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ABSTRACT:

This paper presents a method to perform automatic vector-to-image registration. The proposed method performs well on different
kinds of optical satellite images from Very High Resolution (VHR, sub-meter resolution) to images in the 10/20m resolution range.
It allows to automatically register vector dataset such as urban maps (by using building layers). In contrast with existing methods,
our method needs few prior-knowledge on the features to match and can therefore adapt to different landscapes.

This paper demonstrates the method robustness in several use-cases and presents the implementation which will soon be available

as open-source software.

1. CONTEXT

1.1 Introduction

Many geospatial applications need to combine large vector datasets

with high resolution remote sensing imagery. Mapping tech-
niques need a correct registration of remotely sensed images to
achieve good performance and thus provide valuable georefer-
enced products.

Map to image registration main concern is to match a georef-
erenced database with a satellite image. This supposes to have
an accurate georeferenced image, and then to match some fea-
tures in the image with their counterparts in the map. Those
matched features are then used to estimate residual alignments
that should be corrected, whether by shifting the vector dataset
(OSM, 2015) or applying the inverse transform on the image.

Manual map correction of misalignment caused by poor geo-
refering accuracy of sensors is time consuming, and some au-
tomatic solutions have been developed: these techniques are
related to the image-to-image registration field on the one hand
and to the vector-to-vector conflation domain on the other hand

There are three main difficulties to deal with. As stated be-
fore, the first is to reach the best alignment of the image on
the ground. This so-called orthorectification process requires a
geometric sensor model, and a terrain model (earth geoid, and
a DEM - digital elevation model, such as (Shuttle Radar To-
pography Mission, n.d.)). Secondly, the main difficulty to cope
with is to match features on the map with pixels from the im-
age. Depending on the resolution of the image, the different
features (road, building, natural area, etc.) cannot always be
matched. Some details may be hidden, or sometimes the con-
trast does not allow to discriminate the different objects. The
last potential issue is that the vector dataset may be outdated:
for instance, buildings may have disappear, or new roads may
have been built. This last problem is close to the change detec-
tion domain.

In the image registration field, (Brown, 1992) has resumed the
different transformations as follows:
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e linear transformations: translation or rotation

e non-linear transformations, like warping, shearing or com-
plex deformation

In our work, the non-linear transformation is taken into account
by the orthorectification process (or, by the projection of the
vector dataset in raw sensor geometry). We will therefore focus
on the translation transformation only. Rotation error are un-
likely and can be assimilated to translation error because of the
orders of magnitude of sensor altitude, field of view and errors
in viewing angles.

1.2 Review of existing methods

In the literature, vector-to-image registration has seen different
approaches being developed and can be mostly decomposed in
two steps: firstly extracting features from the image, secondly
matching these features with equivalent features from the map.

Designing such an algorithm therefore requires to choose rele-
vant features than can be observed in the image, and a method
to compare these features to equivalent features in the vector
dataset.

Some methods have been proposed using surface features (Vohra,
1999), other using roads extraction. (Doucette et al., 2007)
has focused on automated or semi-automated road extraction
to register onto QuickBird imagery, while (Chen et al., 2004)
has applied a grid matching algorithm to cross-roads extrac-
tion. (Avbelj et al., 2013) has proposed a method based on line
detection in a DSM (digital surface model) and hyperspectral
images. The objective is to fuse material discrimination (for in-
stance, difference between a building and the pavement around
it) and height, by detecting roof edges. These methods seem to
be adapted to their context (resolution of the target image, type
of features in the map) but need a prior-knowledge of what the
image contains.

Our proposed method differs by the kind of features we extract:
we try to reach a compromise between features that are really
informative (like free form curve or closed shape features) but
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uneasy to match or extract in the vector dataset and simpler, less
informative features (points, small segments). Our approach is
based on line-matching and segments filtering. Line-matching
had proven to be suitable for 3D reconstruction (Baillard et al.,
1999) with multiple views.

