by the comparison 

between the classification label of land cover map with that of 

high resolution satellite imagery or ground truth. A confidence 

interval should also be provided to quantify the uncertainty of 

area estimation. 

 

The objective of this research is estimating the proportion of 

area of global impervious land cover map and its corresponding 

uncertain interval at a 95% confidence level with a stratified 

sampling estimator (Olofsson 2014). In this paper, we present a 

two-stage stratified sampling for estimating the area of the 

global impervious land cover maps from 2000 to 2010 based on 

the classification error matrix of stratified sampling and 

validated the effectiveness of this approach. The experimental 

dataset is provided by the results of NUACI-based global 

impervious land cover classification with a resolution of 30 

meters (Liu, 2018).  
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2. METHODOLOGY 

2.1 Sampling Design 

Here we present in detail the calculations of the accuracy data 

for estimating area and associated confidence intervals. This 

research follows the sampling framework proposed in the 

previous research (Sarndal, 1992, Stehman, 2001), and ensures 

the consistency of estimator and parameters. For rare categories, 

stratified probability sampling would be a good choice. Here, 

the global impervious land cover map is partitioned into two 

category, urban and non-urban. 

 

In order to rigorously evaluate the accuracy of the global scale 

impervious land data products, a two-stage stratification is 

designed to obtain the samples. Generally, the main steps of the 

stratified sampling design are sampling design, response design 

and error matrix analysis (Stehman, 1997). During the sampling 

design, appropriate stratification is important to obtain 

independent samples. The pixels labelled as urbans are 

geographical heterogeneity and some are extremely sparse in 

some map grids. If independent samples are obtained by the use 

of the simple random sampling, then the great majority of the 

sample units would fall in the area where no impervious surface 

exists, leading to a higher variance in the estimated accuracy of 

the population. Here a two-stage stratified random sampling is 

adopted (Tong et al., 2011) to assess the accuracy of the global 

impervious land cover products precisely considering the spatial 

characteristics in different region scales.  

 

The first-stage of the stratification is designed to select the 

samples geographically, which is created by urban ecoregion 

scheme proposed by previous research (Schneider et al, 2010), 

leading to 16 geographic regions within the global imperious 

land. They are Temperate forest in North America, Temperate 

forest in Europe, Temperate forest in East Asia, Temperate 

grassland in North-South America, Temperate grassland in 

Middle East Asia, Tropical broadleaf forest in south America, 

Tropical broad forest in Africa, Tropical and sub-tropical forest 

in Asia, Tropical and sub-tropical savannah in S.America, 

Tropical and sub-tropical forest in Africa, Tropical and sub-

tropical grassland, Temperate Mediterranean, Arid semi-arid 

desert and shrubland, Arid semi-arid steppe in Central Asia, 

Boral forest and tundra and permanent ice and snow. It is worth 

noting that the 16th ecological zone is a perennial ice and snow 

cover so that there is no urban land. Thus, land cover maps 

within this ecological zone are discarded. This stratification is 

necessary since previous research has shown that geographic 

variations lead to inaccurate assessment when the class was 

homogenous. 

 

The primary sampling units (PSU) in the first stage are map 

grids with a size of 10°×10°. Then each original map grid is 

further divided into 100 small grids with a size of 1°×1° to 

obtain the evenly distributed map grids. Taking these new map 

grids as the PSU, the samples size of the first stage can be 

calculated the statistical sampling model proposed in (Tong et 

al. 2011). Given a level of significance, the sample size is 

obtained by minimizing the relative error between the actual 

classification error and the predicted classification error. Then, 

the total sample size of the PSU was determined and the 

samples in each 1°× 1° PSU were selected randomly. Since the 

sample size of each ecoregion is proportional to the land area, 

all PSU within the same ecoregion has the same inclusion 

probability.  

 

The second stage of stratification is conducted within the two 

land cover classes, i.e., urban and non-urban in each PSU. The 

pixel is the secondary sampling unit (SSU) in this stratified 

sampling design and the sample size in this stage is obtained by 

the same method as that in the first stage. Given a fixed total 

sample size, the allocated sample size of each class is 

determined by minimizing the sum of the variances of 

producer’s accuracy, user’s accuracy and area estimation of 

urban for stratified random sampling. (John E.Wagner, 2015). 

 

Note that the stratified random sampling plans are designed 

separately for the dataset in different epoch and samples for area 

estimation in different epoch are independent. Thus, the error 

matrix of single epoch doesn’t include any information related 

to the area of urban change. So the area estimation of land cover 

change is not within the scope of this research. 

 

2.2 Response Design 

The response design is the process to evaluate the similarity 

between the map classification and the reference label (Stephen, 

1998). Generally, the reference label is defined by the 

assessment of high-resolution satellite imagery or ground truth. 

