
REINFORCEMENT LEARNING HELPS SLAM: LEARNING TO BUILD MAPS

N. Botteghi1,∗, B. Sirmacek2, R. Schulte1, M. Poel3, C. Brune4

1 Robotics and Mechatronics, Faculty of Electrical Engineering, Mathematics and Computer Science,
University of Twente, The Netherlands, n.botteghi@utwente.nl
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ABSTRACT:

In this research, we investigate the use of Reinforcement Learning (RL) for an effective and robust solution for exploring unknown and
indoor environments and reconstructing their maps. We benefit from a Simultaneous Localization and Mapping (SLAM) algorithm
for real-time robot localization and mapping. Three different reward functions are compared and tested in different environments
with growing complexity. The performances of the three different RL-based path planners are assessed not only on the training
environments, but also on an a priori unseen environment to test the generalization properties of the policies. The results indicate that
RL-based planners trained to maximize the coverage of the map are able to consistently explore and construct the maps of different
indoor environments.

1. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) is the given
name for the mathematical methods aiming at simultaneously
building the map of the environment and estimating the pose of
the given sensor within it. Even though many SLAM solutions
have been proposed for decades (Dissanayake et al., 2000), (Dis-
sanayake et al., 2001), (Mur-Artal et al., 2015), (Cadena et al.,
2016), it is still an open and challenging problem due to complex-
ity of the mathematics which generally needed to be computed
recursively, accurately and in real-time. Thus, especially in the
most recent years, SLAM researchers focus on finding intelligent
ways (thanks to Artificial Intelligence) to keep the mathematical
processes less complex yet more accurate.
The significant improvement in the SLAM algorithms has been
with the introduction of the use of the extended Kalman filter
(EKF) for incrementally estimating the posterior distribution over
robot pose along with the positions of the landmarks. One of
the first implementation can be attribute to (Smith et al., 1990)
and, only later, SLAM algorithms started to be developed for mo-
bile robotics (Montemerlo et al., 2002). Seeing the effectiveness
of these new SLAM algorithms on mobile robots, researchers
started to look at ways to scale up these solutions to larger and
more complex environments in which there are hundreds of land-
marks and obstacles (Guivant and Nebot, 2001), (Leonard and
Feder, 2000), (Lu and Milios, 1997). At this point, keeping the
landmarks in the memory and rapid data association became a
bigger challenge (Thrun et al., 1998). Online SLAM methods
therefore increasingly became a focus on selecting the latest rel-
evant landmarks and keep positioning a mobile robot in a large
environment with simpler calculations at each SLAM iteration
(Smith et al., 1990).
The above mentioned SLAM algorithms are evaluated in environ-
ments which are ’known’. In other words, the ’state transition’ is
calculated based on the pre-coded ’control signals’ in order to
reach a specific goal (i.e. ’turn left if you recognize the corner
landmark’, ’go straight if you recognize the corridor landmark’,
∗Corresponding author.

