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ABSTRACT: 

 

During a disaster, the activity of the crowd represents a very valuable source of the on-the-ground conditions shared by the affected 

citizens. The approach, presented in the paper, explores the relationship between the spatial distribution of crowdsourced image posts 

and damaged buildings in order to understand the potential of modelling the spatial distribution of damaged buildings based on 

geolocated images. The posts related to the hurricane Michael that happened in the United States in October 2018, showing the 

building damage of Panama City, have been collected by NAPSG Foundation and GISCorps volunteers. The building damage 

assessment, based on the analysis of high-resolution post-event imagery, has been performed by FEMA. Exploring the two available 

independent point datasets, the spatial pattern of each individual dataset has been analysed and furthermore the spatial relationship 

between them has been explored. A set of spatial statistics has been performed with R software. For this purpose, the distance-based 

methods have been used, that consider the mutual position of points to describe the patterns. The results shown the spatial 

relationship between the crowdsourced photos and different damage types. Furthermore, potential of crowdsourced images for 

improving the awareness of the structural damage after the hurricane have been discussed. 
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1. INTRODUCTION 

Mobile technologies, web-based platforms, and social media 

have made it possible to easily exchange information related to 

any topic, including natural and human driven disasters. 

Focusing on disasters, Poblet et al. (2018), have shown that this 

type of sources has changed the landscape of disaster 

management. Damage assessment upon a disaster event, such as 

a hurricane, has a very important role since it helps to 

understand the nature and size of the event on which the further 

emergency response and recovery activities depend. The term 

crowdsourcing was introduced by Jeff Howe (2008) who 

defined it as “the act of taking a job traditionally performed by a 

designated agent and outsourcing it to an undefined, generally 

large group of people in the form of an open call”. Combining 

mobile technology and crowdsourcing methods new forms of 

contribution to the disaster management have been created. 

According to the research of Roberts and Doyle (2017), during 

a disaster, the crowd engagement is constantly growing. It could 

represent a very valuable source of the on-the-ground conditions 

shared by the affected citizens. If this type of source is 

considered as real-time crowdsourcing of crisis information, the 

spatial distribution of geolocated images related to an event 

could represent an early indicator of the severity of its impact 

(Spasenovic et al., 2019). In the light of previous consideration, 

the following question may arise: would it be possible to 

estimate the building damage distribution by exploiting 

crowdsourced information? 

 

Over the past years, the increase of research work focused on 

crowdsourced information related to a disaster has been 

recorded in literature. Corbane et al. (2012) have explored the 

relationship between the spatial pattern of SMS messages and 

building damage in the Haiti disaster of 2010. Triglav-Cekada 

and Radovan (2013) have explored the potential of 

crowdsourced information for mapping the flood that happened 

in Slovenia in November 2012. Albuquerque et al. (2014) have 

compared the spatial distribution of social media with respect to 

authoritative data in order to identify useful information for 

disaster management.  

 

The work presented in this paper explores the spatial 

relationship between two datasets that describe the damage of 

the buildings after the hurricane. Crowdsourced image posts 

were compared with the building damage map to understand the 

potential of modelling the spatial distribution of damaged 

buildings based on geolocated images. The case study event is 

hurricane Michael that hit the Florida Coast of the United States 

of America in the period from 7th October to 11th October of 

2018. According to the report from National Oceanic and 

Atmospheric Administration (NOAA, Beven et al. 2019) 

Panama City was one of the most affected areas. The available 

crowdsourced images describe the damage of the buildings in 

Panama City. The dataset was provided by National Alliance for 

Public Safety GIS (NAPSG) Foundation and it is publicly 

accessible. NAPSG foundation with the help of GISCorps 

volunteers have collected one hundred and nine crowdsourced 

photos relevant to the hurricane impact over the area of interest. 

