
RESEARCH ON SEMANTIC-ASSISTED SLAM IN COMPLEX DYNAMIC INDOOR 

ENVIRONMENT 
 

C. Li 1, Z. Kang 1, *, J. Yang1, F. Li1, Y. Wang1 

 
1 Department of Remote Sensing and Geo-Information Engineering, School of Land Science and Technology, China University of 

Geosciences, Xueyuan Road, Beijing, 100083 CN – 724675560@qq.com, zzkang@cugb.edu.cn, jtyang66@126.com, 

foudar@163.com, wangyao@cugb.edu.cn 

 

Commission IV, WG IV/5 

 

 

KEY WORDS: Simultaneous localization and mapping, Semantic segmentation, Dynamic object recognition, Robot indoor 

navigation, Scene understanding 

 

 

ABSTRACT: 

 

Visual Simultaneous Localization and Mapping (SLAM) systems have been widely investigated in response to requirements, since the 

traditional positioning technology, such as Global Navigation Satellite System (GNSS), cannot accomplish tasks in restricted 

environments. However, traditional SLAM methods which are mostly based on point feature tracking, usually fail in harsh 

environments. Previous works have proven that insufficient feature points caused by missing textures, feature mismatches caused by 

too fast camera movements, and abrupt illumination changes will eventually cause state estimation to fail. And meanwhile, pedestrians 

are unavoidable, which introduces fake feature associations, thus violating the strict assumption that the unknown environment is static 

in SLAM. In order to ensure how our system copes with the huge challenges brought by these factors in a complex indoor environment, 

this paper proposes a semantic-assisted Visual Inertial Odometer (VIO) system towards low-textured scenes and highly dynamic 

environments. The trained U-net will be used to detect moving objects. Then all feature points in the dynamic object area need to be 

eliminated, so as to avoid moving objects to participate in the pose solution process and improve robustness in dynamic environments. 

Finally, the constraints of inertial measurement unit (IMU) are added for low-textured environments. To evaluate the performance of 

the proposed method, experiments were conducted on the EuRoC and TUM public dataset, and the results demonstrate that the 

performance of our approach is robust in complex indoor environments. 

 

 

1. INTRODUCTION

As the basis of intelligent services for robots, autonomous 

navigation and positioning are the frontiers of the robotics 

research field. Its applications are increasingly embedded in 

people's daily lives including autonomous parking, advanced 

home services, medical services, path planning and obstacle 

avoidance. Traditional positioning technology, such as Global 

Navigation Satellite System (GNSS), enables accurate outdoor 

positioning. However, positioning and navigation tasks cannot 

be accomplished in GNSS-restricted environments, especially 

indoor environments due to complex indoor structures and the 

failure to receive satellite signals.  

 

Over the past decades, visual Simultaneous Localization and 

Mapping (SLAM) systems have been widely investigated in 

response to requirements. It provides autonomous navigation 

and positioning in an unknown environment since rich image 

information obtained by a vision sensor can be used to estimate 

its own motion. In an ideal environment, many visual SLAM 

systems have achieved high location accuracy. MonoSLAM has 

been developed to generate 3D trajectory of unknown scene 

quickly through monocular camera (Andrew et al., 2007). 

However, the computing efficiency is limited by the size of the 

scene since extended Kalman filtering is used to optimize 

camera pose (Hauke et al., 2012). PTAM is the first system to 

propose parallel computing of tracking and mapping (Klein, 

Murray, 2007). It is worth mentioning that nonlinear 

optimization instead of filters is used as backend in this system. 

