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ABSTRACT:

Real-time, accurate taxi demand prediction plays an important role in intelligent traffic system. It can help manage taxi patching and
minimize the time and energy waste caused by waiting. In the era of big data, a diversity of urban data and increasingly complex traffic
data have been collected and published. Traditional forecasting methods have been unable to cope with the heterogeneous massive
traffic data, whereas deep learning, as a new data-oriented technique, has been widely used in the field of traffic prediction. This paper
aims to utilize multisource data and deep learning techniques to improve the accuracy of taxi demand prediction. In this paper, a joint
guidance residual network (JG-Net) is proposed for city-scale taxi demand prediction. Taxi order data and multiple urban geospatial
data (POI, road network and population distribution data) are integrated into the JG-Net. Regional features are considered in the
prediction process by three guidance branches composed of pixel-adaptive convolutional networks, each of which applies one type of
urban data. JG-Net assigns learnable weights to different branches and regions to combine the output of the branches, then further
aggregates weather and time information to forecast the taxi demand. Extensive experiments and analyses are conducted, which show
our method outperforms traditional methods. The mean square error of the prediction result on the testing set is 1.868, which is 12.3%
lower than related models. The positive influence of combining multiple geospatial data is also validated by ablation experiments.

1. INTRODUCTION

Transportation is the lifeblood of urban vitality. The development
of smart city is inseparable from effective intelligent
transportation system. Taxi is an important part of urban public
transportation. Thousands of people choose to take taxis every
day because of convenience and rapidity. If we are able to
accurately predict the taxi demand in various areas of the whole
city, reasonable vehicle pre-allocation will be achieved, and then
the time waste of passengers and drivers and the waste of fuel
caused by empty vehicles can be greatly reduced. With the advent
of the big data era, massive multisource urban data, such as GPS
data, statistical data, and satellite imagery, have been collected
through different sensors. Using these heterogeneous data to
assist better city-scale taxi demand prediction is the problem we
aim to solve in this paper.

Vehicle demand prediction is a branch of generic traffic
prediction which also includes road speed prediction (Yao et al.,
2017), travel time prediction (Wu et al., 2003), vehicle flow
prediction (Abadi et al, 2015), etc. The formulas of the
prediction problem for different spatio-temporal traffic data are
very similar and the main purposes are almost identical—
calculate the future traffic-relevant value (Yao et al., 2018).

Scholars have put forward a series of models for traffic prediction.

The conventional prediction models are time series models,
whose structure is predetermined based on certain theoretical
assumptions, and the model parameters can be calculated using
data. Autoregressive Integrated Moving Average (ARIMA) is a
time series parametric model which assumes that traffic is a
stationary process with constant mean, variance and
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autocorrelation. In the past few decades, scholars have proposed
many traffic prediction models based on ARIMA (Ahmed and
Cook, 1979; Lee and Fambro, 1999; Van Der Voort et al., 1996).
ARIMA was also extended with Poisson (Moreira-Matias et al.,
2013a) or perceptron (Moreira-Matias et al., 2013b) to predict
taxi demand of a given region.

Machine learning prediction methods include clustering
algorithms, support vector machine (SVM) prediction models
and neural network prediction models. Clustering algorithm can
aggregate the discrete taxi points into regions to estimate the
demand of each region in the city (Chang et al., 2010; Davis et
al., 2016). The essence of SVM is to map original data dimension
to high-dimensional feature space through nonlinear
transformation and then perform linear regression in this space.
SVM-based traffic prediction methods (Sun et al., 2015; Wu et
al., 2003; Yao et al., 2017) were proven to be superior to time
series and regression-based methods. Deep learning doesn’t
require pre-determined features, reducing incompleteness caused
by handcrafted features. Deep neural networks establish complex
nonlinear relationship through distributed and hierarchical
feature representations, providing a deeper representation of the
data, which has been successfully applied in many fields, such as
natural language processing (Graves et al., 2013), image
recognition (Kemker et al., 2018; Marmanis et al., 2016), etc.
Convolutional neural network (CNN) (Zhang et al., 2018, 2016)
and recurrent neural network (RNN) (Ma et al., 2015a, 2015b;
Xu et al., 2018) have been the two deep learning models mainly
applied in traffic prediction application because the former can
capture spatial dependency and the latter for temporal
dependency. Some integrated models that combine CNN and
RNN were also studied (Yao et al., 2018).
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Despite the progress made over the years, city-scale taxi demand
prediction is still a challenge because of region diversity,
people’s travel pattern and external influence such as weather and
big events. Also, predicting taxi demand for all parcels at one
time is tricky. Previous researches all trained their models and
applied the same parameters to all city regions regardless of
region features. Moreover, the methods of multiple data fusion
were quite rough, which were either concatenation or summation.

