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ABSTRACT:

Visually impaired people cannot use classical maps but can learn to use tactile relief maps. These tactile maps are crucial at school
to learn geography and history as well as the other students. They are produced manually by professional transcriptors in a very long
and costly process. A platform able to generate tactile maps from maps scanned from geography textbooks could be extremely useful
to these transcriptors, to fasten their production. As a first step towards such a platform, this paper proposes a method to infer the
scale and the content of the map from its image. We used convolutional neural networks trained with a few hundred maps from French
geography textbooks, and the results show promising results to infer labels about the content of the map (e.g. ”there are roads, cities
and administrative boundaries”), and to infer the extent of the map (e.g. a map of France or of Europe).

1. INTRODUCTION

Visually impaired people cannot use classical maps but can learn
to use tactile relief maps, in order to understand the geography
of their place of residence, hometown, region, country, or of the
world. These tactile maps are useful to teach to visually impaired
people how to make their daily travel autonomously. But they are
also crucial at school to learn geography and history as well as
the other students. Today, these maps are manually produced by
professional transcriptors, and the process can be very long. Ge-
ography teachers use many maps from their textbooks in class,
and when they have visually impaired students, they need tac-
tile equivalents, and even when they have access to a transcriptor,
which is not always the case, it would take too long to create
all these equivalents. This is why it would be useful to apply
advanced cartography techniques to accelerate tactile mapmak-
ing (Lobben, 2015), or even to automate it (Touya et al., 2019,
Wabiński and Mościcka, 2019).

In this context, our long term goal is an automated online plat-
form where geography teachers are able to send an image (e.g.
scanned from a textbook) of a map, and then receive the tactile
map, as a file ready to be 3D printed, which is as close as possible
as the original map. Another use of the platform would be to pro-
vide a first draft of the map to a professional transcriptor, which
would just have to finalize and polish the map, saving a lot of
time in the tactile map production process. In order to provide a
tactile map from a map image, several steps are necessary: (1) in-
fer the map characteristics from the image (the scale, the content,
the style, the geographical extent); (2) collect the geographic data
necessary to draw this map; (3) simplify and generalise this geo-
graphic data to adapt it to tactile map reading (Touya et al., 2019);
(4) transform the map into a digital model able to be printed with
one of the existing techniques (Lobben, 2015, Brock et al., 2015)
As a first step towards this online platform, we propose in this pa-
per a method to infer the scale and the content of the map image,
based on deep learning techniques.

The paper is structured as follows. The second section presents
past research related to the adaptation of maps for visually im-
paired people. Section 3 describes the method proposed to infer
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the scale and the extent of the maps. Section 4 describes the
method proposed to infer the type of features contained in the
map. Section 5 discusses the methods and their results. Finally,
Section 6 draws some conclusions and presents future research
towards automated tactile cartography for visually impaired peo-
ple.

2. ADAPTING MAPS FOR VISUALLY IMPAIRED
STUDENTS

As touch perception is far less precise than vision, the specifi-
cations for good tactile maps command maps that are extemely
simplified. Figure 1 shows for instance a map of Australia for
people with normal vision, and a version for visually impaired
people, where the content is reduced to minimum and the geom-
etry of the boundaries is also simplified and even schematised
(Mackaness and Reimer, 2014). There is a long history of studies
to understand the limits of tactile graphics (Edman, 1992), even
in the context of maps (Rowell and Ungar, 2003). Similarities be-
tween cartographic design and tactile map design have been high-
lighted with a translation of Bertin’s visual variables into tactile
variable for maps (Vasconcellos, 1996).

Figure 1: Two administrative maps of Australia: for visu-
ally impaired people on the left ( c©INSHEA-SDADV-2019-
2020); for people with normal vision on the right (source:
http://maps.unomaha.edu).

The optimal specifications for a tactile map vary according to
the type of visual impairement (Brock et al., 2013), but also de-
pending on the printing techniques (e.g. relief embossing, tactile
screen with audio descriptions, or 3D printing). Tactile maps can
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also be interactive, as well as current web maps, and it was shown
that such interactivity increases the chances of understanding the
geography behind the map for visual impaired people (Brock et
al., 2015).