Based on ORB SLAM (Mur-Artal et al., 2015), ORB SLAM2 

system (Mur-Artal, Tardós, 2017) was developed for monocular, 

stereo and RGB-D camera. The structure includes feature 
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tracking of front-end modules, optimization of back-end 

modules, loop closing modules to identify known locations and 

mapping modules. It adopts Oriented FAST and Rotated BRIEF 

(ORB) as the feature point detection algorithm (Rublee et al., 

2011). ORB SLAM2 is the representative of the feature point 

methods and the association between points is obtained by 

feature matching. The camera poses and map points position will 

be calculated by minimizing reprojection errors. LSD-SLAM 

(Engel, Cremers, 2014), as one of the direct method SLAM 

systems, optimizes the camera pose and 3D points coordinates 

by constructing a photometric error function, without the 

correspondence between points. It achieves a semi-dense scene 

reproduction on the CPU. The emergence of DSO (Engel et al., 

2018) makes the direct method more mature, which uses fully 

direct method. It proposes photometric calibration to solve the 

effect of light on the direct method, Photometric parameters of 

uncalibrated cameras will be dynamically estimated. These 

make the direct method more robust. 

 

In recent years, visual SLAM has gradually merged with various 

sensors (Heng et al., 2018). The integration of inertial 

measurement unit (IMU) measurements and visual SLAM can 

overcome the shortcomings of the arbitrary scale of the 

monocular system (Mur-Artal, Tardós, 2017). The sliding 

window strategy has been used in most Visual Inertial Odometer 

(VIO) systems (Dong-Si, Mourikis, 2012). VINS (Li et al., 2017) 

is a system based on semi-direct method, which uses optical flow 

for front-end tracking, but the back-end is still optimized for 

reprojection error. 
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The above SLAM systems have achieved high location accuracy 

under ideal circumstances. However, traditional methods which 

are mostly based on point feature tracking, usually fail in harsh 

environments. Previous works have proven that insufficient 

feature points caused by missing textures, feature mismatches 

caused by too fast camera movements, and abrupt illumination 

changes will eventually cause state estimation to fail. And 

meanwhile, pedestrians are unavoidable, which introduces fake 

feature associations, thus violating the strict assumption that the 

unknown environment is static in SLAM. With the development 

of deep learning technology, researchers can accurately obtain 

the semantic information and geometric information of the scene 

at the same time, which is helpful for us to recognize the 

dynamic objects in the scene and eliminate their effect (Bescos 

et al., 2018).  

 

In recent years, the semantic SLAM, which has the ability of 

scene understanding, assists mapping and positioning through 

accurate understanding of object targets in the environment 

(Bowman et al., 2017). The results of semantic segmentation and 

object detection can provide SLAM with higher-level 

information (Zhi, 2019). It provides an understanding of the 

surrounding environment. Semantic SLAM focuses on the 

incremental storage of image sequences and the update of 

semantic information (Civera, et al., 2011), as well as the fusion 

of multi-view semantic labels. The CNN-SLAM (Tateno et al., 

2017) predicts both depth and labels at the same time, realizes 

label fusion and integrates the predicted depth information into 

SLAM, so that it can restore the true scale and obtain a 

semantically consistent map. At present, researchers mostly use 

the probabilistic model for data association, and correctly match 

the target object detected in the image to the existing 3D object 

of this category in the map data. 

 

In order to ensure how our system copes with the huge 

challenges brought by these factors in a complex indoor 

environment, this paper proposes a semantic-assisted VIO 

system towards low-textured scenes and highly dynamic 

environments. Our approach is committed to the improvement 

of the system from the following two aspects: (1) The constraints 

of IMU are added for low-textured environments and (2) the 

geometric consistency of the system is improved by semantic 

information provided by deep learning technology in the highly 

dynamic environments.  

 

2. METHODOLOGY  

As shown in Figure 1, we propose a semantic-assisted VIO 

system, which contains the following two aspects: 

(1) Firstly, feature extraction and semantic segmentation are 

performed. Semantic segmentation is used to identify dynamic 

objects and eliminate the effects of outliers, and finally obtain 

reliable feature points. (2) After eliminating outliers, the joint 

optimization of IMU measurement errors and reprojection errors 

ensures the system to acquire good pose calculation results.  

