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ABSTRACT: 

 

Global Navigation Satellite System (GNSS) is a matured modern technique for spatial data acquisition. Its performance has a great 

correlation with GNSS receiver position. However, high-density building in urban areas causes signal obstructions and thus hinders 

GNSS’s serviceability. Consequently, GNSS positioning is weakened in urban areas, so deriving proper improvement resolutions is a 

necessity. Because topographic effects are considered the main factor that directly block signal transmission between satellites and 

receivers, this study integrated aerial borne LiDAR point clouds and a 2D building boundary map to provide reliable 3D spatial 

information to analyze topographic effects. Using such vector data not only reflected high-quality GNSS satellite visibility calculations, 

but also significantly reduced data amount and processing time. A signal obstruction analysis technique and optimized computational 

algorithm were also introduced. In conclusion, this paper proposes using superimposed column method to analyze GNSS receivers’ 

surrounding environments and thus improve GNSS satellite visibility predictions in an efficient and reliable manner. 

 

1. INTRODUCTION 

1.1 Satellite Visibility Analysis 

Global Navigation Satellite System (GNSS) has been widely 

used in the surveying field, as well as in other engineering 

applications. Therefore, knowing how to increase positioning 

quality is crucial. One of the main positioning factors is satellite 

and receiver connection, called satellite visibility, which depends 

on the line between the receiver on the ground and the satellite in 

the sky.  

 

 
Figure 1. Illustration of signal obstruction from satellite to receiver 

As in Figure 1, the line between the receiver and Satellite A is 

clear, which means that Satellite A is visible to the ground station. 

However, the line between the receiver and Satellite B is blocked 

by a building, meaning the signal transmission is disturbed. There 

are many other types of obstacles, such as urban canyons, 

mountainous areas, or areas of dense vegetation, all of which lead 

to a similar lack of satellite coverage (Ackermann et al., 2013). 

To distinguish whether a satellite is visible or not, though, we 

must first analyze the station’s location to derive the maximum 

visual elevation angle in all directions. 

Many scholars have already begun to explore satellite visibility 

analysis. For example, Verbree et al. (2004) combined cadastral 

maps with LiDAR to classify objects on the surface and 

reconstruct a building model. Next, they formed a point cloud of 

building roofs to calculate elevation angle. Verbree et al.’s (2004) 

results then used colored dots to indicate the percentage of 

satellite visibility, where Blue–Red represented < 60–100% 

availability (Figure 2). 

 

 
Figure 2. Satellite visibility percentage in Delft 

(Verbree et. al., 2004) 

Taylor et al. (2007), meanwhile, established a DSM model that 

merged aerial photography and LiDAR into a realistic digital 

surface model to calculate the Line of Sight (LOS) vector. As 

shown in Figure 3, the green lines represent visibility and the red 

lines invisibility. Using LOS can thus determine the status 

between satellites and stations and aid decisions on whether to 

perform GPS surveying. 

 

 
Figure 3. LOS of GPS satellite visibility (Taylor et al., 2007) 

1.2 Terrain Data Analysis  

To derive the elevation angle in each direction, the terrain data 

must first be processed. The two most commonly used data in 

terrain analysis are raster data and vector data.  
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(i)  Raster Data 

 

Raster data uses grids or cells to store geometric information, 

such as aerial photographs, satellite images, and DSM. A higher 

cell resolution requires more space to store the data, affecting 

calculation efficiency. To improve this problem, Han and Li 

(2010) proposed the non-equal interval sampling method: if the 

terrain is more complicated, the satellite orbit’s sampling time 

shorter, or the sampling point closer to the receiver, the sampling 

interval must be shorter. This method’s advantage is that it can 

be more effective than equal interval sampling and reduce data 

calculation time. 

 

 
Figure 4. Non-equal interval sampling method (Han & Li, 2010) 

(ii)  Vector Data 

 

Vector data uses points, lines, and polygons to store geometric 

information. This type of data requires less space because only 

coordinates are stored. LiDAR is one of the main remote sensing 

technologies nowadays and can calculate the distance between 

the sensor and its target by launching a laser wave and measuring 

the time difference of the reflected wave. Another advantage of 

LiDAR is that it has high penetration, fast speed, and  is 

unaffected by day or night hours.  

LiDAR has already been widely used in 3D terrain models. For 

example, Rottensteiner and Briese (2002) used high-resolution 

LiDAR data to test the establishment of a small area DSM in 

Vienna (Figure 5). 