To address the mentioned limitations above, we proposed a joint
guidance residual network using historical taxi order data and
multisource urban geospatial data (POI, road network and
population distribution) to forecast taxi demand in every region.
The categories of POI in a region can infer the region’s function
(Yuan et al., 2012), and we assume that the taxi demand is
relatively high in areas with large POIs and population, as well
as dense road networks. Raw vector data and raster data were
processed. Then, we carried out correlation analysis between taxi
demand and the above data. JG-Net is composed of three
branches, each of which deploys pixel-adaptive convolution in
order to implement region adaptive prediction. By feeding
POl/road/population data into the net, region features can be
learned. The model dynamically aggregates the output of
aforementioned three branches guided by different types of data,
then further combines context information, such as weather and
time, to obtain the prediction result. Using taxi order data of
Chengdu city, we conducted extensive experiments to test the
performance of the proposed method, and results show that our
model can predict the taxi demand of the entire city with good
performance.

2. DATA PROCESSING AND CORRELATION
ANALYSIS

This section introduces the data, the processing methods, and the
correlation analysis. The data include taxi order data, multisource
urban geospatial data (POI data, road data, population data),
weather data and time metadata.

2.1 Taxi order data

We used the online taxi order open dataset from Didi Chuxing
(Didi Data Center, 2016), one of the largest Internet ride-sharing
and ride-hailing Uber-like companies in China. Our study area is
Chengdu city, the capital city of Sichuan Province and the
technology, financial and transportation center in southwestern
China. It is reported that Didi Chuxing has provided ride service
to 8.5 million users in Chengdu until September 2016, which
means that 6 out of every 10 Chengdu residents have used it once
(CBNData and Didi Research Institute, 2016). The dataset covers
the whole Chengdu city within G4201 ring road and was
collected in November 2016 with an average daily order of
200,000. Taxi order dataset is complete and covers a large
proportion of population in Chengdu. There is no missing value
in time nor space.

Each record in taxi order data represents a ride, including seven
attributes: order ID, timestamp of the origin, latitude and
longitude of the origin, timestamp of the destination, latitude and
longitude of the destination. Taxi order data were transformed
into time-series images by following processing steps. Regular
grids are usually applied for statistical study on this topic. First,
according to previous work that was also based on taxi order data
from Didi Chuxing (Yao et al., 2018), we divided the entire city
into 40 by 40 grids and each of them denotes a 0.7km by 0.7km
region. Order ID was used for data deduplication. Taxi demand

is defined as the number of origin points at one region per time
interval. And drop-off amount is the number of destination points.
Then we calculated demand and drop-off amount in the regions
every half hour. Min-Max normalization was used to scale all
data into the range [0,1]. A sample image of taxi demand at one
time interval is shown in Figure 1.
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Figure 1. Taxi order data processing result

2.2 Multiple urban geospatial data

Urban geospatial data used in this paper include POI, road
network, and the population distribution. POI data was collected
from Baidu Map (https://map.baidu.com), which contains 19
categories and 162955 points in total. We counted the amount of
each POI type in city grids and used it as the POI feature of the
region. Raw road network data was obtained from Open Street
Map (OSM), including primary roads, secondary roads,
pedestrian roads, etc. For every grid, the length and number of
roads were counted. The last kind of geospatial data, population
distribution, was obtained from Global Human Settlement (GHS)
website  (https://ghsl.jrc.ec.europa.eu), which depicts the
distribution of population, expressed as the number of people per
cell. Since it is a raster dataset, we downsampled it from a
resolution of 0.25 km to 0.7 km, the same as the city grid. The
above three data can all cover the whole study area without
missing value. They were not collected in the same year as taxi
order data, but we believe POI, roads and population in a city
won’t dramatically change within a few years. Min-Max
normalization was used to scale all data into the range [0,1].
Figure 2 shows the processing result of the above three types of
urban data.
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Figure 2. Multisource urban geospatial data processing results
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2.3 Weather and time

The impact of weather and time on people’s travel behavior is
also considered in our study. Weather data came from the
Weather Underground website (https://www.wunderground.com)
and the raw data was collected per hour. No missing value is
found and all values fall into reasonable range. First, the weather
records were interpolated by an interval of half an hour. Then,
one-hot encoding was applied to transform weather conditions
and other time metadata (i.e., day of week, time of day) into
binary vectors called context features. At last, we used Min-Max
normalization to scale temperature and wind speed into the range
[0,1].