On the other hand, the building damage dataset has been created 

by Federal Emergency Management Agency (FEMA), based on 

the analysis of high-resolution post-event imagery performed by 

professional mappers. Exploring the two available independent 

point datasets, the spatial pattern of each individual dataset has 

been analysed and furthermore the spatial relationship between 
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them has been explored. A set of spatial statistics have been 

computed with R software. For this purpose, the distance-based 

methods have been used, that consider the mutual position of 

points to describe the patterns. More precisely, the positional 

relationship between the crowdsourced images and affected 

buildings have been recorded. The results are presented and 

discussed, showing the potential of crowdsourced images for 

improving the awareness of the structural damage after the 

hurricane. 

  

2. DATASET DESCRIPTION 

2.1. Crowdsourced images 

After the landfall of hurricane Michael, NAPSG Foundation 

activated the photo crowdsourcing application (source: 

https://napsg.maps.arcgis.com/apps/StoryMapCrowdsource/inde

x.html?appid=69b95886cf8e49a3a349c9d550174a91). The 

NAPSG Foundation, with the help of twenty GISCorps 

volunteers, in four days collected nearly 600 geolocated photos 

relevant to the hurricane. The photos were located over the 

areas hit by the hurricane, showing its impact on the structures, 

nature, and community.  

 

For the purpose of this research photos describing the building 

damage over Panama City have been selected from the original 

dataset. Totally, one hundred and nine crowdsourced photos 

showing the damaged buildings of Panama City have been 

selected. The selected photos have been grouped into two 

categories: the first group of 104 photos (95.5%) presents 

affected buildings and the second group of 5 photos (4.5%) 

presents collapsed buildings. Three days after the hurricane 

Michael landfall, the first images were collected on the 

platform. The total dataset has been ready in seven days, the 

exact day of the platform activation is not known. As it can be 

seen in Figure 1, the highest number of photos, representing 

building damage in Panama City, was collected over a period of 

two days, the most productive was the fifth day with totally 67 

photos (62%). 

 
 

Figure 1. Number of crowdsourced photos of Panama City 

related to building damage between 10 October and 13 October 

2018 

The images were collected from social media and news outlets. 

The georeferencing of the image posts was done by volunteers, 

that found a clue objects in the pictures, useful for location 

definition. This is very important fact that allows to make the 

hypothesis that the defined location of the collected image posts 

has high precision. It is useful to point out that all GISCorps 

volunteers have knowledge of Geographic Information Systems 

(GIS), according to which the tasks were assigned. Thanks to 

this, it is possible to confirm the reliability of the provided data. 

 

2.2. Building damage assessment 

FEMA Mapping and Analysis Centre (MAC) created an open 

access repository: the Historical Damage Assessment Database 

(source: http://disasters.geoplatform.gov/publicdata/ 

National/Data/HistoricalDamageAssessmentDatabase/), that 

contains geospatial damage assessments from the past national 

disaster events in the United States. For this research, a point 

dataset showing the buildings of Panama City that were 

damaged by hurricane Michael was downloaded from the 

repository. The buildings damage assessment was based on the 

analysis of high-resolution post-event imagery performed by 

professional mappers. Two damage categories were present in 

the dataset: Affected and Destroyed. “Affected” label 

corresponds to buildings which in the post-event imagery were 

missing roof segments, presented failure of structural elements 

and/or had visible damage. “Destroyed” label corresponds to 

buildings which collapsed. It is important to point out that 

visual imagery assessment was done using nadir imagery so 

damages to the sides of buildings were not evaluated. In order to 

have a more complete building dataset, which includes also not 

damaged buildings, Open Street Map (OSM) buildings of 

Panama City and surrounding area have been exported and 

compared with the FEMA dataset. In the OSM dataset, 

buildings are mapped as polygons, in order to have the data of 

the same type, the centroid of each OSM building polygon has 

been considered. Buildings coming from OSM that have not 

been mapped in the FEMA dataset have been marked as “Not 

Affected” and added to the damage assessment point dataset. 