The remainder of the paper is organized as follows. Section 2
will detail the method. Section 3 will present the implementa-
tions details and section 4 evaluate performances on different
scenes. Finally, we will discuss remaining issues and future
work.

2. METHOD DESCRIPTION
2.1 Overview

Our method targets images from sub-metric resolution to a range
of 10/20m resolution, and datasets that could be as detailed as
building layers from Open Steet Map for registration with sub-
metric images, or landuse/landcover layers for lower resolution
images.

It takes advantage of an efficient Line Segment Detection algo-
rithm (Gioi et al., 2010) to extract a lot of segments from the
image, and then filter them to find corners (for instance, roof
top, cross roads, footprints of buildings) to match with corners
of the vector dataset.

Corners are a good option to achieve vector-to-image registra-
tion: they are present in most human constructions (buildings,
cross-roads) and in most agricultural landscapes. They can be
combined to form a lot of geometric shapes (if we apply a cer-
tain tolerance on the angle) and can be quite easily detected, by
correctly filtering segments.

2.2 Input data

The inputs of our method are a target image (panchromatic or
multispectral) and some vector dataset we want to co-register.
The dataset can contain lines or polygons, but as the method
is based on corners detection, the database must contain some
perpendicular segments (with a certain tolerance on the angle).
Thus, it is recommended to work with layers containing poly-
gons.

2.3 Prerequisites

Due to the principles of satellite image acquisition, we must
deal with different sources of misalignment. The main compo-
nent of this misalignment, coming from slowly evolving angu-
lar errors in sensor modeling, can be approximated by a general
offset between the dataset and the image, but we can also ob-
serve non-linear deformation (kind of warping), when acquiring
an image with a high incidence angle, or when working on hilly
landscapes.

The first step of our method is to get both data in a common
geometry: we can either work in ground geometry or in raw
sensor geometry.

The most common use case is to work in the carthographic pro-
jection of the vector data: we therefore need some terrain infor-
mation (earth geoid and a digital elevation model) to perform
orthorectification of the image in this projection.

Note that our method also supports transforming georeferenced
vector database in the sensor geometry.

Either way, sensor model and terrain inaccuracies lead to mis-
alignment as it can be observed in Fig. 1. However, as we will
see in the evaluation in section 4, even in poor conditions lead-
ing to high misalignment, the method succeeds in registering
the dataset onto the target image.

2.4 Line segment detection

The second step of our method is to perform Line Segment De-
tection (LSD) in the target image. This step is an intensity-
based a-contrario algorithm for the detection of segments in the
image (Gioi et al., 2010). Line Segments Detection aims at de-
tecting linear details, or local zones where the gradient aligns
significantly with respect to a background noise model.

Of course, the linear details detected on an image depend on
the resolution, and the number and relevance of the detected
segments can vary from one scene to another (as shown in Fig. 2
and Fig. 3).

In next steps, the method only processes vector datasets: the
raw line segment detection and the initial database to register
(polygon or line features).

2.5 Segments filtering

The aim of this step is to filter and select relevant segments in
order to identify corners such as building corners, crossroads,
etc. Because the complexity of the registration step is O(n?),
n being the number of segments to match, it is important to
find the smallest possible dataset that contains the most relevant
segments, so as to reduce processing time. Those filters will be
applied to extracted segments from the image (Fig. 4), as well as
to segments from the database. If the vector database contains
polygons, we first decompose them in individual segments.

We have implemented several filters applied sequentially on the
set of segments. First filter is to apply a length criterion, to elim-
inate segments that are too small or too long. The complexity
of this step is linear.

Then, we select segments that lies in a close neighborhood of
the vector dataset. Segments too far from the database to reg-
ister will not be relevant to estimate a transformation. To that
extent, a distance threshold is used: it can be seen as an upper
bound of the initial mis-registration. This step is O(n?), but can
be optimized by using spatial indexing techniques.