2.4 Correlation analysis

In order to quantitatively analyze the relationship between taxi
order data and multisource urban geospatial data, Pearson
correlation coefficient, as defined as Eq. (1), was calculated
between average daily demand, the amount of average daily
drop-offs, summation of POIls, summation of road length,
summation of road amount, and the population in each region.

D" (D~ Dy(M; ~ i)
CC=
(DD =D (1, - id)?

D; and M; are respectively the taxi demand and other data in

(@)

region 7, D and M are their average value. CC is correlation
coefficient. All calculation results were proven to be significant
through the hypothesis test. Table 1 shows that the drop-off
amount and POI amount are both strongly related to taxi demand,
while road and population are moderately related. Thus,
combining the geospatial data properly can assist taxi demand
prediction to a certain degree.
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Table 1. Correlation coefficient between demand and other data

3. JOINT GUIDANCE RESIDUAL NETWORK FOR
TAXI DEMAND PREDICTION

In this section, we first present the general framework of the
proposed prediction model—JG-Net, and then specifically
introduce the structure of guidance branches that incorporate
multisource geospatial data using pixel-adaptive convolution
(PAC). At last, a fusion mechanism is designed to further
aggregate all information together.

3.1 Framework Overview

We assume that the taxi demand in a certain region is greatly
influenced by the surrounding area and remote areas can also
influence the demand of current region through road connections.
Besides, different regions serve as different function areas, their
taxi demand patterns vary from one to another. JG-Net aims to
capture the spatial-temporal dependency and region diversity in
demand prediction problem. The purpose of taxi demand
prediction problem is to forecast the demand value of the entire
city at future time interval ¢, given historical data from past
t —1 time intervals. At time interval ¢ , we denote city-scale taxi

demand in all H x W regions as a tensor X, € R where H
and ¥ are height and width of one image. Thus, a time-series

image X € R where T represents many time intervals
can express the dynamic changes of the demand.
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Figure 3. Joint Guidance Residual Network (JG-Net) architecture. Conv: Convolutional layer; ResBlock: Residual block; PAC:
Pixel-adaptive convolution; FC: Fully connected layer.
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Figure 3 depicts the architecture of JG-Net that is composed of
early feature extraction, guidance branches, context part and
feature fusion. The main model input is historical time-series
images, and each image has two channels: demand and drop-off
amount. We concatenate the images by the temporal axis (i.e.
first image channel) and obtain a tensor that represents historical
information. For early feature extraction, the original input is fed
into a convolutional layer with an activation function, then into
some residual blocks, each of which is composed of two
convolutional layers and two activation layers. JG-Net applies
pixel-adaptive convolution operation with the guidance of region
features inferred from multisource urban geospatial data. POls,
population distribution, and road networks are used to assign
features to pixels (i.e. regions) in each branch, respectively. The
outputs of the three guidance branches are merged and further
integrated with context features extracted from fully connected
layers. At last, the future taxi demand prediction is the fusion
result, which has the same height and width as the input images.

3.2 Structure of the guidance branch based on pixel-
adaptive CNN

Three guidance branches share a similar structure that contains a
guidance learning part and a residual pixel-adaptive CNN part
followed by a convolutional layer. The taxi demand patterns for
different functional areas may vary widely as shown in Figure 4.
For example, Grid 1322 is a commercial area whose demand is
the largest and increases on weekends when people are more
likely to go shopping. In contrast, the demand in grid 1320 drops
on weekends and is less than grid 1322 considering that
grid 1320 is an educational and medical region. Since grid 1910
is near the airport and only travellers call for taxis there, the
demand is more stationary and less than other areas.
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Figure 4. Taxi demand patterns of three different regions