Now, considering our four-step process to automatically gener-
ate tactile maps from images of maps for geography and history
lessons, some of these steps have been approached in recent re-
search projects. For step (2), data collection, the main task is
to select the appropriate layers of vector data from the existing
geographical databases. But some information necessary for vi-
sually impaired people might be lacking in geographic databases
collected for topographic mapping (Touya et al., 2019). For in-
stance, pavements and zebra crossing are rarely collected in such
databases but are necessary when maps of daily travels are cre-
ated. In this case, it is possible to generate this missing informa-
tion from high resolution aerial images with deep learning tech-
niques (Fillières-Riveau et al., 2019).

At step (3), the vector geographic data collected at the previous
step needs to be simplified to meet the drastic specifications of
tactile maps. Many tools already exist for this task, many of them
based on OpenStreetMap data, a quite complete list of such ap-
plications can be found in (Wabiński and Mościcka, 2019). But
as illustrated by the Mapy.cz application (Červenka et al., 2016),
the maps remain often too complex to be fully usable for visually
impaired people, or even as base maps for transcriptors. The use
and adaptation of map generalisation techniques, firstly designed
for scale reduction in topographic maps seems really promising
to achieve tactile maps that are simple enough (Štampach and
Mulı́čková, 2016, Touya et al., 2019, Wabiński and Mościcka,
2019).

But, before being able to transform geographic data into tactile
maps for visually impaired people, the first step is to infer the
characteristics of the map, from which the specifications of the
map can later be derived: scale, projection, map content, geo-
graphic extent, style and symbols, etc. If we consider that the in-
put map is an image, as it is the most practical way to interact with
teachers, inferring map characteristics can be seen as an image
labeling and classification problem. Deep learning techniques,
and particularly convolutional neural networks (CNN) (LeCun et
al., 2015) are now obvious solutions for such image classification
problems. However, there are very few applications of image
classification techniques to map images. The use of CNNs was
proven useful to classify geographic images (e.g. an aerial image,
a topographic map, a landcover map, or a 3D scene) (Zhou et al.,
2018). In their model to transfer the style of Google Maps to
OpenStreetMap data with generative adversarial networks, Kang
et al. used an intermediate CNN called isMap to discriminate
an image that is a realistic map from other types of images that
could be generated by the model (Kang et al., 2019). These two
research projects show the potential of convolutional neural net-
works to infer label and classify maps, and this is why we used
such techniques to solve our problem of map characteristics in-
ference. The map scale inference problem is described in the
following section, and the inference of map content is presented
in Section 4..

3. MAP SCALE INFERENCE

This section focuses on the first issue of map scale inference from
map images. We first explain how the issue was modelled as a
deep learning classification problem. Then, data preparation is
described, and results are presented.

3.1 Problem Formalisation

One of the most important characteristics of maps, and maybe
the most important regarding generalisation and simplification, is
the scale of the map. The scale of the map first helps to define
the size of the symbols in the map (Ruas, 2004). For instance,
if a line needs to be longer than 12.7 mm to be understood as a
line in the tactile map (Štampach and Mulı́čková, 2016), defin-
ing the scale of the map helps to define the minimum length of
lines that should be kept from our geographic database. But map
scale is also related to the use and the content of the map (Ruas,
2004, Mackaness, 2007). For instance, topographic maps at the
1:25,000 scale are often used for hiking and contain information
about terrain and all the individual buildings are represented.

We propose three different ways to formalise our problem of in-
ference of the map scale:

• learn a regression function that gives the numerical value of
the scale as output of the CNN;

• classify the maps into scale categories;

• classify the maps into specific geographic extents from which
the scale can be derived: if the extent of the map is the whole
France and the map is to be printed on a 20 * 20 cm device,
the scale of the map can be deduced.

In the first case, the regression model, the numerical value to be
learned can be the scale ratio (e.g. 0.00004 for 1:25,000 scale), or
the denominator of the scale (e.g. 25,000 for 1:25,000 scale). Af-
ter several tests, we opted for a third solution, a normalised value
between 0 and 1. We used the minimum and maximum scales
from the WMTS standard 1 to normalise scale values, where 1 is
the 1:500,000,000 scale.