The third filter is to select perpendicular segments, by forming
pairs of segments that are close enough and form a right an-
gle. This step requires two thresholds: threshold on distance

Figure 1. Projection of an OSM building layer on a PHR image
of Bombay
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Figure 2. Detected segments on an extract of a PHR image (0.5
m resolution)

Figure 3. Detected segments on an extract of Sentinel2 image
(10m resolution)

between segments, and tolerance threshold on the angle. The
latter is important when working on images in raw geometry,
where right angles can be tilted by viewing angles effect, and
also to deal with corners with different angles (for example,
to keep segments of a hexagonal building). As Fig. 5 shows,
around 5% of the segments are selected for the next algorithm
steps.

Figure 4. Line segment detected on a PHR image of Bombay
2.6 Translation estimation, with tuples matching

At this step, we have obtained four sets of segments, two of
which being used to compute the final transformation:

e the initial database, that aims to be registered (translation)

e the raw line segment detection (to compute precision and
match rate, see below)

o filtered segments from the database (to be matched to their
counterparts coming from the line segment detection)

o filtered segments from the line segment detection

In order to estimate the best translation, we start by creating
tuples of close segments and their intersection. This has to be
done for the vector filtered from the database and for the vectors
filtered from the line segment detection (Fig. 6).

The tuples issued of the database are compared to those from
the line segment detection: if two tuples are close enough, a
candidate transform is defined as the translation between the
tuples corners. Then we compute its score, which is defined by
the sum of distances between matched segments (inliers).

The best transform minimizes that score and is applied to the
database.

2.7 Evaluation metrics

In a general case, we do not have a baseline (for instance, geode-
tic reference points) to evaluate performance of the method. So
we use some unsupervised metrics to evaluate the performance
of the algorithm. Those metrics are computed thanks to the reg-
istered database and the segments detected in the image. Two
metrics are computed for each polygonal shape of the database:

e The match rate is a ratio of total length of matched seg-
ments with the perimeter of the feature. This can be inter-
preted as a reliability score (Fig. 7).

o The precision score is the mean distance between the seg-
ments of the initial feature and their counterparts in the line
segment detection. This gives an accuracy of the transfor-
mation.

These metrics are also declined as global metrics: the percent-
age of features being matched (global match rate), and the mean

precision score. Additionally, we also compute the rate of matched

features, and the mean precision score. As stated before, we
apply the same linear transformation to all the features of the
database. So in certain cases, some features have a weak match
rate but are correctly registered. It may happen for quite small
features, whose segments have not been detected properly.

In other cases, a low match rate can also indicate that the build-
ing disappeared.

3. IMPLEMENTATION

Our implementation is built upon Orfeo ToolBox (Grizonnet et
al., 2017), which provides many tools to handle most kinds of

Figure 5. Line segment filtered
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Figure 6. The tuples from the database are compared to those
filtered from the line segment detection

Figure 7. Metrics computation after registration of the vector
dataset

satellite images and dataset. Furthermore, it provides a vec-
tor dataset processing framework that had been extended to im-
plement segment filtering and segment matching applications.
OTB provides a remote module mechanism that can be used
to extend it and benefit from internal mechanisms of core OTB
(such as streaming, projection, etc.).

Thus, our method had been implemented as a remote module,
containing several applications (marked as (*) in Tab. 2) and a
main Python script to chain them all in a user-friendly interface.

3.1 Projection of vector dataset in a specific geometry

Orfeo ToolBox provides all the tools to manipulate images from
main sensors, in its raw sensor geometry or in a ground-based
geometry (OTB Team, 2020). Thanks to the VectorDataRepro-
Jjection application, one can project any vector dataset in any ge-
ometry. The OrthoRectification application can perform ortho-
rectification of a satellite image to transform it into a ground-
based geometry.

3.2 Line segment detection

Orfeo ToolBox contains an implementation of the Line Seg-
ment Detection algorithm, and the authors also published an
open-source implementation (Gioi et al., 2010), which we em-
bedded in a remote module. As shown in Tab. 1, this imple-
mentation detects more segments in a lower computation time
than OTB own implementation. We therefore selected this im-
plementation to evaluate our method.