Convolution is a fundamental operation in many traditional or
deep learning computer vision applications (Krizhevsky et al.,
2012; Lawrence et al., 1997; Simard et al., 2003). In standard
CNN, the filter weights are shared spatially across the whole
image, which is one of the main reasons for its popularity but also
the major inherent limitation since it makes the convolution
independent of content. For dense pixel prediction tasks, such as
image segmentation and frame prediction, the optimal gradient
for each pixel is different because each pixel should have a
distinct output. However, CNN looks for global optimal
parameters on the entire image that may not perfectly fit every
pixel. Content-independent means that the trained CNN filter
weights are used in all parts of the image, regardless of any local
features. Similarly, in our demand prediction problem, the same
parameters are applied in all regions of the city, regardless of
whether the region is a commercial area, a cultural area or a
residential area. To handle the limitations of traditional CNN, in
this work, pixel-adaptive convolution operation (Su et al., 2019)
is employed. In pixel-adaptive convolution, filter weights are not
consistent but can change in different pixels. Each pixel in the
image represents a region in the city. In this way, JG-Net is able

to adaptively generate forecasting demand for the city in
reference to individual features of each region.

Pixel-adaptive Convolution. The pixel-adaptive convolution
(PAC) modifies traditional spatially invariant filter weights by a

spatially varying kernel K e R€*“*S that depends on pixel
features p . A pixel-adaptive convolution operation of input

x=(x,%,...,X,) , x; € R over n pixels and ¢ channels with

¢ -channel output is defined as

Xi = Z K(pipj)wyx; +b )
jeM (i)
where

M(@G) is an sxs sliding convolution window,

W= (W), Wy e Wese) » Wy € RO are the filter weights, and

beR® defines bias. The kernel function K has a fixed
expression such as Gaussian in Eq. (3). By bringing pixel features
p into K, the modifying parameters that can directly change
original w are calculated. The parameters adapt the standard
spatial filter w to each distinct pixel. The adapting pixel features
p can be handcrafted or derived from end-to-end learning as our
work in this paper.

K(pip)) =exp {—%(p,- —p) (Bi- 3)

In the guidance learning part, we use several normal
convolutional layers to extract adapting pixel features p , called

guide, from multisource geospatial data (POI data, road data and
population data). These features then serve as guidance in three
model branches as shown in Figure 3. Different from traditional
methods that train and apply the same parameters to all city
regions, our method takes region characteristics into
consideration, which is expected to help improve the accuracy of
demand prediction.

Residual Block. Residual learning (He et al., 2016) is deployed
in both the early feature extraction part and three guidance
branches in JG-Net. Each convolution neuron in the feature map
has a local reception field that is connected to the neurons in the
upper layer by trainable weights (Lecun et al., 2015), which
makes CNN fit for capturing dependencies between neighboring
regions. All areas in a city are connected by complicated road
networks, leading to the potential spatial dependency between
distant areas, such as residential and commercial areas. Deep
CNN structure can break the local limitations since it has a
reception field that is wide enough to capture the spatial
dependency of regions even though they are far apart. Much
progress has been made in computer vision applications using
deep networks as they integrate multilevel features (He et al.,
2015; Jin et al., 2017). Residual learning has been proven to be
very effective in deep structure because it can alleviate the
problems of vanishing/exploding gradients and training accuracy
degradation (He et al., 2016), knowing as the two main
challenges in deep networks. Therefore, we design a deep model
based on CNNs and PA-CNNs where residual learning is applied.

In the proposed JG-Net, a residual block is defined as:

X' =F(XW)+ X )
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where X and X' are input and output tensors. F(X,W)
denotes the residual function and # are all learnable parameters
including weights and biases. Here we use a function F with
two convolutional or PA-convolutional layers and a ReLU layer
since a single layer is proven to be unhelpful (He et al., 2016). As
shown in Figure 5, the only difference between a PAC-Residual
Block and a Residual Block is that the former has pixel-adaptive
operation in its convolutional layer. To generate shape-identical
input and output and avoid resolution decline, we eliminate
pooling operation in our model and apply the same padding in all
convolutional layers. With L PAC-residual blocks and a final

convolution, the output of three branches are X i, X544 and

X ,op in Figure 3.
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Figure 5. (a) Structure of residual block and (b) PAC-residual
block

3.3 Fusion

In this section, we introduce the fusion mechanism that combines
three guidance branches and context information. First, the pixel-
adaptive convolutional branches are merged using weight
matrices, then the result is further merged with weather and time
metadata by other weight matrices.