The main elements of the response design are listed as follows. 

 

2.2.1  Blind interpretation: Collection of reference labels 

was accomplished by seven interpreters who has completed 

training and experience in collection for land cover products. 

The interpreters should not know the map classification of each 

sample unit in advance.  

 

2.2.2 Using Google EarthTM imagery as reference data: 

Generate a vector Keyhole Markup language Zipped (KMZ) file 

of each sample unit and overlay it on Google earthTM imagery to 

assist the interpreters in obtaining the reference label for the 

sample pixel. Regarding the potential errors of geodetic 

coordinates of the original dataset, each sample pixel is 

surrounded with a 3 × 3 pixel window to determine the most 

appropriate label for the sample pixel. The interpreters can 

select the corresponding date of Google EarthTM based on the 

Landsat imagery acquisition date for global impervious land 

cover to determine the reference sample labels corresponding to 

the three periods. 

 

2.2.3 Judgment criteria for major decision: During the 

judgement of the mixed sample, the principle of area dominance 

is applied to determine the attribute of the sample. Feature types 

are used as final labels, that is, quantitative indicators to reduce 

the judgment errors. The consistent comparison between the 

time series impervious land cover map and reference data is 

based on the proportion of the impervious land within the 

reference pixels. As a result, the attribute labels of the reference 

data can be determined by comparing the decision from 

different interpreters and the majority of the results with the 

same judgment result are used as the final label to reduce the 

judgment error.  
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2.2.4 Credibility of the interpretation: The credibility of 

the interpretation results of the samples can be divided into 

three parts, i.e., completely correct, completely wrong or unable 

to judge. In the process of sample judgment, various factors, i.e., 

classification methods, ecological distribution, phenological 

conditions, original TM images, reference data, external factors, 

etc., lead to uncertainty of the judgment results. Credibility 

classification can be used to make quantitative judgments on 

samples, remove uncertain samples, and reduce the impact of 

uncertain factors. 

 

2.3 Area estimation 

Area estimation should follow the good practice principle, i.e., 

neither overestimating nor underestimating global urban area to 

reduce the uncertainties as more as possible (Olofsson, 2014). 

The urban area estimated from counting the pixels labelled as 

urban is not rigorous since the classification errors are not 

considered. It is better to estimate the area using a stratified 

sampling estimator based on the summary of the area of all 

stratifications with a given confident level. Once the manual 

inspection is completed, the error matrix can be obtained to 

estimate the urban area for each epoch. The probability-based 

estimator, as well as its variance, can be estimated using the 

error matrix. 

 

The error matrix is obtained based on defined as a match 

between the map class and the reference label (Stephen, 1998). 

Comparison between the map class of the sample pixel and its 

corresponding reference class can be expressed as the confusion 

matrix. The counting sample pixel for each cell of the confusion 

matrix is denoted as nij to represent the number of pixels that 

are map class i and reference class j. Since the objective of this 

research is to estimate the area of global impervious land cover 

of three epochs, so the confusion matrix should be converted to 

error matrix, which is directly related to the estimated area. A 

more informative presentation of the error matrix is in terms of 

the unbiased estimator of the proportion of area in cell i, j of the 

error matrix, which is defined as follows (Stehman, 2013): 

 ˆ
ij

ij i

i

n
p w

n 

   (1) 

 

It should be noted that the weights of different stratifications are 

defined by their area proportions. In equation (1), iw is the 

proportion of the area mapped as category i, denoted as: 

 i
i

total

A
w

A
   (2) 

 

where Atotal denotes the total area of pixels in the map dataset, 

iA is the proportion of the area mapped as category i. Supposing 

that the terminology symbol of in   denotes the sum of 

proportion of the area mapped as category i, the direct estimator 

of jp  is the sum of the sample-based estimators ijp in stratified 

random sampling, which is defined as follows: 
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Based on previous definition, the standard error matrix can be 

obtained. In the error matrix, map labels refer to the rows and 

reference labels refer to columns, cell entries are expressed as 

the percent of area. 

 

The cells of the error matrix are the area proportions with a 

difference between map and reference labels, where the 

summary of the column gives the estimated area proportions by 

the reference classification and the summary of the row 

represents that by the map classification. The diagonal elements 

contain the correctly classified items in each category, and the 

off-diagonal elements contain the confusion between the 

corresponding categories. 