etc.). When the environment is ’unknown’ (without any existing
map), pre-determination of such control signals becomes impos-
sible. In large and complex environments, the navigation skills
of mobile robots suddenly become crucial. Researchers started
to develop more intelligence on these robots for exploring the en-
vironments instead of following the pre-defined paths studied in
the case of the known environments. Exploration algorithms are
therefore introduced to help robots to generate the right control
inputs (e.g. wheel velocities) in order to navigate unknown envi-
ronments and jointly build the map of the environments. When
the SLAM algorithm is used in real-time for actively planning
robot paths while simultaneously building the environment map,
the SLAM algorithm is named as Active SLAM (Trivun et al.,
2015). The most widely used Active SLAM method so far is
called frontier-based exploration (Yamauchi, 1997) which gen-
erates the control signals simply looking at whether the selected
frontier (i.e. region in between the known and unknown areas
of the map) candidates are leading to an occupied space or not.
However, this approach also comes with limitations such as not
enabling to search for an optimal path (i.e. a sequence of opti-
mal control functions for transitioning from one state to another)
and relies on greedy criteria to select the frontier to be visited
(e.g. minimum distance or information gain). Furthermore, a
path planner for navigating to the chosen frontier without colli-
sions is required.
Herein, we propose an intelligent SLAM solution for autonomous
exploration of unknown environments using a mobile robot and
Reinforcement Learning (RL) (Sutton and Barto, 2018). We look
at the control signal generation and state transition of SLAM as
solving a RL problem, where the agent has to learn the best se-
quence of actions (the best sequence of control signals), i.e the
sequence that maximizes the total cumulative reward. In this con-
text, the goal is to explore and complete the map without colli-
sions in the minimum time. In order to choose the best action u,
the agent receives information about the state of the environment
and the reward r associated to it.It is worth mentioning that the
notion of state in SLAM algorithms does not necessarily coin-
cide with the notion of state in RL. The state vector in RL can
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include sensor readings, map information, actions taken by the
robot in the past, etc., i.e. all the important information for learn-
ing the optimal trajectories. Because of the high number of de-
grees of freedom, it is difficult to choose a proper state vector, but
an informative state vector is crucial for a good performance of
the learning algorithm. The same reasoning holds for the reward
function. The proper choice of the reward function and the state
vector is the focus of this work.
The rest of the paper is organized as follows: in Section 2. related
work on Reinforcement Learning navigation and exploration is
presented, then the theoretical background regarding the chosen
SLAM and RL algorithms in introduced in Section 3., followed
by the description of the proposed approach in Section 4.. Sec-
tion 5. explains the design of the experiments, Section 6. presents
results and Section 7. discusses them. Eventually, Section 8. con-
cludes the paper.

2. RELATED WORK

2.1 Robot Navigation and Active SLAM with RL

In recent years, RL has been used to learn path planning skills for
autonomous robot navigation in unknown environments. Usu-
ally, these methods don’t build and use any map for navigating
in the different environments, e.g. (Wu et al., 2018), (Tai et al.,
2017), (Zhelo et al., 2018), (Pfeiffer et al., 2017) and (Zhang et
al., 2018). While these map-less approaches obtained promising
results, these methods tend to be rather sample-inefficient and a
long training phase is required. On the other hand, a few meth-
ods combined RL and SLAM for learning how to navigate in un-
known environments, e.g. (Zhang et al., 2016), (Brunner et al.,
2017), (Mustafa et al., 2019) and (Botteghi et al., 2020), with
higher performances and efficiency by exploiting the knowledge
stored in the maps.
Although navigation using RL is a well-studied and tackled prob-
lem, the exploration using RL for constructing maps is still un-
der investigated. In (Kollar and Roy, 2008), RL is used to opti-
mize the trajectories to improve the quality of the map assuming
a ground truth map is available. In (Chen et al., 2019), a RL agent
is trained to build 3D maps using RGB-D sensor, however expert
trajectories are required to initialize the agent’s policy. Eventu-
ally, in (Dooraki et al., 2018), the proposed method learns a RL-
planner for navigating without collisions and constructs maps of
very simple environments.

3. THEORY

3.1 SLAM: Rao-Blackwellized particle filter

To construct the maps of the environments, a Rao-Blackwellized
particle filter (RBPF) is used. RBPF estimates the robot’s pose in-
dependently from the posterior of the map (Murphy, 1999). This
is shown in Equation (1):

p(x1:t,m|z1:t, u1:t−1) = p(m|x1:t, z1:t)p(x1:t|z1:t, ut−1)
(1)

where x1:t is the robot’s trajectory, z1:t is the sequence of sensor
measurements, ut−1 is the control input at the previous time step
and m is the map of the environment.
With RBPF, the estimation of the joint posterior can be divided
into two different objectives. The first one is the pose estimate us-
ing particle filter and the second is the map estimate given known
poses.

3.1.1 Particle Filter Estimation The pose of the robot
p(x1:t|z1:t, ut−1) is estimated using a finite set of weighted par-
ticles (2).