3.3 New applications developed for registration

The Tab. 2 lists all the OTB applications that implement our
method. All of these applications can be tuned with many pa-
rameters (the main ones are listed). For example, the Segments-
Filtering application can take into account different thresholds

Implementation | Number of seg- | Computation
used ments detected | time (s)
OTB LineSeg- | 5504 42
mentDetection

Line Segment | 13443 4

Detection Al-
gorithm  (Gioi
et al., 2010)

Table 1. Computation time for a 2200x1800 pixels extract of a
PHR image

on the various distances that are computed: it is very useful to
tune the whole method.

In the main Python script, we have fixed default values for all
parameters so it only needs a target image and a vector dataset
to register. But if one knows that the initial offset is larger (for
instance, more than 20m in a VHR image with 0.5m resolution),
itis possible to increase the a priori maximum distance between
the projected database and the image.

4. EXPERIMENTS
4.1 Overview of the evaluation method

The evaluation method consists in projecting an image in a
cartographic projection, evaluating the initial offset with the
dataset, and then use our registration method to correct mis-
alignment. For each use case, we compute unsupervised met-
rics introduced in 2.7, such as a global match rate (% of features
being matched), a match rate per feature, a mean precision score
(evaluated remaining offset).

4.2 Datasets used

As stated before, our method could be applied to different kinds
of satellite images: from very high resolution (VHR: 0,5 me-
ter or below) to middle class resolution (Spot 6) or even low
resolution (Sentinel 2).

In this work, we focus on VHR images (Tab. 3) like Pleiades
High Resolution (PHR) images or World View (WV) images,
because it is easier to find vector dataset that have the same
level of details and show some misalignment to correct.

The acquisition geometry also differs between the different im-
ages.

We have registered building layers from Open Street Map (Open-
StreetMap, n.d.). The initial offset ranges from a few meters to
150 meters in an extreme case. It should be noted that the Open
Street Map building layer is not always accurate: sometimes the
building shape matches exactly its footprint whereas in other
cases, it matches the building block, including for example a
surrounding place or garden.

For the IARPA use case, we extracted buildings footprints from
the LIDAR image (Fig. 8).

4.3 Results

As shown in Tab. 4, the global match rate is very high for ur-
ban scenes (Buenos Aires, Bombay, Rennes), because all build-
ings are correctly detected with the line segment detection al-
gorithm: the match rate for each feature is always higher than
70% and the precision score is between one and three pixels.
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Functionality

Main parameters

VectorDataReprojection

projects vector dataset in any geometry

LineSegmentDetection

detects linear features

SegmentsFiltering (%)

filters segments with various criteria

Distance and angle threshold, distance to
an existing database

ImageToDBRegistration (%)

computes vector to vector conflation to
estimate the best transform

Distance between tuples

VectorDataEvaluation (¥)

computes metrics

ImageToDBRegistration Python script
(*)

chains the different steps above

Maximum a priori distance to an exist-
ing database, Distance between tuples

Table 2. Orfeo ToolBox applications. (*) have been developed for this method

Table 3. Description of the datasets

4.3.1 Robustness to the line segment detection In the Haiti
use case, the global match rate is low (16-18%). The images
have been acquired after Sandy hurricane and most buildings
of the area have been affected. Furthermore, most of them are
small and very close to vegetated areas. These different reasons
explain the poor detection of the buildings compared to other
cases (Fig. 9).