 

 
Figure 5. Using LiDAR to reconstruct a terrain model in Vienna  

(Rottensteiner & Briese, 2002) 

Traditionally, aerial photography is a rapid and low-cost way to 

acquire DSM in flat areas with small scales. Yet, due to the high 

building density in urban areas, the situation in cities is more 

complicated. Buildings make it very difficult to completely and 

clearly identify satellites. Furthermore, images can have 

problems such as image resolution, shadow area, depth 

discontinuity, material difference, etc. and sometimes even need 

manually selected object pairs (Zhou et al., 2004). This process 

thus becomes time- and cost-consuming. Rottensteiner and 

Briese (2002) suggested that LiDAR is the much more suitable 

choice in city areas because of the high density of point clouds. 

Buildings can be detected first in the point cloud, and then the 

edges of those buildings can be reconstructed to build a 3D model. 

Therefore, LiDAR is a more suitable resource for analyzing 3D 

models of complicated topographies. 

 

1.3 GNSS Positioning Quality Index 

The GNSS dilution of precision (DOP) is related to satellites’ 

geometric spatial distribution and can be estimated from prior 

knowledge of satellite visibility along a planned route 

(Ackermann et al., 2013; Leick, 2004). DOP factors are functions 

of the diagonal elements from the posterior variance covariance 

matrix of the least square solution of the GNSS positioning, as 

shown in Eq. (1).  

 

 Qxx = [

σX2 σXY σXZ σXdt
σY2 σYZ σYdt

σZ2 σZdt
sym. σdt2

]  (1) 

 

Table 1 shows five different DOP expressions: the vertical 

dilution of precision (VDOP) for height, the horizontal dilution 

of precision (HDOP) for horizontal positions, the time dilution of 

precision (TDOP) for time error accuracy between the receiver 

and the satellite, the positional dilution of precision (PDOP) for 

3D coordinate accuracy, and the geometric dilution of precision 

(GDOP) for 3D coordinate and time accuracy. 

 

Table 1. DOP Expressions (Leick, 2004) 

VDOP = √σZ2 

HDOP = √σX2 + σY2 

PDOP = √σX2 + σY2 + σZ2 

TDOP = √σdt2 

GDOP = √σX2 + σY2 + σZ2 + c2 ∗ σdt2 

 

Calculating DOP in advance can give approximations of receiver 

location. It can also find the best satellite subsets on a given day. 

 

2. METHODOLGY   

2.1 Vector Terrain Data Processing 

In this study, LiDAR data was used to analyze terrain. However, 

the raw LiDAR point cloud data was too large and contained 

many unnecessary parts. Therefore, preliminary data extraction 

was required, so we extracted the LiDAR points based on 2D 

boundaries and homothetic boundaries transformation. 

 

2.1.1   LiDAR Points Extraction Based on 2D Boundaries 

In urban areas, the obstacles caused by high building density that 

affect the connection between a satellite and its receiver are 

complex, so only building parts are required. Hence, using open 

data provided by the government, the LiDAR points and 2D 

building boundary map were combined and then the building 

sections extracted. As a result, the LiDAR building parts 

remained and the rest of the points removed. This served as an 

initial data reduction in keeping just the useful points. 

 

2.1.2   Homothetic Boundaries Transformation 

However, the extracted points may still have contained some 

useless points. For example, the points near the building 

boundary may have had some noise, such as reflection off a wall. 

To clear the noise points, the building boundary was rendered 

smaller. Modifying the building boundary into a smaller size 

ensured that the rest of the points were all in the rooftop area, 

which was important because the rooftop area can be used to 

calculate building height. 
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2.2 Superimposed Column Method 

Because urban areas have lots of buildings, the data amount is 

large. To effectively reduce this amount, the points that were 

already extracted were processed via a superimposed column 

method and stored in a vector database. As seen in Figure 6 and 

Figure 7, the superimposed column concept involves turning 

buildings into stacked columns and then storing the height 

information and coordinates of each. The greatest benefit of this 

method is that it can turn even 1 million LiDAR points into small 

data pieces, helping simplify calculations and storage. In addition, 

the superimposed column method kept the basic shape and height 

information of building rooftops. 

 

  
Figure 6. 

Superimposed column 

method (side view) 

Figure 7. 

Superimposed column 

method (top view) 

 

2.3 Maximum Elevation Angle Calculation 

After gathering the buildings’ height and coordinate information, 

the final step was to derive the maximum elevation angle and find 

each direction’s mask angle, as shown in Figure 8 and Figure 9. 

 

 
Figure 8. Maximum mask angle calculation (top view) 

 
Figure 9. Maximum mask angle calculation (side view) 

Elevation angle was derived from Eq.(2): 

 

El = arctan⁡(
H

D
)                                   (2) 

where El is the elevation angle from the receiver to the building, 

H is the building height - the receiver height, and D is the distance 

between the receiver and the building. 