Xt := {x(1)t , x
(2)
t , ..., x

(N)
t }, (2)

where each particle x(n)
t represents a possible value of the true

state time step t. The new population of particles Xt is con-
structed recursively from the previous generation Xt−1 by sam-
pling from the probabilistic odometry motion model
p(x

(n)
t |x

(n)
t−1, ut−1). Then, by incorporating the probabilistic ob-

servation model p(zt|x(n)
t ), an individual importance weighting

factor w(n)
t is assigned to each particle. Eventually, resampling

takes place and the particles with the smaller importance weights
are not resampled allowing the filter to converge to the correct
pose estimate (Grisetti et al., 2005).

3.1.2 Mapping with Known Poses After estimating the pose
of the robot, the posterior of the map p(m|x1:t, z1:t) is estimated.
This step is called ”mapping with known poses” (Moravec, 1988).
The map is assumed to be an occupancy grid: the environment is
split into evenly spaced cells and a probability value is assigned
to each cell to indicate if it is occupied, free or unknown. The
probability of each grid cell is chosen independent from the oth-
ers. By doing that, the map’s posterior can be computed as the
product of the single cells posterior of the map mi as shown in
Equation (3),

p(m|z1:t, x1:t) =

M∏
i=0

p(mi|z1:t, x1:t) , (3)

where M is the total number of grid cells in the map.

3.2 Reinforcement Learning

Reinforcement Learning (RL) (Sutton and Barto, 2018) aims at
solving a sequential decision making problem by learning the ac-
tions to take through the interaction with an unknown environ-
ment. The RL-agent, i.e. the decision maker, is not taught what is
the best behaviour, but it has to infer it by only receiving a scalar
value, i.e. the reward, for each action taken. The interaction be-
tween the agent and environment can be modelled as a Markov
Decision Process (MDP) (Sutton and Barto, 2018). A MDP is
a tuple (S,A,P,R) where S is the set of possible states, A is
the set of actions, P describes the dynamics of the environment,
i.e. the transition probability from a state st to the next next state
st+1 when applying an action at and a reward function R. Usu-
ally P and R are unknown beforehand and has to be learned by
trial and error.
Active-SLAM aims at finding the sequence of control inputs, i.e.
actions, to explore and fully construct the maps of the environ-
ments. This sequential decision making process can be formu-
lated as a RL problem, where the RL-agent has to learn the ac-
tions that maximize the cumulative reward in Equation 4.

R(s) = ΣT
t=0rt+1 (4)

where R(s) is the reward function that we assume is only depen-
dent on the state. In this case the maximum of the reward function
corresponds to the full completion of the maps, that we assume
represented as a 2D occupancy grid. RL is suitable for this appli-
cation as no ground truth information is required beforehand (as
it happens with supervised learning) and the exploration policy
can be naturally learned by the trial and error interaction between
the agent and the (unknown) environment. Thanks to that, RL
is able to solve decision processes without any knowledge of the
state transition function.
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3.2.1 Deep Q-Network For choosing the best action, the so-
called value function is estimated and employed by many RL-
algorithms. The value function contains information on the qual-
ity and desirability of the states. Deep Q-Network (DQN) (Mnih
et al., 2013) estimates the state-action value function Q, i.e. a
function measuring how good it is to choose a certain action in
a given state, by means of a neural network. It is common to
employ function approximators when the state space and/or the
action space are continuous and cannot be represented by a look-
up table. In particular, the Q-network is trained to minimize the
mean square error between the true state-action value function
and its prediction, as shown in Equation (5).

L
(
θQ
)

= E


Q(st, at|θQ)−Qtarget︸ ︷︷ ︸

TD error


2 (5)

where Qtarget = r(st, at) + γmaxaQ
(
st+1, at|θQ

)
.