Taxi demand is related to POI, road and population distribution
features as described in section 2.4. However, different regions
are influenced by them to different degrees. For example, there
may be only one POI in a transportation center (such as a train
station), but its surrounding is densely distributed with roads.
And there may be only one road through a commercial street
while the number and variety of POIs are enormous. Additionally,
in residential areas or schools, POIs and roads can be both sparse
but the population density is large, leading to large taxi demand.
A parametric-matrix-based fusion method was proposed for
branch aggregation by assigning learnable weights to the
branches and regions (Zhang et al., 2018). Inspired by the above
phenomenon and parametric-matrix-based fusion method, we use
three weight matrices learned from backpropagation to fuse POI
guided branch, road guided branch and population guided branch
as follows:

Xbmnch = Wp ° Xpoi + I/Vl °© Xmad + Wo ° Xpop (5)

where o is Hadamard multiplication, W, , W, and W, are

learnable weight matrices that represent different influence
degrees. Another two weight matrices W, and W), are learned to

merge X, and Xj,,,.; - then we get our city-scale prediction

result X e R in Eq. (6). Mean square error is the loss
function in JG-Net.

X:WCOXC+Wb°Xbranch (6)

4. EXPERIMENTS

To evaluate the proposed Joint Guidance Residual Network using
multiple geospatial data, we carried out comprehensive demand
prediction experiments on Didi Chuxing taxi order dataset as
described in Section 2. Details about experiment settings and
prediction results are provided in the subsequent subsections.

4.1 Experiment implementation

Experiment settings: We run the experiments using PyTorch
library on a cluster of two NVIDIA GeForce 1080Ti GPUs that
has 10GB memory each. The dataset contains taxi orders from
2016-11-01 to 2016-11-30 in Chengdu. Multisource data are
Baidu Map POI data, OSM road data, GHS population data and
web weather data. After data processing and normalization, we
obtained 48 time intervals (half an hour) per day and 1440 in total.
The historical data from the previous 8 time intervals is the input
of all models. Data from the first 26 days are used for training
and validation, and the last 4 days are for testing.

In training process, RMSprop optimization algorithm is deployed
and the learning rate is set to 0.001. We trained all models for
200 epochs. In JG-Net, convolutional layers all have 64 filters
except for the last layers in each branch. Two residual blocks are
used for early feature extraction and two PAC residual blocks are
included in each guidance branch. Table 2 introduces all
parameters in JG-Net. Since original POI image has 19 channels,
more filters are needed to extract features.

Layers Filter Size Filters
Guidance (POI) Learning CNN 3x3 32-16-16
Guidance (road) Learning CNN 3x3 8-4-4
Guidance (population) Learning
CNN 3x3 8-4-4
Convolutional Layer a 3x3 64
Residual Block x 2 3x3 64
PAC-Residual Block x 2 3x3 64
Convolutional Layer b 3x3 1

Table 2. Model parameters for JG-Net

Metrics: We use Mean Square Error (MSE) for evaluation in our
experiments. They are defined as:

N

MSE =%Z(X,. - X, )2 %)

i=1

where X, and X; are ground truth and forecasted value, N is

the number of samples.

4.2 Overall comparison

We compared our JG-Net model with the following six related
methods:

* Historical Average (HA): The demand of future time intervals
is calculated by the average demand of historical time intervals.
* ARIMA: We used auto.arima function in R to fit the best
ARIMA model.

* Multiple Layer Perceptron (MLP): Several fully connected
layers are stacked and the numbers of hidden units are 4096, 2048,
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1024, 2048 and 1600. Original image input is flattened into a one-
dimensional tensor.

* Long Short-Term Memory (LSTM): Three gates are included
in LSTM to capture near and long dependencies in sequence
learning. The numbers of hidden units are 2048, 1024, 1024 and
1600.

* Spatiotemporal Recurrent Convolutional Networks (SRCNs):
SRCNs (Yu et al., 2017) combines LSTM and CNN to predict
traffic speed of road network. We applied the same structures in
their paper except that the last layer has 40x40 = 1600 neurons.