2.1 Semantic SLAM 

In this section, we will introduce the combination of traditional 

SLAM system and semantic segmentation module. The feature 

extraction module and outlier filtering module of the traditional 

SLAM system will be used. In addition, we introduced the 

semantic module, which will assist the system to identify 

dynamic objects and finally filter outliers based on the object 

level. 

 

2.1.1 Semantic segmentation: Our system adopts U-net based 

on PyTorch to provide pixel-wise semantic segmentation. The 

U-net trained on PASCAL VOC dataset could segment each 

image. In real life, people are most likely to be dynamic objects, 

so we assume that feature points extracted from people are most 

likely to be outliers. Figure 2 shows segmentation results of 

sitting people and walking people. The state of the person 

reflects the level of the dynamic environment. 

 

Figure 1. The flow charts 

 

Figure 2. Semantic segmentation results 

 

  

Figure 3. Feature extraction of ORB SLAM2 and our system 
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2.1.2 Feature extraction: The feature detection algorithm in 

ORB SLAM2 will be used, with Features from Accelerated 

Segments Test (FAST) corners as features and Binary Robust 

Independent Elementary Features (BRIET) as descriptors. The 

left side of figure 3 shows the results of traditional SLAM feature 

extraction. 

 

The matched feature points will be used to calculate the camera 

poses. However, we can know that people in motion will also be 

extracted to the feature points. In order to obtain reliable poses, 

it is necessary to ensure that the feature points involved in the 

pose calculation have accurate data associations. RANSAC 

method tests the data for consistency by random sampling and 

iterate continuously. Although it can filter out some outliers, it 

does not consider the connection between samples in a multi-

object motion scene, that is, the points on the same rigid body 

have the same motion state. But the semantic segmentation has 

the advantage of identifying whether points are on the same 

object. 

 

2.1.3 Outlier elimination: The result of semantic segmentation 

provides semantic level information for visual SLAM. People 

are regarded as potential dynamic objects, and feature points 

existing on potential dynamic objects will be eliminated to 

reduce the impact of mismatch. Descriptors are only calculated 

for the remaining key points to perform the feature matching 

process. The right side of Figure 3 shows the results of our 

system feature extraction. 

 

2.2 VIO 

As mentioned in the introduction, low-texture environments and 

abrupt illumination changes will be inevitable in the real world. 

However, such scenes are either insufficient in feature points or 

mismatched, which ultimately leads to the failure of pose 

estimation.  Figure 4 shows the complex environment in a 

room. This shows the disadvantage of the camera: it is greatly 

affected by the external environment. Compared with the camera, 

IMU has the characteristics of small error accumulation in a 

short time and is not affected by the external environment. 

Therefore, multi-sensor fusion has become the trend of research.  

 

When the IMU performs navigation alone, it needs to remain 

stationary for a period of time for initialization. In fact, the 

SLAM system does not provide enough initialization time for 

IMU. Therefore, the visual information will be used to assist 

IMU initialization as most VIO systems. The initialization 

process will be described in detail later. 

 

The scale obtained by traditional monocular SLAM is arbitrary. 

Figure 5 shows the trajectory graph predicted by ORB SLAM2 

system. The IMU measurements can assist the monocular 

system to obtain the true scale. In this section, we introduce the 

VIO system in detail. 

 

2.2.1 IMU initialization: The IMU data will be processed 

concurrently with the image data. The method of obtaining IMU 

measures with visual assistance is mainly performed by 

calculating the camera poses of the first few frames. That is, first, 

the gyro deviation can be obtained from the relative direction 

between the two frames. Then the scale factor and gravity 

approximation will be calculated from the gyro deviation if 

accelerometer deviation is ignored. After that, the acceleration is 

taken into consideration to get the accelerometer deviation, the 

corrected scale factor and gravity. This completes the 

initialization process. 

 

2.2.2 Tracking: Reliable camera pose will be predicted with 

IMU. The map points in the local map are projected and matched 

with reliable feature points from the previous section. Then the 

IMU error terms and reprojection errors of all matched static 

feature points are jointly optimized to calculate the camera pose. 