Despite the advantages of handling continuous state spaces, the
neural network, representing the value function, introduces train-
ing instabilities as the samples are not identically and indepen-
dently distributed (i.i.d. assumption), but collected from corre-
lated trajectories (e.g. consider the case of mobile robot naviga-
tion). This problem is solved with the introduction of the Expe-
rience Replay (Lin, 1993): the training batches are constructed
of randomly selected samples to break any temporal correlation.
Furthermore, the value maxaQ(st+1, a|θQ) used to compute the
Qtarget, and consequently used to train the Q-network, shouldn’t
be generated by the same neural network that is trained. This
cause an overestimation of the Q-value of the next state. This
problem is addressed and solved by Double DQN (DDQN)
(Van Hasselt et al., 2016), where a target network, parametrized
by θt, is used to compute the maxaQ(st+1, a|θt,Q).

3.2.2 Deep Recurrent Q-Network DQN has proven to be
successful in many applications, however, most of these rely on
the Markov assumption that the future is independent on the past
given the present, i.e. the information carried by the state at the
current time step is enough for choosing the best action. In many
situations, the state of the environment is not directly observable,
i.e. in the case of Partially Observable MDPs (e.g. two sensor
readings may look the same, but they correspond to two differ-
ent situations), and DQN struggles in learning the optimal pol-
icy. To tackle this problem Deep Recurrent Q-network (DRQN)
(Hausknecht and Stone, 2015) was introduced. DRQN extends
DQN to partially observable environments by adding a recurrent
neural network (RNN) in the Q-network.

4. METHODOLOGY

We phrase the mapping of indoor and unknown environments as
a finite horizon problem, by assuming that a terminal goal-state
exists for the early termination of the episodes and it corresponds
to the completion of the map.
We aim at strengthening the combination of RL and SLAM, in
order to build maps in the most efficient way. To do that we focus
on two crucial aspects of RL: the reward function and the state
space.

4.1 Reward shaping

The choice of the reward function is an important aspect in RL, as
it should incorporate task-specific knowledge that the agent uses
to learn the optimal behaviour. Here we compare three different
reward functions:

1. Sparse (in Equation (6))

2. Map-completeness (in Equation (7))

3. Information-gain (in Equation (9))

The first straightforward option for learning to map an unknown
environment is a ”sparse” reward function, in Equation (6). By
learning to avoid collision, the agent may occasionally complete
the map. This will be used as a baseline for comparison with the
other reward functions.

R(st) =


rmapCompleted, ct ≥ c̄,
rcrashed, scoll,

0, otherwise.
(6)

where rmapCompleted is a positive scalar when the map, indicated by
ct

1, depending on a scaling factor λ, is completed about a certain
threshold c̄ and rcrashed is a negative scalar if a terminal collision-
state scoll is reached, i.e. if a collision occurs.
The second reward exploits and includes more information about
the map, in particular it adds to the ”sparse” reward a term pro-
portional to the difference in the map completeness of the current
time step and the previous time step.

R(st) =


rmapCompleted, ct ≥ c̄,
rcrashed, scoll,

ct − ct−1, otherwise.
(7)

where ct is the map completeness at time t and ct−1 is the map
completeness at time t− 1.
The third reward term utilizes the map’s entropy (see Equation
(8)). The map’s entropy (Thrun et al., 1998) corresponds to the
sum of the entropy of all the cells c in the mapm and it quantifies
the uncertainties in the map. A good exploration policy is a policy
that explores the environment and reduces the uncertainties.

H(m) =
∑

cf∈m

p(c)logp(c)+
∑
co∈m

(1−p(co))log(1−p(co))

(8)

where cf corresponds to the unknown and unoccupied cells in the
map and co to the occupied ones. Analogously to map-completeness
reward, the complete reward function adds to the ”sparse” reward
function the difference in entropy at the current time step and at
the previous one, i.e. the information-gain.

R(st) =


rreached, ct ≥ c̄,
rcrashed, scoll,

Ht −Ht−1, otherwise.
(9)

where Ht is the map’s entropy at time t and Ht−1 is the map’s
entropy at time t− 1.

4.2 State and Action spaces

The agent chooses its actions based on the information contained
in the state vector. A state vector must contain all the relevant
information for solving a given task. In particular, we analysed
two different compositions of state vectors, namely one contain-
ing only the present information at time t (see Equation 10) and

1The map completeness is naturally defined as ct = λU+O
T

where
U is the number of unoccupied cells in the map, O is the number of
occupied cells, T the total number of cells and λ is a scaling factor, such
that ct ∈ [0, 1], based on the actual area of the environment to explore
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(a) Env-1: Maze.
(b) Env-2: Apartment. (c) Env-3: Apartment 2.