All in all, the dataset contained 38.594 points (Figure 2) of 

which 25.293 (65.5%) were labelled as “not affected” buildings, 

13.044 (33.8%) as “affected” buildings and 267 (0.7%) as 

“destroyed” buildings.  

 
 

Figure 2. Spatial distribution of building damage and 

crowdsourced photos over the Panama City 

 

3. METHODOLOGY AND RESULTS 

3.1. Quantitative analysis: kernel density estimator  

An important descriptor for the purpose of this research is data 

distribution. Density estimates are ideal for this purpose, for the 

simple reason that they are easily understandable quantitative 

analysis. The kernel density estimator was proposed by 

(Silverman, 1986) for the estimation of the probability density 

function of a uni-variate random variable of which a sample of 

n observations is known. In the uni-dimensional case, given the 

sample of n observations X1…Xn the Kernel density estimator is 

defined as:  
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                            (1) 

 

 

where h = bin width, also called bandwidth 

           x = origin   

           K = symmetric probability density function which 

satisfies the condition (Silverman, 1986): 

 

 

                                        (2) 

     

 

It is possible to implement algorithms that extend the kernel 

density estimation to two-dimensional variables, producing 

“heatmaps” that can be used to represent the results of the 

kernel density estimates.  

 

Kernel density heatmaps can help to better understand the data 

and decide the direction of further analysis. For this reason, they 

are appropriate for the comparison of building damages types 

and suitable crowdsourced photos. 

 

3.2. Results of kernel density  

The kernel density has been calculated to compare the spatial 

distribution between the two a priori different datasets. In fact, 

even though the datasets are different, they are both presenting 

the building damage types. Two categories of crowdsourced 

photos have been analysed separately and compared with 

heatmaps of corresponding building damage type. The heatmap 

of crowdsourced images, representing the affected buildings, 

was compared with the heatmap of the affected building 

mapped by FEMA (Figure 3). The heatmap of crowdsourced 

images representing the destroyed buildings was compared with 

the heatmap of the destroyed buildings (Figure 4). As presented 

in Section 2, the size of the two datasets is very different. For 

ease of comparison, the same bandwidth was selected for the 

compared datasets. The bandwidth of 1 km was selected, 

according to the methodology of Sheather and Jones (1991). All 

analyses were performed in R software using the stats package 

(R Core Team, 2020). 

 
 

Figure 3. Kernel density heatmap for 1 km radius for a) affected 

buildings b) crowdsourced photos of affected buildings 

Figure 3a shows the kernel density of affected buildings 

mapped by FEMA. Observing the heatmap it is possible to see 

that affected buildings were registered in almost all parts of 

Panama City, especially in the south and south-east. The density 

of crowdsourced images of affected buildings (Figure 3b) shows 

that the images were taken in the same parts of the city where 

the affected buildings were registered. With this observation it 

is possible to say that the distribution of crowdsourced photos 

of affected buildings closely resembles the distribution of 

affected buildings. Moreover, the significant density of 1.2 10-6 

was registered for collected images in the southern part of the 

city. In the south-east part slightly lower density was registered, 

showing the presence of the collected photos in this area. 

Registered photos had smaller concentration than the ones in the 

southern parts of the observed area. 

 

 
 

Figure 4. Kernel density heatmap for 1 km radius for a) 

destroyed buildings b) crowdsourced photos of destroyed 

buildings 

Figure 4a shows the kernel density of destroyed buildings 

mapped by FEMA. From the heatmap it is possible to see that a 

significant concentration of damaged buildings was recorded in 

the south-east part of the city. The kernel density map of 

crowdsourced images of destroyed buildings (Figure 4b) shows 

different results. The crowdsourced images of destroyed 

buildings were taken in the south-west parts of the city. For the 

selected radius of 1 km it is possible to see that the maximum 

density is 1.2 10-07, meaning that few points are present. In the 

south-west part of the city FEMA mapped destroyed buildings 

but with a low density (light blue spots in Figure 4a). The 

collected images of the destroyed buildings will not be further 

analysed, since they are not located in the most affected area 

and their number is low.  