The second formalisation proposal is to classify maps into a small
number of scale categories. Scale ratios were great tools when
maps were only printed on paper, at a fixed size, but now that
maps are used more and more digitally, these scale ratios are less
meaningful and should be replaced by scale categories when pos-
sible (Goodchild and Proctor, 1997). As an extension of a first
proposal dedicated to the level of detail of OpenStreetMap map
features, (Touya and Reimer, 2015), we propose to separate maps
into 7 scale categories: street, city, county, region, country, con-
tinent, and world. Approximate scale ranges corresponding to
these categories are provided in Table 1. Figure 2 shows three
maps at different scale categories.

Category Scale denominator min Scale denominator max
World 50,000,000 500,000,000
Continent 8,000,000 50,000,000
Country 750,000 8,000,000
Region 150,000 750,000
County 50,000 150,000
City 15,000 50,000
Street 1 15,000

Table 1: The scale categories proposed, as an extension of the
categories from (Touya and Reimer, 2015).

The third solution to undirectly learn map scale derives from the
maps collected in our dataset (we have many maps of Europe,
but not so many of other continents, many maps of France, but
no so many of other countries), but also from the global set of
characteristics we plan to infer on maps. Indeed, in addition to

1https://www.ogc.org/standards/wmts
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Figure 2: Three maps of at different categories of scale: (a) country (b) continent (c) world.

scale, we need to know the geographical extent of the map, and
we can derive scale from the extent and the size of the output.
In this case, the categories we want to learn correspond to the
geographic extents that were redundant enough in our dataset:
World, Europe, France, Paris.

We tested several CNN architectures to test our different for-
malisms to infer scale, and we finally opted for rather simple
CNN that is a mix between LeNet models(Lecun et al., 1998)
used for handwritten character recognition, and AlexNet (Krizhevsky
et al., 2012). The architecture, presented in Figure 3 is deeper
than LeNet-5, but does not use the parallelism mechanisms of
AlexNet because our dataset is much smaller than ImageNet (Rus-
sakovsky et al., 2015), for which AlexNet was designed.

2D convolution

ReLU

Dropout

Full connection

Flattening

Max Pooling

Sigmoid

Figure 3: The layers of convolutional neural network used to
learn map scales from images.

3.2 Data Preparation

Our main source of maps is a French collaborative project where
teachers create open source textbooks, including geography and
history textbooks for all classes (https://www.lelivrescolaire.fr/).
We extracted maps from the textbooks with screen capture tools,
keeping only the map and not the text that describes the map.
When a legend was included along the map, it was included in the
image, as it was anticipated that the legend could be used by the
CNN to capture the map characteristics better. As the number of
maps collected this way was quite small, we added maps that are
not extracted from geography or history textbooks: we extracted
several types of maps from Google Maps, OpenStreetMap, and
the geoportal of the French mapping agency2. In most cases, the
scale of the map was not available, so we used the available scale
bars to measure the scale of the map; then, we stored for each
map its scale (i.e. the denominator of the scale ratio), and the ge-
ographic extent of the map. The scale category was derived from
the stored scale denominator using the equivalences of Table 1.

2https://www.geoportail.gouv.fr

Our CNN requires images with fixed dimensions (here 256*256
pixels). But the collected maps have very diverse dimensions.
There are two possibilities to make all these map images square
(Figure 4):

• resizing the images;

• adding a strip on an edge of the image.

Figure 4: Two ways of squaring rectangle images: resizing or
adding a strip (black here) on an edge of the image.

Resizing the image can cause important distortions when the width
of the rectangle is very different from the length. As these distor-
tions can bias how the model learns how to infer scale, we opted
for adding a strip in the image. We tested several options for this
strip, as we wanted to be sure that the model ”understands” that it
is not part of the map. The black strip was the one that provided
the best results.

3.3 Results and Evaluation

The model was implemented with Keras Python library, and run
in the Google Colaboratory platform. From the 450 maps in our
dataset, we kept 93% for training, and only 7% (32 images) for
the evaluation of the model. These 32 evaluation images were
carefully chosen to be as diverse as possible in terms of scale and
geographic extent.

The results of the regression model are really poor and we de-
cided not to push them further. In the best cases, the predicted
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normalized scale is half the reference value, but most of the time,
the predicted value is three times smaller than the reference scale.
These results can be explained by a training dataset that contains
a very small number of unique scale values, from which the re-
gression was clearly difficult.

