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ABSTRACT: 

 

Map is an effective communication means.  It carries and transmits spatial information about spatial objects and phenomena, from map 

makers to map users.  Therefore, cartography can be regarded as a communication system.  Efforts has been made on the application 

of Shannon Information theory developed in digital communication to cartography to establish an information theory of cartography, 

or simply cartographic information theory (or map information theory).  There was a boom during the period from later 1960s to early 

1980s.  Since later 1980s, researcher have almost given up the dream of establishing the information theory of cartography because 

they met a bottleneck problem.  That is, Shannon entropy is only able to characterize the statistical information of map symbols but 

not capable of characterizing the spatial configuration (patterns) of map symbols.  Fortunately, break-through has been made, i.e. the 

building of entropy models for metric and thematic information as well as a feasible computational model for Boltzmann entropy.  This 

paper will review the evolutional processes, examine the bottleneck problems and the solutions, and finally propose a framework for 

the information theory of cartography.  It is expected that such a theory will become the most fundamental theory of cartography in the 

big data era.  

 

 

1.  INTRODUCTION 

 

Map is an effective communication means.  It carries and 

transmits spatial information about spatial objects and 

phenomena, from map makers to map users.  Therefore, 

cartography can be regarded as a communication system.   

According to Kent (2018), Keates (1964) “had introduced the 

idea of map as communication device at a London Meeting in 

1964”, but “the first published map communication model was 

devised by Moles (1964) and followed by Board (1967)”.   

Since then, a number of cartographic communication models 

have been established.  The typical example is the one 

developed by Kolacny (1969), as shown in Fig. 1.   

 

 
Fig. 1 The cartographic information transmission model proposed by Kolacny (1969) 
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Since 1960s, cartographers (e.g. Sukhov 1967, Knopfli 1983) 

made efforts on application of the information theory 

originated by Shannon (1948) and developed in digital 

communication community to cartography so as to develop a 

new theory of cartographic communication, or Cartographic 

Information Theory.  However, it has been not very successful.  

It has been found that the bottleneck of the problem is the 

measures for map information.  That is, Shannon entropy is 

only able to characterize the statistical information of map 

symbols but not capable of characterizing the spatial 

configuration (patterns) of map symbols. 

 

It can be noted here that some break-through has been made 

and it is feasible to build such a theory now.  The bottleneck 

problem is examined in Section 2, the break through is 

reported in Section 3, a framework is proposed in Section 4.  

Finally some remarks are made in Section 5.  

 

 

2.  LIMITATIONS OF SHANNON ENTROPY: ONLY 

FOR STATISTICAL INFORMATION 

 

It has been found that the bottleneck of the problem is the 

measurement of map information.  The Shannon entropy is the 

measure of information used in information theory.  It is a 

statistical measure as follows: 

) ( ) ( )
n

i i

i

H(X P x log P x    (1) 

Where, P(𝑥𝑖)  is the probability of a random variable X taking 

a vale of 𝑥𝑖.  In the case of maps, the X is map symbol,  𝑥𝑖 is 

the ith type of symbol and n is the total number of symbol types.  

The proportion of the ith type of symbol to the total number of 

symbols on the map.  

 

Fig. 2 shows two maps with quite different spatial 

configurations, but identical value of Shannon entropy is 

obtained from Equation (1), because both of them have the 

same types of symbols and have the same number of symbols 

in each type.  It means that the Shannon entropy fails to 

characterize the configurational information of spatial objects 

on maps.   

 

The Shannon entropy also fails to capture the configuration 

information of images.  Fig. 3 shows three images with quite 

different spatial configurations, but identical values of 

Shannon entropy (H=3.2 bits) are obtained from Equation (1) 

because the middle and right images are the randomized result 

of the left image, thus with the same number of pixels for each 

gray value (ranging from 0 to 255). 