 

3.3. Spatial pattern analysis  

To better understand the pattern of the spatial distribution of the 

point datest, the distance-based method, Ripley’s K-function, 

has been applied. The main characteristic of the distance-based 

methods, in general, is the consideration of the points spacing 

for pattern description (Moller and Waagepetersen, 2007). 

Spatial pattern analysis based on Ripley’s K-function is a 

second-order analysis of point patterns in a two-dimensional 

space (Ripley, 1976). A point process can be considered as a 

a) 

b) 

b) 

a) 
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probabilistic model of phenomena or objects representable as a 

finite set of points in an observation window W (Diggle, 1986). 

Ripley’s K function can be calculated in a univariate form, 

taking into consideration points of the same type.  Given the 

location of all points from the same type within the study area, 

the Ripley’s self-K function (Ripley, 1976) is calculated: 

 

                                      (3) 

 

where   r = radius  

            λ = density (number per unit area) of events 

            E = expected number of events within the radius r from 

                   a randomly chosen event. 

 

The idea of the self-K function is to estimate the number of 

other points lying within the distance r of a randomly chosen 

point of the same event. In general, to evaluate the clustering or 

dispersion of the point pattern the Ripley’s K(r) function should 

be tested to complete spatial randomness (CSR) (Ripley, 1979). 

This can be done by comparing the observed values to 

homogeneous Poisson process, where the theoretical values are 

distributed independently without any interaction. In practice it 

is considered to use the Besag L-function, transformation of the 

K-function (Besag and Clifford, 1989) because its variance is 

approximately constant under CSR (Ripley, 1979): 

 

 

                                 (4) 

 

 

Ripley’s K-function and L-function have been widely used for 

defining and understanding the relationship between point 

pattern for data of the same type. They are hence suitable for 

exploring the relationship of crowdsourced photos and each 

type of building damage. 

 
3.4. Results of the self-correlations for damaged buildings 

and crowdsourced photos  

In order to understand the spatial distribution of crowdsourced 

images and buildings with different type of damage grade the 

self-function Lii(r) has been applied. Each point type of the 

datasets has been individually observed: crowdsourced images, 

not affected buildings, affected buildings and destroyed 

buildings. All analyses were performed in R software using the 

spatstat package (Baddley and Turner, 2005; Baddley, 2008).  

 

Figure 5 shows the results of the computed self-functions Lii for 

not affected buildings (Figure 5a), affected buildings (Figure 

5b), destroyed buildings (Figure 5c) and for crowdsourced 

images (Figure 5d), under the hypothesis of CSR. The study 

area was defined with the observation window representing the 

city of Panama City boundary map. To determine the statistical 

significance of the results the Monte Carlo method was applied 

and corresponding confidence intervals were obtained. In the 

context of spatial pattern analysis, the Monte Carlo method 

simulates randomly generated distribution of the same 

dimensions as the observed point pattern (Haase, 1995). The 

number of simulations was set to 99 which computed the 99% 

confidence envelope (Leemans, 1991).  

 
 

 

 

 

 

 

 

 

 

 
             Observed value                Theoretical value                 Confidence interval 

 