The results of scale classification are also disappointing. As we
were lacking maps at large scales, we only trained the model to
classify maps into the four small scale categories (world to re-
gion scales in Table 1). The best classification accuracy obtained
on the test maps was around 60%. The results tend to show that
with maps that can be so diverse, there is no graphical feature that
can differentiate scales, beyond the scale bars and the geograph-
ical extent of the map. To go further these disappointing results,
we tested the same architecture with simpler images of mountain
roads symbolized and generalized at two scales: 1:25,000 and
1:250,000. This use case was chosen because mountain roads
have a very simplified geometry at the 1:250,000 scale, and we
believed that the graphical difference between scales would be
clearer than with our geography maps (Figure 5). We trained
the model with 1,500 images, but the results are once again dis-
appointing with a similar 60% accuracy of classification on the
evaluation images.

Figure 5: Two images of maps with only mountain roads at dif-
ferent scales: (a) 1:25,000 scale (b) 1:250,000 scale.

Table 2 shows the results obtained on the evaluation dataset when
learning the geographical extent of the maps. Globally, the clas-
sification accuracy is around 71%, but this accuracy is hetero-
geneous between classes. The accuracy raises to 81% for the
two classes with the most instances in the training set (”World”
and ”France”), but is much lower for the other classes that lack
training examples. These results are promising and we can ex-
pect much higher accuracies if we augment the dataset with new
training examples.

World Europe France Paris
World 10 0 2 0
Europe 1 3 2 1
France 0 2 7 0
Paris 0 0 2 2

Table 2: Results of geographic extent prediction on the 32 maps
of our evaluation dataset.

4. MAP CONTENT INFERENCE

In this section, we describe how map content inference was for-
malised as an image classification problem. Similarly to the pre-
vious section, we explain how the images were prepared, and then
present the results of the model.

4.1 Problem Formalisation

If we want to derive a tactile version of geography textbook maps,
we need to know what is contained in the map, i.e. the map leg-
end entries. So infering map content is similar to rebuilding the

legend of the map. Here, we try to infer the content only, what-
ever the symbols used for this content in the legend. For instance,
roads with wide red symbols in one map, and thin gray symbols
in another one should similarly be infered as roads; we are not
interested in their representation as it will be necessarily different
in a tactile map. This remark also applies for generalisation: two
maps of Germany with roads might contain different selections
of important roads, but we do not aim at identifying such differ-
ences, because the generalisation will be different in a tactile map
anyway.

The content of a map can be diverse, and there have been attempts
to create exhaustive ontologies of map content (Iosifescu and
Hurni, 2007, Abadie et al., 2010, Balley and Regnauld, 2011). In
this paper, we only target a proof of concept with a small amount
of training maps. Based on these collected maps, we defined
a simple set of map legend entries: administrative boundaries,
cities, roads, hydrography (both lakes and rivers), relief (contour
lines, hypsometry, shaded relief...), vegetation (or other natural
features), thematic flows (migrations, wars, commercial trades,
etc.). Figure 6 shows three maps containing all these seven cate-
gories of map content.

Infering the presence of these seven content types in a map is
not strictly an image classification problem, but can be seen as
similar to image multi-label annotation, where several labels on
the content of the image are infered (Gong et al., 2013). Multi-
label annotation can easily be achieved with CNN architectures,
by changing the activation function of the final fully connected
layer from softmax to sigmoid. Then, rather than giving a prob-
ability to be classified into one of the (seven here) classes, the
model output is a probability for each class, e.g. 84% bound-
aries, 13% cities, 92% hydrography, which means that the map
probably contains boundaries and hydrography but not cities.

After testing several CNN architectures, we opted for the VGG-
16 model (Simonyan and Zisserman, 2015), because of its past
success on multi-labeling tasks with complex images, and also
because it was easy to access to a pre-trained version of the model.
The VGG-16 main drawback is that it is very slow to train, but
using a pre-trained version prevents this drawback. The first lay-
ers of the network learn to detect low level features of the images
such as contours, so they can be trained with other images than
maps. Then, only the final fully connected layers are trained with
our maps to infer the different labels of map content.