* ST-ResNet: ST-ResNet (Zhang et al., 2018) has a residual
learning structure and considers three temporal dependencies.
Due to the data limitation, we only included the closeness and
period parts.

* 3 Branches without Fusion: This model variant simply sums the
outputs of three branches.

Compared to the no-branch model, variants integrated with urban
geospatial data perform better, verifying that region features
learned from these data can improve demand prediction.
Therefore, three kinds of data are used in our final JG-Net. When
we simply sum the results of three branches instead of using
weight matrices, the error increases, which demonstrates the
effectiveness of our Hadamard product fusion mechanism.

4.3 Performance of different time and locations

We compared the forecasting performance of the JG-Net at
different time. Figure 6 shows how prediction error changes in a
day. Figure 6(a) is the daily demand of all regions. The taxi

Model MSE demand is the lowest at 5 am and so is MSE. Then the city comes
HA 3.293 . . . L
alive, and in the meantime, the prediction error of these models
ARIMA 3.181 . . . .
MLP 5088 begins to increase. The demand reaches its peak in the afternoon.
’ Among the models, MLP is the most unstable and has the highest
LSTM 2.651 .. . .
SRCN 2119 rising degree in MSE. The error of LSTM is smaller compared to
ST-R I\? ; 2 13 MLP. The error curve of ST-ResNet is smoother than that of
-Ges c - SRCNs because of residual learning. Our proposed JG-Net has
JG-Net the most stable curve, and relatively good prediction results are
No Branch 2.21 obtained at all time in a day.
POI Branch 1.945
Road Branch 1.897 7000 —— Total Demand
Population Branch 1.931 —
3 Branches without Fusion 2.092 5565
3 Branches with Fusion 1.868

Table 3. Comparison among different methods

Table 3 shows the prediction results. The proposed JG-Net
reaches the lowest MSE (1.868), which reduces the error by
12.3%. Among these methods, HA and ARIMA only consider
historical values of a single region, thus they perform poorly.
SRCNs and ST-ResNet have similar prediction error because
they both use CNN to capture spatial dependency of the whole
city, which makes them superior to MLP to LSTM where spatial
features are flattened.

In order to verify the impact of multisource data on forecast
results, we also compared the performance of several model
variants:

* No branch: The proposed JG-Net degrades to a regular residual
net. Only taxi order data is used in this model.

* POI Branch, Road Branch, Population Branch: The prediction
is guided by only one type of the urban data, either POI data, road

data or population data.
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To examine the model performance in the entire city, we carried
out some experiments at different locations. The x-axis of three
subplots in Figure 7 represents predicted time intervals. Figure 7
shows great similarity between the city-scale prediction value
and ground truth at one time interval, which is a solid proof of
the superiority of our model at the city level. Among three typical
locations, JG-Net fits the true values best at the commercial
region where taxi demand is high and has a regular pattern. The
fitting results of the model in other regions are also reasonable
because we consider the individual characteristics of each region
in the prediction process.

5. CONCLUSION AND FUTURE WORK

In this paper, inspired by region diversity in cities, we propose a
joint guidance residual network named JG-Net for city-scale taxi
demand prediction based on residual learning and pixel-adaptive
convolution. The model has three guidance branches, and in each
branch, multiple geospatial data, including POI data, OSM road
data and population data, are applied to assign features to regions.
This work is the first attempt to consider region characteristics in
the city-level prediction process. Besides, weather information
and time metadata are also considered. Using Didi Chuxing taxi
order dataset of Chengdu, we carried out data processing and
demand prediction experiments. By correlation analysis, we
found that the above three types of geospatial data are related to
taxi demand value, especially POI data. The experiment results
show that the proposed model performs stably at different
locations and time intervals in comparison with other related
models. The overall prediction error on the testing set is reduced
by 12.3%. The effectiveness of integrating multiple sources of
geospatial data is also validated by ablation experiments.

To further improve the prediction accuracy, we will consider to
collect more data, such as traffic density data and crowd mobility
data. Taxi demand prediction for the entire city is a
spatiotemporal problem. The present work has not sufficiently
addressed the temporal dimension. In future studies, we will
conduct more in-depth research on how to consider the temporal
dimension, such as using 3D convolution or channel attention.
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