Figure 1: The environments are of size 22, 68 and 65.5 m2, respectively.

one containing also information of the recent past (see Equation
11):

st = [zt, at−1, x̂t, ct, tt] (10)

where st corresponds to the state vector at time t, zt to the current
sensor readings, at−1 to the previously chosen action, x̂t to the
robot’s pose estimate, ct to the completion percentage of the map
and tt to the time steps left before the end of the episode.

set = [st−w, ..., st] (11)

where set is the extended state vector that concatenates a sequence
of past states s from Equation (10) and w is the length of the ob-
servation window i.e. how much of the past is taken into account.
The agent is not allowed to observe the full map because grid-
maps are variable dimension vectors that depend on the overall
size of the environment which is unknown beforehand. We would
need to allocate enough space in the state vector for any kind of
map independently of their actual sizes. This would make the
state vector explode in dimension and it would require the use of
deeper neural networks for representing the policies. These con-
ditions would make the learning of the optimal behaviour harder.
For sake of simplicity, we employ a discrete action space. The
agent can choose between four possible actions: go forward, go
backward, turn left and turn right. However, the proposed ap-
proach can be extended to continuous action spaces.

5. EXPERIMENTS DESIGN

The experiments are performed in a 3D simulation environment,
using the Robot Operating System (ROS) middleware and the
Gazebo simulator, with a differential drive mobile robot (Husar-
ion), controlled through velocity commands and equipped with
360◦ laser range scanner (LiDAR) and wheels odometry.

5.1 Comparison of the different reward functions

We aim at evaluating the three proposed reward functions (Section
4.1) in three different environments, shown in Figure 1. In partic-
ular, the environments, depicted in Figure 1b and 1c, were created
on the base of actual apartments in the Netherlands (funda.nl,
2020). We train our agents in Env-1 and Env-2 and we com-
pare the learning performances of the different reward functions.
Then, the trained agents are evaluated based on the quality of the
trajectories generated and further assessed in the unseen a priori
environment Env-3. Furthermore, we compare our method with
frontier-based exploration 2 (Yamauchi, 1997).

2We use ROS package explore-lite for the implementation of the
frontier-based exploration.

5.1.1 Different handling of the robot collisions We propose
two different ways to handle the collisions of the robot during the
training and testing phases.
First, when a collision occurs, i.e. when the distance between the
robot and an obstacle is smaller than a given threshold (see Table
2 in Appendix), the episode terminates and the rcrashed penalty
is applied. Alternatively, when in a collision state, no reset of the
episode occurs, but the rcrashed penalty is still applied. In this
case, each episode lasts the same amount of time-steps.

5.2 Use of the memory in neural network architecture

We compare two different algorithms: DQN and DRQN. The
main difference lies in the use of the memory in the neural net-
work representing the state-action value function Q. For DQN,
we employ a simple neural network with 2 fully connected lay-
ers with 512 neurons each and a fully connected output layer that
outputs a Q-value per action. DRQN, instead, utilizes a Long
Term Short Memory (LSTM) layer, a fully connected layer with
512 neurons and again a fully connected layer outputting the Q-
values.