4.2 Data Preparation

We used the same maps as training examples as the ones used
for map scale inference. The maps were labelled manually using
a custom GUI developed in Python to select and store the labels
of each map. In the cases displayed in Figure 6, the labeling
process is straightforward, but there are maps where the content
is not easily modelled by seven binary labels. Figure 7 shows two
examples where the labeling process is complex. In Figure 7a, the
hydrography is drawn in China, but not in the other countries. As
a tactile map with hydrography all over the map would not be
so different from the original map, we decided to put the label
”hydrography” for this map. In Figure 7b, there is only one city,
Vienna, in the map. We decided not to put the label ”cities” for
this map, because it would bias the learning process, but such
choice forbids a faithful reproduction of the map.

The problem of the required square size of the images that occurs
with scale inference also occurs with the CNN used for content
inference. But as VGG-16 is a deeper model than the one used for
scale inference, we need much more training examples to avoid
over-fitting. To solve both issues, rather than adding a black strip
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Figure 6: Three maps of with different types of content: (a) cities, relief, and hydrography (b) cities, roads, and vegetation (c) adminis-
trative boundaries.

Figure 7: Some maps are complex to label: (a) hydrography is
drawn in China but not in the other countries; (b) There is only
one city in the map (Vienna).

on an edge of the image, we cut each map in four squares that
overlap to preserve a large portion of the map in each part (Fig-
ure 8). The length of the side of the square is 80% the length of
the shortest side of the initial rectangle.

Figure 8: The dataset is augmented by cutting each map in four
square images with overlaps.

When the map images are augmented by cutting them in four,
there might be some images with a large portion of the legend,
and only a small portion of the image depicting the map (Fig-
ure 9). To avoid this problem the maps used for content inference
are cropped to remove the legend as much as possible (in the map
of Figure 9, the bottom of the image is cropped). After the aug-
mentation process, our dataset contains 1,600 map images, which
remains quite small for a model as deep as VGG-16.

4.3 Results and Evaluation

The VGG-16 model was loaded with the Keras Python library,
and the last fully connected was changed to fit our multi-label

Figure 9: This map of Africa contains a large legend, but when
cut in four for data augmentation, the bottom left part (red dashes)
is mainly the legend and the sea, and we do not see the map so
much.

output. Only this new final layer was trained with our maps, al-
lowing us to benefit from the effective training of the other layers
with a much higher number of training images. Table 3 shows the
best results we obtained for content inference. We did not test the
label ”vegetation” because there was not enough training exam-
ples. From the 1,600 images of our dataset, we used 88% of the
dataset for training and 12% (192 images) for evaluation.

TP FP TN FN Precision Recall
Boundaries 23 4 25 2 0.85 0.92
Cities 29 4 18 3 1 0.94
Hydrography 16 0 37 1 0.88 0.91
Relief 62 12 107 11 0.84 0.85
Flows 27 11 143 11 0.71 0.71
Roads 9 1 40 4 0.90 0.69

Table 3: Results of multi-labeling on our evaluation dataset. TP
is for True Positive, FP for False Positive, TN for True Negative,
FN for False Negative.

Table 3 shows the best results we obtained to label the maps of
our evaluation dataset. The three labels that appear the most in
the training maps are the boundaries, the cities, and hydrography,
and these three labels are not surprisingly the ones with the best
precision and recall values. Regarding flows, the diversity of flow
representations coupled with the small number of training exam-
ples explains the low values of precision and recall. Regarding
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roads, it is interesting to note the difference between the high
precision and the rather low recall. It means that there are few
false positive results, i.e. the model does not infer roads in maps
where it should not, and that there are many false negative results,
i.e. the model does not label all the maps that do contain roads.

5. DISCUSSION

In this paper, the problem of map characteristics inference has
been simplified because our first goal was to achieve a proof of
concept rather than solving the complete problem. In this section,
the remaining issues to allow a further derivation of tactile maps
from these infered characteristics are discussed.

Administrative or country boundaries are often represented in the
maps of geography or history textbooks, but if it is easy to col-
lect the current boundaries, they are not always the ones that
are used in the map, in particular with maps from history text-
books. Figure 10 illustrates this problem with three maps of Eu-
rope at different periods, with different boundaries between coun-
tries/realms/empires. To automatically reproduce these maps, we
need to use the right boundaries and this is far from simple be-
cause the date needs to be infered and the ancient boundaries need
to be available at vector format. We do not believe that infering
the date with deep learning techniques would work (not enough
training examples for each date), so in this case, an achievable tar-
get would be a semi-automatic process where a base map would
be provided to a transcriptor, who would be responsible for draw-
ing the correct boundaries to finalise the map.