Using Eq. (2), we learned the maximum elevation angle in each 

direction and treated them as mask angles. After finding all mask 

angles, we considered satellite position to draw the skyplot and 

estimate the DOP values. While completing all the above 

methods, the results had to be verified; calculation efficiency is 

also one of the evaluated performances. 

 

3. RESULTS AND DISCUSSION  

3.1 Experiment Data 

The experiment data was twofold: a LiDAR point cloud (Figure 

10) and a 2D building boundary map of National Taiwan 

University (NTU; Figure 11). The original LiDAR data contained 

5,798,616 points, and the building boundary map had 829 

polygons.  

 

 
Figure 10. LiDAR point cloud of NTU  

 
Figure 11. 2D building boundary of NTU 

Since the goal of this research was to find a suitable survey time 

for the GNSS receiver, the experiment specified two spaces as 

the receiver’s location. In Figure 11, point A is surrounding by 

many buildings, so its visibility to the sky is seriously blocked. 

As for point B, it is located in the school square, which is a much 

more open area than point A. For those two points, point A was 

a high masking point and point B was a low masking point. 

 

3.2 LiDAR Point Processing 

For the experiment, we only needed to analyze the obstacles in 

the city. Therefore, the first step was to take out the unnecessary 

building points. After using the 2D building boundary to remove 

the extraneous points inside it, the remaining points generated 

Figure 12. This lowered the amount of points from 5,798,616 to 

430,896.  
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Figure 12. LiDAR points post-extraction  

The second step required using homothetic transformation to 

create a new building boundary. Because the research only 

focused on the rooftop building area, the rest of the buildings 

were excluded. This process also ensured the removal of wall 

reflection points. Figure 13 indicates an example of the building 

boundary’s homothetic transformation.  

 

 
Figure 13. Example of building boundary homothetic 

transformation 

The modified polygon is 0.9 times the original polygon due to 

Taiwan’s general building wall width. Thereafter, only the points 

inside the modified polygon were kept. 

 

3.3 Building Superimposed Columns 

After the preliminary arrangement of the point cloud, the 

remaining points were treated as building roofs. Although it was 

processed, the amount of data was still large, so this study used 

superimposed columns to simplify the data and save it into a 

vector database, which is easier to process.  

The meaning of the superimposed columns is to set a 

quadrilateral with four corner points as a layer, turning one 

building into pieces of stacked layers like in Figure 6. A 

quadrilateral can frame all points in the same layer, so the four 

corner points were stored as x-y coordinates; the layer height 

values were also recorded.  

For example, in Figure 14, the red dots represent the LiDAR data, 

containing 528 points. The first layer starts from the bottom of 

the points. There is a 0.5 meter range between each layer. As a 

result, it places all 529 LiDAR points into 3 layers, which means 

only 3 (layer) x 4 (corner points) = 12 points need to be stored. 

 
Figure 14. Superimposed building column sample 

Table 2 shows the amount of data for experimental points A and 

B after the columns were superimposed. 

 

Table 2. Data amount after column superimposition 

Point A 76,785 (layers) 

Point B 71,967 (layers) 

 

3.4 Mask Angle Calculation  

The final step was to compute the maximum elevation angle of 

each direction (Figure 15). We set a buffer at a radius of 1,000 

meters. Each 1 degree was calculated its own mask angle. 

Moreover, it only calculated the building higher than the last one, 

which means that not all buildings were calculated with the 

elevation angle. With this conditional expression, the calculation 

time was expedited. 

 
Figure 15. Calculation of elevation angle from each direction 

With the maximum elevation angle for each direction calculated, 

we drew the skyplot for the receiver points. Point A’s skyplot is 

shown in Figure 16 and point B’s in Figure 17. The center of each 

circle indicates the receiver’s position. 

 

 
Figure 16. Skyplot of point A 
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Figure 17. Skyplot of point B 

3.5 Comparing the Results 

To verify the experiment’s results, the research tested two 

additional datasets: the original LiDAR data and raster data made 

from the original LiDAR data (Figure 18). The raster resolution 

was 1 m x 1 m. 

 
Figure 18. Raster data made from the original LiDAR data 

It also used the three different datasets to calculate the mask angle 

in each direction to compare results and time efficiency. 

 

 
 

Figure 19. Point A’s mask angle from three different dataset  

 
Figure 20. Point B’s mask angle from three different datasets 

In Figure 19 and Figure 20, the blue line indicates the original 

LiDAR data, the orange line the superimposed column method, 

and the yellow line the raster data. The x-axis represents the 

azimuth and the y-axis each direction’s elevation angle. It is clear 

that the blue and orange lines have a similar trend. It is also worth 

noting that the orange line is typically higher than the blue line, 

which might be because the original LiDAR data used average 

height to represent building height. 