6. RESULTS

6.1 Comparison of the different reward function

We compared different reward functions (see Equation (6)-(9))
in Env-1 and Env-2 with the two different methods of handling
collisions (Section 5.1.1). In Figure 2, the results are presented.
In particular, Figure 2a and 2b show the training performances in
Env-1 with respect to the map completeness when no-resetting on
wall contact and when resetting. In both cases, when a collision
occurs a penalty reward is received by the agents. By avoiding
the reset when an obstacle is hit, the agent can better explore the
environment while learning to avoid collisions. When resetting,
the agent has to first learn to perfectly avoid collisions before be-
ing able to escape the starting room and collect good samples.
In Figure 2c and 2d, the performances of the agents trained with
the different reward functions in Env-2 are shown. For mapping
an unknown environment, early stopping is not beneficial and it
increases the probability of getting stuck in local optimal poli-
cies (e.g. circling in one room). Furthermore, the reset generates
undesirable higher variance of the map completeness signal over
training. As Env-1 is rather simple and the main challenge is
escaping the main room, there is not a significant difference be-
tween the three proposed reward functions (see Figure 2a). How-
ever, as soon as the environment gets more complex, the agent
trained with the ”sparse” reward function (6) struggles to com-
plete the map (2c). Moreover, the agent trained with the ”map-
completeness” reward (7) seems to converge faster than the agent
trained with the ”information-gain” one (9).
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Figure 2: Comparison of the different reward functions on Env-1, when no-resetting on collisions (Figure 2a) and when resetting
(Figure 2b) and comparison of the different reward functions on Env-2, when no-resetting on collisions (Figure 2c) and when resetting

(Figure 2d).

6.2 Use of the memory in neural network architecture

We study and analyse the effect of the memory in the state vec-
tor and to what extend it can be useful for improving the per-
formances of the RL-agent. In particular, we compare on Env-1
(Figure 1a) the agent using no memory, i.e. DQN, and the agent
using memory i.e. DRQN, when the reward function in Equa-
tion (9) is used. The progresses of the map completeness over the
training episodes for the two agents is shown in Figure 3.
DQN starts learning sooner than DRQN as it requires the collec-
tion of a number of samples equal to the training-batch size (see
Table 2), while DRQN needs to wait until the same number of
sequences of length equal to the window size (see Table 2) are
collected. When the actual training of the neural network starts,
DRQN exhibits a steeper learning curve than DQN and a smaller
variance of the map completeness during training. Nevertheless,
both agents converge to the same map completeness.
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Figure 3: Comparison of training performance of DQN and
DRQN when the ”information-gain” reward function (9) is

employed.

Completing the map involves delayed reward as several actions
may lead to no variation in the reward (e.g. circling around in the
same room), thus using a sequence of observation is beneficial
for solving the mapping task.

6.3 Evaluation of the trajectories

In this section, the trajectories followed by the agents when no
noise is applied to the actions are shown and analysed. In particu-
lar, the trajectories generated by the policies trained with the three
proposed reward functions are compared to the ones generated
using the frontier-based exploration methods (Yamauchi, 1997).

The trajectories are depicted in Figure 4. In the training envi-
ronments (see Figure 4a and 4b), the RL-planners trained with
”map-completeness” (7) and ”information-gain” (9) reward func-
tions complete the maps by following shorter trajectories than the
ones generated by the frontier-based exploration algorithm. The
”sparse” reward function (6), that uses none of the knowledge
stored in the map, fails to complete the map as soon as the en-
vironment grows in complexity. In an a priori unseen environ-
ment (see Figure 4c and 4d), only the ”map-completeness” (7)
and ”information-gain” (9) can complete the map, but the perfor-
mances are influences and dependent on the starting position of
the robot. In particular, the agent trained with ”information-gain”
reward performs better when initialized in a clustered space as it
naturally tends to navigate to open areas. On the other hand, the
agent trained with ”map-completeness” reward exhibits the op-
posite behavior, as it tends to stay close to walls and obstacles.
The paths length during the evaluation experiments was recorded
and it is shown in Table 1.

Approach Env-1 Env-2 Env-31 Env-32

Sparse 5.0 m 40.0 m∗ 44.9 m∗ 32.7 m∗

Map-completeness 4.7 m 11.6 m 34.7 m∗ 35.1 m
Information-gain 4.1 m 11.9 m 28.5 m 109.9 m∗

Frontier 3.9 m 20.2 m 14.8 m 15.5 m
∗ the map is not completed.

1 starting position of the robot in the top-left room.
2 starting position of the robot in the bottom-right room.

Table 1: Trajectory length comparison in the different environ-
ments.