 

The proportion of area of category j based on the reference 

classification can be estimated from the total of the column. An 

unbiased estimator of the total area of category j is defined as: 

 ˆ ˆ
j total jA A p    (4) 

 

Area is typically estimated from samples, these estimates are 

subject to uncertainty. The uncertainty of an estimate can be 

represented by calculating its standard deviation with a given 

confidence interval. For a stratified estimator, the estimated 

standard deviation of the estimated area proportion is (Cochran, 

1977) 
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Subsequently, the standard error of the adjusted area estimate is  

    ˆ ˆ
j total jS A A S p    (6) 

 

Thus, the final estimated area with an approximate 95% 

confidence interval for category j is defined as follows: 

  ˆ ˆ2j jA S A    (7) 

 

3. DATA SOURCE 

To address area estimation concerns of the global urban land, 

this research focus on a new multi-temporal global impervious 

surface data from 2000 to 2010 with a five-year interval, on the 

basis of the Landsat images. Thick black boxes denotes the 

original 10°×10° map grids. The multi-temporal global urban 

land cover ranges from 80 degrees north to 60 degrees south 

which is produced by the method of Normalized Urban Area 

Composite Index (NUACI) proposed by Liu et al. (2018) with 

the Google Earth Engine platform. This datasets utilized 

Landsat images with a spatial resolution of 30 meters extract the 

urban land cover, the classification includes urban and non-

urban. According to the uniform amplitude division 

specification, there are 224 maps all over the world. 

 

4. RESULTS 

A two-stage stratified random sampling plan is designed for the 

multi-temporal global impervious surface data. The first stage of 

the stratified sample is selected from the 22400 map grids and 

the number of primary sampling units is 532. These samples are 

selected randomly according to the land area of each stratum, 

which is shown in Figure 1. These samples are selected 

randomly according to the land area of each stratum. Note that 

samples selected from the smaller map grid shows a better 

reflection of urban aggregation.  
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Figure 1. Simple random sample of PSUs per stratum for global impervious land cover 

 

 

 

Figure 2. Magnified view of one PSU from temperate forest in 

North America in 2000 (red and black dots denote the urban 

and non-urban sample) 

 

 

 

 

 

 

Figure 3. Magnified view of one PSU from temperate forest in 

North America in 2005  
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Figure 4. Magnified view of one PSU from temperate forest in 

North America in 2010  

The second stage of the stratified sample is conducted within 

each selected map grid and the total number of samples for 

three epochs is 8708 pixels. Then the size of samples for urban 

and non-urban are allocated using the optimizing sample size 

allocation in the reference (Wagner, 2015). As a result, 4671 

urban samples and 4037 non-urban samples are obtained in this 

case. Furthermore, the samples are also selected randomly and 

sample in each epoch are selected independently.  

 

A selected PSU of three epoch from the temperate forest in 

North America in the second stage and its magnified views are 

shown in Figures 2, 3 and 4, showing that the arbitrary 

locations of the sample in three epochs. Following the approach 

in Section 2, the corresponding error matrix are shown in 

Tables 1, 2 and 3. 

 

The classification accuracy increases with the improvement of 

the data quality, showing less variance. Estimates of area of this 

dataset, based on the stratified random sampling design, the 

result can be obtained by equations. (4)-(7). Therefore, the 

estimated area of global urban region and within its 

corresponding variance in different epochs are 813.95±194.86 

thousand km2 in 2000, 947.6±192.76 thousand km2 in 2005 and 

1038.93±216.85 thousand km2 in 2010, respectively. It is clear 

that the global impervious land cover increased from 2000 to 

2010. 

 

 Reference 

no-urban urban Total 

Map no-urban 0.8936 0.0812 0.9748 

urban 0.0086 0.0166 0.0252 

Total 0.9022 0.0379  

Table 1 estimated error matrix with cell entries expressed as the 

estimated proportion of area. in 2010 

 

 

 Reference 

no-urban urban Total 

Map no-urban 0.8559 0.1227 0.9786 

urban 0.0081 0.0133 0.0214 

Total 0.864 0.136  

Table 2 estimated error matrix with cell entries expressed as the 

estimated proportion of area in 2005 

 

 Reference 

no-urban urban Total 

Map no-urban 0.8524 0.1302 0.9762 

urban 0.0059 0.0115 0.0034 

Total 0.9624 0.0057  

Table 3 estimated error matrix with cell entries expressed as the 

estimated proportion of area. in 2000 

 

5. CONCLUSION 

In this paper, we use a two stage stratified random sampling and 

estimated the area of sample-based approaches were direct 

estimation from sample error matrix to estimate the area of a 30-

m resolution multi-temporal global impervious surface data 

from 2000 to 2010 with a five-year interval. The proposed two-

stage stratification sampling plan is the full consideration of the 

geographical locations of impervious surface land cover, 

leading to a better-selected samples for area estimation. 

Analysing this dataset shows a rapid urbanization all over the 

world.  
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