 

 

 

Fig. 2  Two maps with different distributions of symbols but same amount of Shannon entropy (i.e. H=0.415) 

 

 

Fig. 3  Three images have very different spatial configurations but identical Shannon entropy (Gao and Li 2018a) 

 

 

3.  ENTROPY MODELS FOR CONFIGURATIONAL 

INFORMATION SUCCESSFULLY BUILT 

 

However, the situation has been dramatically changed in 

recent years and the formation of Information Theory of 

cartography, or Cartographic Information Theory, is now 

possible.  Because the solutions for the measurement of the 

configurational information of both graphic maps and image 

maps have been developed already.   
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(a) 7 symbols with 3 types, less ordered (b) 7 symbols with 3 types, more ordered 
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Li and Huang (2002) have argued that, in addition to statistical 

information, the (geo)metric information, thematic 

information and topological information are all the essential 

properties of maps.  As a result, they (Li and Huang 2002) 

developed mathematical models for these three types of map 

information.  They adopted an idea of an influence region for 

each map symbol, which is defined as its Voronoi region.  The 

Voronoi regions of all map symbols together form a Voronoi 

diagram, which is a tessellation (see Lee et al. 2000) of the 

map space.  In this way, the disjoint map features are 

contiguously connected.  Fig. 4 shows the space tessellation 

by the Voronoi diagram of map symbols.  Naturally, the 

probability in Equation (1) is replaced by the proportion of the 

Voronoi region to the whole map space.  Therefore, the metric 

information, donated as  𝐻(𝑀), is defined as follows: 

𝐻(𝑀) =   − ∑ (
𝑆𝑖

𝑆
)

𝑁

𝑖=1

 × 𝑙𝑜𝑔 (
𝑆𝑖

𝑆
)                          (2)  

Where, 𝑆𝑖  (𝑖 = 1, 2, … … , 𝑁)  is the Voronoi region of the 𝑖𝑡ℎ 

map symbol;  S is the whole map space (i.e.  S = ∑ 𝑆𝑖); and N 

is the total number of map symbols.   

Let the 𝑖𝑡ℎ map symbol has a total of 𝑁𝑖 symbols in its 1-order 

neighbourbood (with directly adjacent Voronoi regions, see 

Figure 4), belonging to 𝑀𝑖 thematic types.  The number of the 

𝑗𝑡ℎ (j=1, 2, … 𝑀𝑖) type features is 𝑛𝑗 , then the proportion for 

𝑗𝑡ℎ type symbols  is as follows: 

𝑃(𝑥𝑗) =
𝑛𝑗

𝑁𝑖
                                                              (5) 

Then, the entropy of thematic information for the 𝑖𝑡ℎ  map 

symbol is as follows: 

𝐻𝑖(𝑇) =  − ∑ 𝑃(𝑥𝑗)𝑙𝑜𝑔𝑃(𝑥𝑗)

𝑀𝑖

𝑗=1

= − ∑
𝑛𝑗

𝑁𝑖
𝑙𝑜𝑔

𝑛𝑗

𝑁𝑖

𝑀𝑖

𝑗=1

           (6) 

Therefore, the entropy for the thematic information of the 

whole map is as follows: 

𝐻(𝑇) =  ∑ 𝐻𝑖

𝑁

𝑖=1

(𝑇) = − ∑ ∑ {
𝑛𝑗

𝑁𝑖
𝑙𝑜𝑔

𝑛𝑗

𝑁𝑖
}

𝑀𝑖

𝑗=1

𝑁

𝑖=1

                        (7) 

In the example of Figure 4, the upper map has more thematic 

variety in the neighbourhood of each symbol, thus has a higher 

thematic information (i.e. H(T) =28.2) than the lower map (i.e. 

H(T) =16.4).  It is also shown that the two maps have different 

metric information although they have identical statistical 

information. 

 

 

Fig. 4  Two maps with very different spatial configurations (modified from Knopfli 1983, and Li and Huang 2002),  

thus with very different configurational information, but identical Shannon entropy 
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To capture the configurational information of image (maps), a 

number of improved Shannon entropies and variants have been 

developed.  However, a recent thermodynamics-based 

evaluation by Gao et al (2018), making use of validity, 

reliability and ability to capture the configurational disorder as 

metrics, reveals that these entropies are not 

thermodynamically sound.  Therefore, calls have been made 

(e.g. Li 2017) to go back to Boltzmann entropy which is 

capable of characterizing the configurational entropy of 

images but has no computational solutions developed since 

1872.  The equation of Boltzmann entropy had been engraved 

on the Boltzmann tombstone in Vienna Central Cemetery (see 

Fig. 5), and is as follows: 

S = k logW                                                 (8) 

where, S  is the Boltzmann entropy; k  is the Boltzmann 

constant (as 1 in the case of digital images and landscape 

models as suggested by Cushman (2016) and W   is the 

possible number of miscostates for a given macrostate.   