When there is a map update from the Local Mapping or Loop 

Closing thread, these two errors are calculated as follows for the 

current frame j and last key frame i: 

 

 𝜃 = {𝐑𝐖𝐁
𝑗

, 𝐰𝐩𝐁
𝑗

, 𝐰𝐯𝐁
𝑗
, 𝐛g

𝑗
, 𝐛a

𝑗
} (1) 

 𝜃∗ = argmin
𝜃

(∑ 𝐞proj(𝑘, 𝑗) + 𝐞IMU(𝑖, 𝑗)

k

) (2) 

where 𝐑𝐖𝐁
𝑗

, 𝐰𝐩𝐁
𝑗

, 𝐰𝐯𝐁
𝑗

 are the orientation, position and 

velocity of IMU respectively, and  𝐛g
𝑗
, 𝐛a

𝑗
 are biases of the 

accelerometer and gyroscope respectively. 

 

 𝐞proj(𝑘, 𝑗) = ρ((𝐱𝑘 − π(𝐗c
𝑘))

T
𝚺k(𝐱𝑘 − π(𝐗c

𝑘)))  (3) 

 
𝐞𝐼𝑀𝑈(𝑖, 𝑗) = 𝜌([𝐞𝑅

𝑇𝐞𝑣
𝑇𝐞𝑝

𝑇]𝚺𝐼[𝐞𝑅
𝑇𝐞𝑣

𝑇𝐞𝑝
𝑇]𝑇)

+ 𝜌(𝐞𝑇𝚺𝑅𝐞𝑏) 
(4) 

 

Where 

 𝐗c
k = 𝐑CB𝐑BW

𝑗
(𝐗w

𝑘 − 𝐰𝐩B
𝑗

) + c𝐩B (5) 
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𝑔
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𝑗
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𝑖 𝐑𝐖𝐁

𝑗
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𝑗
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𝑔

𝐛𝑔
𝑗
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𝑎 𝐛𝑎

𝑗
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𝐞𝑝 = 𝐑𝐁𝐖
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𝑗
− 𝐰𝐩𝐁

𝑖 − 𝐰𝐯𝐁
𝑖 ∆t𝑖j −

1

2
𝐠𝐰∆t𝑖𝑗
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− (∆𝐩𝑖𝑗 + 𝐉∆𝑝
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𝑎
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𝑎 𝐛𝑎

𝑗
) 

(8) 

 𝐞𝑏 = 𝐛𝑗 − 𝐛𝑖  (9) 

 

 

Figure 4. Complex environment 

 

 

Figure 5. Trajectory of visual SLAM system. 
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When there is not a map update, for frame j + 1: 

 

 
𝜃 = {𝐑𝐖𝐁

𝑗
, 𝐰𝐩𝐁

𝑗
, 𝐰𝐯𝐁

𝑗
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𝑗
, 𝐛𝑎

𝑗
, 𝐑𝐖𝐁

𝑗+1
, 𝐰𝐩𝐁
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, 

𝐰𝐯𝐁
𝑗+1

, 𝐛𝑔
𝑗+1

, 𝐛𝑎
𝑗+1

} 
    (10) 

 
𝜃∗ = argmin

𝜃
(∑ 𝐞proj(𝑘, 𝑗 + 1) + 𝐞IMU(𝑗, 𝑗

k

+ 1) + 𝐞proj(𝑗)) 

    (11) 

 

Where 

 𝐞𝑝𝑟𝑜𝑗(𝑗) = 𝜌([𝐞𝑅
𝑇𝐞𝑣

𝑇𝐞𝑝
𝑇𝐞𝑏

𝑇]𝚺𝑝[𝐞𝑅
𝑇 𝐞𝑣

𝑇𝐞𝑝
𝑇𝐞𝑏

𝑇]𝑇) (12) 

 𝐞𝑅 = 𝐰𝐯̅𝐁
𝑗

− 𝐰𝐯𝐁
𝑗
  (13) 