However, the raster data results are quite different from the others. 

The reason may be that when the grid was produced, the point 

cloud was projected onto a blank grid, and the average height of 

all points in the range were used as the grid values. Hence, the 

average height may have caused some errors in certain grids. 

 

 
Figure 21. Skyplot of point A per the three different datasets 

 
Figure 22. Skyplot of point B per the three different datasets 

Figure 21 and Figure 22 show point A and point B’s skyplots per 

the three different datasets, where (a) is the original LiDAR data, 

(b) is the LiDAR data with superimposed columns, and (c) is the 

raster data. Once again, the vector data featured more identical 

results.   

Another way we checked the three datasets was with RMSD. 

RMSD is used to measure the differences between predicted and 

observed values. In this study’s context, the predicted value 

should be the original LiDAR data. Table 3 shows the RMSD of 

each method. Just as with the trends in Figure 19 and Figure 20, 

the vector data had a very similar RMSD, while the raster data 

was different. 

 

Table 3. RMSD comparison 

 

LiDAR 

& 

LiDAR with 

Superimposed 

Columns  

LiDAR 

& 

Raster LiDAR 

RMSD_A 2.583° 7.800° 

RMSD_B 4.099° 11.182° 

 

Tables 4 and Table 5 list the amount of data and calculation time 

that correspond to each method. For point A, after column 

superimposition, the data was 3.46% of the amount of LiDAR 

data, and the time required was only 0.003% of the original. For 

point B, the data after column superimposition was 2.53% of the 

original LiDAR data points, and time efficiency was 0.003% of 

the original. Although the original LiDAR points and the LiDAR 

points after column superimposition were all vector data, the data 

amount still made a tremendous difference. On the other hand, no 

matter at which test point, the raster data took much more time to 

calculate than the original LiDAR data. The data storage was also 

different, with the raster data taking 5.05 GB but the LiDAR with 

superimposed columns data only 800 KB. The raster data also 

needed much more space and time to calculate than the LiDAR 

data with superimposed columns. 

 

Table 4. Data information of point A  
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Data Type 
Original 

LiDAR 

LiDAR with 

0.5 m 

Superimposed 

Columns 

Raster 

(1 m x 1 

m) 

Data amount 
2,216,504 

(pts) 

76,785 

(layers) 

1235 x 

1155 

(pixel) 

Time 2314.443 (s) 0.067 (s) 39.814 (s) 

 

Table 5. Data information of point B  

Data 

Type 

Original 

LiDAR 

LiDAR with 0.5 m 

Superimposed Columns 

Raster 

(1 m x 

1 m) 

Data 

amount 

2,839,944 

(pts) 

71,967 

(layers) 

1235 x 

1155 

(pixel) 

Time 
2047.494 

(s) 
0.064 (s) 

39.408 

(s) 

 

Finally, mask angle proved important because it can reflect the 

real topographic situation around the receiver. The reason why 

the study analyzed terrain data was because mask angle might be 

underestimated. Figure 23 is a skyplot of point A from 2020/3/25 

00:00 (UTC). When the mask angle was 15°, the number of 

visible satellites was 8.  

 

 
Figure 23. Skyplot from Trimble GNSS planning online  

Yet, after analyzing the true 3D terrain data, this experiment 

showed the true mask angle should resemble that in Figure 16. 

Hence, after combining satellite position and mask angle, the 

corrected skyplot was generated, with the number of visible 

satellites 3 instead of 8 (Figure 24). 

 
Figure 24. Corrected skyplot  

 

4. CONCLUSIONS AND FUTURE WORK  

The aim of this research was to use the LiDAR superimposed 

column method to find the best satellite observation time of day. 

The current results indicate that such vector data uses less store 

space and has a much faster processing speed compared to the 

same calculation performed with raster data. Furthermore, 

compare to the original LiDAR data and the raster data, the 

superimposed column method proposed by the research is the one 

with the smallest amount of data and the fastest speed. When the 

buildings are regenerated as columns, the data amount is roughly 

3% of the original and takes only 0.003% of the original data’s 

calculation time. In addition, the RMSD between the LiDAR 

superimposed column data and original LiDAR data is about 3.3°, 

showing the LiDAR superimposed column method is a quick and 

effective method to predict satellite visibility. 

In the future, researchers should continue to improve the 

superimposed column method’s accuracy. Additionally, the 

research may benefit from actual field GNSS surveying based on 

experimental results; the DOP should be estimated in advance 

and then compared with the actual DOP obtained during the 

GNSS field survey, ensuring that the research is supported by 

actual evidence. 
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