7. DISCUSSIONS

7.1 Mapping with RL

RL allows to learn smooth trajectories for optimizing the com-
pletion of maps in environments with different topologies. When
the reward function exploits the information stored in the map,
the agent is able to learn short paths to complete the map. Re-
ward functions based on map-completeness and information-gain
outperform the sparse reward function, especially when the envi-
ronment is more complex (e.g. Env-2 and Env-3). In particular,
the agent that is trained to maximize information-gain learns and
follows safer and longer paths and tends to navigate towards open
areas (e.g. center of the rooms) than the agent trained to maxi-
mize the map completeness.
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Figure 4: Comparison of trajectories generated by the RL-planners and the frontier-based exploration algorithm in the three
environments.

No initial information about the environment, nor a map is re-
quired in the state vector. Thus, we are able to use a simple neural
network structure with fewer parameters, which trains faster and
requires less samples than a deeper architecture. Adding a mem-
ory component (i.e. LSTM) is the neural network architecture is
beneficial for improving the performances of the agents. How-
ever, the MDP modelling framework is violated and a POMDP
framework should be used instead.
The paths generated by the RL-agents are shorter than the ones
obtained using frontier-based exploration method in the training
environments. In unseen a priori environment, RL-methods often
complete the maps, but they seem influenced by the starting po-
sition of the robot.

7.2 Future work

First, we aim at testing the proposed approach in bigger and more
complicated environments (e.g. the environments proposed in
(Khoshelham and Acharya, 2017)).
Secondly, we phrased the mapping problem as a finite horizon
one by assuming the knowledge of the overall area of the environ-
ment. This can be practical in many application, but it would be
interesting to relax this hypothesis and utilize an infinite horizon
framework (i.e. no knowledge on the total area of the environ-
ment is needed). This would require the learning of higher-level
exploration skills as no early termination is present.
Here we didn’t investigate whether our RL-SLAM solution can
solve the loop closure problem, however this is another interest-
ing direction for future work.
Furthermore, we aim at transferring the policies learned in the
virtual and simulated environment to real robots, similarly to the
approach followed in (Mustafa et al., 2019).
Eventually, we would like to extend our RL-SLAM solution to
multi-agent exploration by looking at optimal solutions for rapid
exploration of unknown environments.

8. CONCLUSIONS

Herein we proposed a new approach combining RL and SLAM
for building maps of indoor environments in an efficient way.
In the training environments, the RL-agents that exploit the in-
formation stored in the map, i.e. ”map-completeness” (7) and
”information-gain” (9), outperform the ”sparse” (6) reward func-
tion and the frontier-based exploration approach in term of path

length and consequently time to complete the map. The map-
completeness reward function (7) achieves the fastest learning
curve over training, while the information-gain based reward (9)
allows the agent to learn the safest exploratory path. In an a priori
unseen environment with similar total area, but different topol-
ogy, the RL-planners trained with (7) and (9) are able to com-
plete the map. However, both planners follow longer paths than
frontier-based exploration.
Furthermore, the use of the memory in the RL-algorithm is ben-
eficial for the performances of the agents.
The proposed RL-framework is suitable for generating exploratory
trajectories to efficiently construct maps using SLAM algorithms.
Transferring the policies learned in the virtual environments to
real robots is the next step for the deployment of this framework
in real life scenarios.
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APPENDIX

The parameters used in the experiments are shown in Table 2.

RL and SLAM parameters Value
training steps 500000

optimizer ADAM
DQN learning rate 10−3

DRQN learning rate 10−4

L2-regularization coefficient 10−2

discount factor γ 0.99
ε-greedy coefficient 0.6

ε-decay 0.9997
min. ε-greedy coefficient 0.1

DQN batch size 64
DRQN batch size 64

LSTM window size 5
particles 50

process scan threshold translation 0.05
process scan threshold rotation 0.05

grid cell size 0.05 m×0.05 m
occupancy threshold 0.65
LiDAR max. range 4 m
LiDAR min. range 0.2 m
collision threshold 0.2 m

Table 2: Parameters of the experiments.
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