Figure 5. Self-function Lii for a) not affected buildings,  

aa) zoom on the distribution for small distances <20m, 

b) affected buildings, bb) zoom on the distribution for small 

distances <40m,  

c) destroyed buildings, d) crowdsourced images  

The deviations of the sample statistic from zero expectation (red 

line) is positive and above the upper limit of the confidence 

interval (upper green line) for all three types of building damage 

grades and crowdsourced images. The magnitudes of deviations 

from CSR are high, so it is possible to say that at both small-

distances and large-distances the distributions are clustered for 

crowdsourced photos as well as for all levels of building 

damage. According to the obtained results, as expected, the 

correlation is higher for the building damage of a same grade at 

small distances. The same can be said for crowdsourced images 

that have been taken from neighbouring locations. Taking a 

closer look at Figure 5a and b, Figure 5aa and bb show that the 

deviation trend for very small distances is under the zero 

expectation or inside the confidence interval. Therefore, it is 

possible to say that for very small distances (in particular less 

than 7m for not affected buildings and less than 15m for 

affected buildings) the spatial distribution can be considered 

random. The reason for that could be explained with the fact 

that points correspond to the centroids of buildings and in most 

cases buildings are surrounded by a garden. The nugget effect 

that is present in Figure 5d is caused by the spatial pattern of 

crowdsourced images, since more than one point shares the 

same location. This is very useful information related to the 

quality of the data collected from crowdsource platform. 

Checking the images with the same location, it has been found 

that two out of twelve pictures have been taken from the same 

location with different directions, while the remaining ten 

images are showing the damage of the same object (hospital and 

school) but from different angles (different locations).  

 

a) 

c) d) 

b) bb) 

aa) 
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3.5. Spatial correlation of crowdsourced photos and 

building damage map 

The K-function can be used not only to summarize the point 

pattern (as presented in Section 3.3), but also to explore the 

relationship between points of different type. The previous 

analyses considered only the location of points, they ignored 

any other information. The point patterns could have additional 

information about each point. For example, the points of a 

pattern could represent different types of objects (in our case 

points represent crowdsourced posts and damaged buildings). In 

addition, each point u of a point process X, could be associated 

to a random variable mu, called a mark. These data are called 

multivariate spatial point patterns (Stoyan and Stoyan, 1996). In 

this case the generalization of K(r) to more than one type of 

points is called cross-K function and is computed as follows:  

 

                                      (5) 

 

where   r = circle radius  

            λ = density (number per unit area) of events 

            i ≠ j = types of the events 

            E = expected number of events within the r of randomly 

                   chosen event. 

The idea of the cross-K function is to estimate the number of 

type j points within distance r of a randomly chosen type i 

point. The obtained value is compared with the theoretical one, 

which represents the absence of attractions or repulsion between 

data points of different types (Lotwick, 1984). For this purpose, 

the hypothesis of independence of population was used. As for 

the self-function (paragraph 3.3) it is also possible to define 

transformed cross-L function. 

 

3.6. Results of the cross-correlations 

The cross-function Lij(r) has been applied in order to 

understand the spatial interaction between the two a priori 

different datasets of crowdsourced photos and building damage.  

Each building damage type has been considered separately and 

analysed with respect to crowdsourced images. In this way, it 

has been possible to study the type (namely, attraction or 

repulsion) of the different interactions and their intensity. It was 

possible to evaluate whether one type of point tends to be 

surrounded by points of the other type. 

 

Figure 6 shows the results of the computed cross-functions Lij 

describing the relationship of crowdsourced photos and not 

affected buildings (Figure 6a), of crowdsourced photos and 

affected buildings (Figure 6b), of crowdsourced photos and 

destroyed buildings (Figure 6c), under the hypothesis of 

independence of population (red line in the plots). To determine 

the statistical significance of the results, the Monte Carlo 

method was applied, and 99% confidence intervals were 

computed (green line in the plots). 

 
             Observed value                Theoretical value                 Confidence interval 

 