Nevertheless, the registration gives satisfying results, which can
be explained by the fact that we only need one correct match
to estimate the correct translation, and thus some of the larger
buildings present in the dataset allows to estimate the transfor-

Figure 8. Ground-truth extracted from LIDAR image

Use case Satellite Database Use case | Initial Match Mean Precision
images (resolu- offset rate (% | match score
tion) (m) features rate (m)
Buenos Aires 44 WV | Buildings foot- matched) | (/fea-
(IARPA Chal- | panchromatic print extracted ture)
lenge) images (0,3 | from a LIDAR Buenos 0 to | 100 % 71% to | 0,46 to
m) + 3 PHR | image Aires 75 m 98% 0,93m
panchromatic (IARPA (mean: (mean:
images (0,5 m) Chal- 3.8 m) 0,61m)
Bombay 2 PHR pan- | Buildings layer lenge)
sharpened im- | from Open Bombay | 22.5 to [ 100% 84% 1.5m
ages (0,65m), | Street Map 150m
6° and 20° Rennes 8m 99% 82% 1.5m
incidence Haiti 3m 16 & | 30% 0.49m
angle 18%
Rennes PHR panchro- | Buildings layer
matic  image | from Open
(0,5 m), 2° | Street Map Table 4. Results of the registration method on VHR images
incidence
angle
Haiti 2 PHR pan- | Building layer
sharpened
images 0,5
m), 3° inci-
dence angle

Figure 9. Line segments detection in an extract of Haiti case
mation correctly (Fig. 10).

4.3.2 Performance Computation time directly depends on
the number of tuples to compare in the two different sets. On the
urban scenes here mentionned (Buenos Aires, Rennes, Bom-
bay), the input image is about 3000x3000 pixels. The line seg-
ment detection produces more than 10000 segments. If the in-
put database has around 100 buildings, the algorithm tries to
match a few hundreds of tuples from the database, with a few
thousands filtered from the line segment detection. In that case,
it takes less than 2 minutes for the whole process of registration.

4.3.3 Influence of the acquisition angle A lot of VHR im-
ages are acquired with a significant roll angle (up to 35°). This
causes a shearing in the perspective, and in urban areas, it leads
to a lot of occlusions. The robustness of the algorithm with re-
spect to the roll angle has been investigated with the TARPA
dataset, which contains a wide range of angular conditions:
even on very tilted images, the method can match and precisely
register the buildings, as shown in Fig. 11. The mean match
score is between 0.9 and 1, whereas the mean distance is be-
tween 0.5 and 0.9 meter.
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Figure 10. Registration of the database in Haiti: buildings
outlined in red did not match any segment

Registration scores for 44 images of IARPA challenge,
with various roll angle
12
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Figure 11. The match rate and the precision score do not depend
of the incidence angle

5. DISCUSSION AND FUTURE WORKS

Our method has been successfully tested on urban areas, for
example to register Open Street Map building layers on some
Very High Resolution images, such as Pleiades, or Worldview.
We have tested the method on various scenes, with initial con-
ditions ranging from good (e.g. 5 meters offset) to very poor
(e.g. 150 meters) and the algorithm always succeeded in regis-
tering vector data and image together. The a priori maximum
distance to the projected database parameter allows to succeed
in the worst case.

The method gives promising results and the algorithm only needs
a weak prior knowledge of the features to register. The main
parameter to tune is the proximity threshold between segments,
when filtering pairs of segments to form tuples. As a default
value, this parameter is set to ten times the spacing of the im-
age. In terms of computation time, the segments filtering step is
of first importance, and a local spatial filtering of the segments
would help to improve computation time on large scenes.

However, we have observed that on urban areas, the line de-
tection algorithm often detects buildings by their roof borders
and in some cases (e.g. tilted images of a scene with buildings
of different heights), some features of the database may need
another correction: a local registration algorithm can help to
improve the final registration. This local registration algorithm
is not yet fully automated.

Finally, our method could be used for the purpose of changes
detection: if a feature of the database has a low match rate, it
may be seen as an evidence that this feature has changed. It
could therefore be used for map updates.

In this work, we mainly focused on VHR images and precise
buildings layers. We consider it can also be used to register

landuse databases on lower resolution images (such as Sentinel-
2 - 10/20m resolution), given that cultivated fields have corners
that could be matched with detected segments in the image.

All the tools, and some example data will soon be contributed
as open-source external remote module for Orfeo-ToolBox.
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