 

Indeed, Gao et al (2017a) have developed the only feasible 

solution for the computation of Boltzmann entropy.  They 

introduced multi-scale concepts into the system to define the 

two basic concepts, i.e. macrostate and microstate.  For  a 

given image, the macrostate is an image with a step of up-

scaling, and the microstates are all the possibilities of down-

scaling from the macrostate.  As shown in the example in Fig.5, 

a 2x2 image is aggregated into 1x1 pixel to form a macrostate, 

then 4 microstates in one case and 6 microstates in other case 

can be obtained.  Then computational algorithms gave also 

been developed for the computation of microstates (e.g. Gao 

et al 2017b, Gao and Li 2019a).  It has been demonstrated by 

Gao and Li (2019b) that Boltzmann entropy can be used for 

the measurement of the spatial information of not only images 

but also maps.   

 

 

Fig.5  Definitions of macrostate and microstate for Boltzmann entropy (modified from Gao et al 2017) 

 

4.  A FRAMEWORK FOR INFORMATION THEORY 

OF CARTOGRAPHY  

 

As information theory is defined as the mathematical theory 

concerned with the content, transmission, storage, and 

retrieval of information, usually in the form of messages or 

data, and especially by means of computers, the Information 

Theory of Cartography can be defined as the mathematical 

theory concerned with the content, transmission, storage, and 

retrieval of map information (or cartographic information), 

usually in the form of graphics and/or images, and especially 

by means of computers.  With this definition, the objectives 

the theory are very clear.  

 

The flow of information transmission in classic information 

theory is as shown in Fig. 6.  By comparison with Fig. 1, it can 

be found that the recognition (of the reality and maps) 

component in the traditional cartographic communication (see 

Fig.1) cannot be included.  Indeed, this component deals with 

information at the level of semantics but the Shannon deals 

information at syntax level.  Therefore, the topics constituting 

the framework of The Information Theory of Cartography 

should include the following components: 

 

• Measuring spatial information of graphic maps with 

generalized Shannon entropy; 

• Measuring spatial information of image maps with 

Boltzmann entropy; 

• Storage of map information; 

• Information transmission from images to maps; 

• Information transmission from one scale to another; 

• Information change in transmission/display-mode; and  

• Entropy-based optimization for map design. 

 

Down-

scaling 

Microstate Macrostate 

K is a constant， 

W is the number of microstate 

 for a given macrostate 
 W=4 
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A lot of research still needs to be carried out to make the 

Information Theory of Cartography become useful guide for 

cartographic practice although some work has already been 

done, such as transfer of information from a stage to another 

(e.g. Li and Huang  2001, Ai et al 2015) and optimal map 

design (e.g. Wang et al 2009, Bjørke 2012).  Indeed, a 

systematic study on different topics as listed in this section is 

still a matter of urgency and this needs joint efforts from 

researchers in the geo-information communities such as 

ISPRS and ICA. 

 

 

Fig. 6  The flow of information transmission in Cartographic Information Theory 

 

 

5.  CONCLUDING REMARKS  

 

This paper deals with the construction of a framework for the 

Information Theory of Cartography (or Cartographic 

Information Theory) and proposal of a research agenda.  It has 

been emphasized that  

• there is a need of information-based theory for 

cartographic communication studies; 

• the bottleneck problem in the building of such a theory is 

the appropriate measurement of the spatial 

(configurational) information of graphic and images 

maps; 

• break-though has been made in the development of such 

measures; and 

• it is now feasible to construct a framework for the 

Information Theory of Cartography and such a 

framework should include different aspects in the 

information flow from data to map and finally to map use. 

  

It is expected that this paper will stimulate the discussions on 

this topic and a new branch of cartography, the Information 

Theory of Cartography, or Cartographic Information Theory, 

will become established.   

 

It is also expected that such a theory will become the most 

fundamental theory of cartography in the big data era, because 

as advocated by Wheeler (1990) of Princeton University, the 

physical world is made of information, with energy and matter 

as incidental. 

 

It is noted here that the curent study takes consideration of map 

information at syntax level only.  Information at semantic and 

pragmatic levels should be studied in the future to make a 

Generalized Information Theory of Cartography established.  
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