We also simplified map characteristics by ignoring map projec-
tions. But map projection can play a key role in the way the
information is conveyed, particularly for small scale maps that
are frequent in geography textbooks. For instance, an equal-area
projection of the world does not represent it the same way as the
classical conformal Mercator projection. Figure 11 shows an-
other example where the projection should be infered because it
is important in the way the cartographic message is conveyed:
the polar projection allows a really insightful view of the flows,
which would not be possible with a classical projection. Contrary
to dates, we do believe that projections can be infered by trained
CNNs, at least family of projections for small scale maps (e.g.
from country to world scale categories).

The style of the map is also one of its important characteristics
as style is largely responsible for the way the map information
is conveyed to the map reader, and creative or original styles can
make maps better (Christophe, 2012, Christophe et al., 2016).
Infering the style of the map in addition to the other infered char-
acteristics can be useful for two reasons: (1) many visually im-
paired people do see some colors, so colored and visually styled
maps can be useful in addition to the tactile graphics; (2) it might
be possible to translate some styles into tactile counterparts, to
increase the expressivity of tactile maps. In their classification
of map images, (Zhou et al., 2018) defined some map categories
that differ because of their style, so it seems possible to infer style
categories (e.g. black and white map), or style choices (e.g. flows
in red), which can later be used to derive the tactile map.

The text in the map was also completely ignored in these first
experiments. Even if Braille is not understood by all visually im-
paired people, it is still used to add textual information such as
names that cannot be graphically conveyed (Miller et al., 2010).
Extracting the text from images of maps has long been a research
topic (Pierrot Deseilligny et al., 1995, Pouderoux et al., 2007,
Yao-Yi Chiang and Knoblock, 2010, Gobbi et al., 2019), and
seems feasible with current deep learning techniques given the

progresses made on other optical character recognition problems
with such techniques (Lecun et al., 1998, Zhou et al., 2017).

Finally, the examples of training images showed in this paper of-
ten include the legend of the map, but this legend was not specif-
ically used while it contains a lot of the information that we want
to infer. It should be easy to automatically extract the legend for
the images and train different networks with the map and legend
separately. The same remark applies to scale bars, that seem be
the only reliable graphical hint to infer scale. Another reason to
specifically address the legend of the map is to be able to derive a
tactile legend as well as a tactile map. To analyse the legend with
computer vision techniques and to derive a tactile one, it will be
necessary to formally model the legend of a map, as proposed in
(Christophe, 2012). And the legend is not the only information
that can be useful to improve our inferences on map characteris-
tics, as maps in geography textbooks are often accompanied by
some text that describes the map. Past research on relating the
text of journal articles with accompanying maps could be useful
to adapt here (Brun et al., 2015).

6. CONCLUSION AND FUTURE WORK

In order to ease the access to tactile maps for geography teachers
of visually impaired children, we want to build an online plat-
form where teachers submit the image of a map from geogra-
phy (or history) textbooks, and further receive a tactile version
of this map created automatically or semi-automatically with a
professional transcriptor. As a first step towards the design of
such a platform, this paper presents experiments to infer the scale
and the content of such maps with deep convolutional neural net-
works. Scale is infered as a category or scale range rather than as
an exact numerical ratio, and content is infered as multi-labeling
problem. The preliminary results are really promising consid-
ering the small amount of maps collected for now to train our
models.

To go further, several possible improvements have been discussed
in the previous section. Beside the obvious necessity for a larger
and more diverse training dataset, the most important topics to
tackle seem to be the projections and the legend (or even the text
accompanying the map).

This paper presents the starting point of a large project3 and there
are many issues left to automatically derive a tactile map from
the image of the map for people with normal vision. Besides the
possible improvements of step (1) described above, step (2) on
data collection, (3) on the simplification and generalisation of the
collected data, and (4) on the derivation of a 3D model from the
2D simplified map, all need to be addressed in future years. Ex-
periments with professional transcriptors and visually impaired
people wil be carried out throughout the project to verify the us-
ability of all our current and future propositions.
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