Figure 6. Cross-function Lij for a) crowdsourced images and not 

affected buildings, b) crowdsourced images and affected 

buildings, c) crowdsourced images and destroyed buildings  

The results show that cross-correlation between crowdsourced 

images and not affected buildings (Figure 6a) is positive and 

lies above the Monte-Carlo simulation envelope (99% 

confidence interval). The high magnitude from the upper 

boundary of the confidence interval indicates significant 

interactions between crowdsourced images and not affected 

buildings for all distance ranges. A bit different distribution of 

the cross-correlation between crowdsourced images and 

affected buildings has been recorded (Figure 6b). The computed 

Lij is negative and inside the confidence interval for small 

distances (r < 500 m approximately), indicating not significant 

interactions. Furthermore, for the distances between 0.5 km and 

4 km the distribution is positive and above the confidence 

interval, indicating the attraction between the crowdsourced 

images and affected buildings. This means that in a 0.5 to 4 km 

radius, the number of crowdsourced images surrounded by 

randomly chosen affected buildings is greater than expected if 

the two patterns are independent. For a distance of 4 km or 

more, repulsion between two observed objects has been found. 

Analysing the relationship between the crowdsourced photos 

and the destroyed buildings (Figure 6c), the distribution of the 

cross-correlation lies inside the envelope for distances smaller 

than 2 km and for distances larger than 7 km, suggesting not 

significant interactions between crowdsourced photos and 

destroyed buildings. For the remaining distances (2 km < r < 7 

km approximately) the repulsion has been found. 

 

a) 

 

b) 

c) 
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4.  DISCUSSION AND CONCLUSION 

The work presented in this paper explores the relationship 

between geolocated crowdsourced photos of damaged buildings 

and building damage obtained from remote sensing data. The 

aim of this work is to explore spatial point processes in order to 

understand the possibility of crowdsourced data to predict an 

early estimate of the structural damage patterns following a 

hurricane. The first analysis used the kernel density function in 

order to build heatmaps. This fast and easy quantitative analysis 

highlighted the spots with a significant concentration of the 

observed point datasets. A simple visual inspection of the 

obtained results confirmed the concurrence between the 

distribution of crowdsourced photos of affected buildings and 

the distribution of affected buildings mapped by FEMA. On the 

contrary, the distribution of collected images of destroyed 

buildings was not matching with the distribution of mapped 

destroyed buildings and their total number was small. This 

observation led to the conclusion that crowdsourced photos of 

damaged buildings could not be considered as a representative 

sample. For this reason, they were excluded in further analyses. 

The self-correlation analysis demonstrated the presence of 

clusters in the distribution patterns of different building damage 

types and crowdsourced images. These results indicated that 

building damages of the same type were registered close to each 

other. Similarly, crowdsourced photos were taken in 

neighbouring locations. The cross-correlation analysis 

highlights the spatial attraction between geolocated 

crowdsourced photos and the affected buildings. The collected 

photos of the affected buildings were taken near affected 

buildings extracted from remote sensing data. The result did not 

show significant attraction at small distances, which can be 

explained with the fact that people were taking pictures from 

safe not affected places. In fact, at small distances the 

significant attraction was recorded between not affected 

buildings and crowdsourced photos.  

 

The main limitation of the analysis is that it is very much data 

driven, the reliability of the results depends on the quality of the 

input data. The crowdsourced images were geotagged manually 

by searching clue objects in the pictures, useful for location 

definition. In some cases, it was found out that the defined 

location was not precise. It turned out that images sharing the 

position of capturing were showing the damage of the same 

building but from different angles. For some buildings, the 

contradictions between two sources was found for the assessed 

damage type (see Appendix). The source of pre and post 

hurricane imagery used by the FEMA is not known and in some 

cases the reason for inconsistency could not be explained. 

 

To conclude, this work has shown that real-time geolocated 

crowdsourced photos have potential as early indicators of the 

patterns of structural damage caused by a hurricane. Yet, it is 

necessary to apply the proposed analyses on other test cases in 

order to better understand the relationship between 

crowdsourced reports and damaged buildings. Analysing larger 

data sets will help to better assess the parameters needed for 

spatial modelling structural damage patterns following a 

hurricane. Crowdsourced platforms and social media are very 

powerful source of information and by increasing the awareness 

of their role in disaster management, valuable information could 

be obtained.  
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Destroyed building mapped by FEMA as not affected 

(EDT Pawaday pet shop):  
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