 𝐞𝑝 = 𝐰𝐩̅𝐁
𝑗

− 𝐰𝐩𝐁
𝑗

𝐞𝐛 (14) 

 𝐞b = 𝐛̅𝑗 − 𝐛𝑗 (15) 

 

2.2.3 Local mapping: Compared to traditional visual SLAM, 

the local window of our system is determined by the last few key 

frames since the IMU errors are cumulative. Thus, IMU error 

terms and reprojection error terms are cost functions to further 

optimize the local window. Old frames that can observe map 

points only provide visual constraints. In this way, IMU 

measurements provide constraints for pose calculations to 

improve performance in low-textured. 

 

3. EXPERIMENTS AND RESULTS 

To evaluate the performance of the proposed method, 

experiments were conducted on the TUM public dataset and 

EuRoC public dataset. The low-texture scenes and highly 

dynamic environments have been encountered. 

 

The fr3 image sequences in the TUM dataset contain sitting and 

walking people. Datasets are classified into low dynamic 

environment and high dynamic environment according to the 

state of people. This can be used to detect the impact of dynamic 

objects on the positioning result. 

 

The EuRoC dataset consists of three scenes and 11 sequences, 

including abrupt illumination changes, fast camera movement 

and low-textured environments. The datasets are divided into 

three levels of easy, medium and difficult according to the above 

situation. Compared with the monocular visual system, our 

system not only obtains the observability scale, but also 

improves the global positioning accuracy. 

 

The results of the two datasets will be analysed separately. In 

order to illustrate the resistance of our system to dynamic objects, 

we selected five sequences on the TUM dataset and ran them on 

ORB SLAM2 system and our system respectively. Table 1 

illustrates the positioning results of sequences. The first two 

sequences are low dynamic environments and the last three 

sequences are high dynamic environments. The RMSE reflects 

the robustness and accuracy of the system, and S.D. reflects the 

stability of the system. 

 

From the Table 1, it can be seen that whether it is a low dynamic 

environment or a high dynamic environment, compared with the 

ORB system, the RMSE and S.D. of our system are reduced. It 

proves that our system performance has been improved, 

especially in high dynamic environment.  

 

In order to express the ability of our system to resist dynamic 

environments, the positioning results will be visualized. We 

show the predicted trajectory and the real trajectory of 

fr3_sitting_static and fr3_walking_rpy in the following figures. 

 

Figure 6. Trajectory graph of fr3_sitting_static predicted by 

ORB SLAM2 and our system. 

 

 

Figure 7. Trajectory of fr3_sitting_static projected in xyz 

direction  

 

Figure 8. Euler angle of fr3_sitting_static predicted by 

ORB_SLAM2 and our system. 
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They are representatives of low dynamic environment and high 

dynamic environment respectively. 

 

Figure 6 shows the trajectory of fr3_sitting_static predicted by 

ORB SLAM2 and our method. It can be seen from the Table 1 

and Figure 6 that the performance in the low dynamic 

environment has improved even if it is small. Figure 7 and 

Figure 8 are used to clearly express the difference in system 

positioning accuracy. 

 

Figure 7 shows the trajectory of fr3_sitting_static projected in 

xyz direction. It can be seen from the Figure 7 that although the 

errors of the two systems are similar in low dynamic 

environment, the trajectory predicted by our system is closer to 

the true trajectory. 

 

Figure 8 shows the predicted Euler angle. Obviously, the 

performance of our system is better than ORB SLAM2. 

 

Figure 9 shows the trajectory of fr3_walking_rpy and 

fr3_walking_half projected onto the plane in high dynamic 

scenes. As can be seen from the figure, the positioning error of 

the ORB SLAM2 is large in the high dynamic environment, 

which is quite different from the real trajectory. It proves that the 

positioning result is disturbed by dynamic objects in the 

traditional SLAM system. However, as can be seen from Figure 

9, our system can greatly reduce the interference of dynamic 

objects. It is consistent with the results in Table 1 that the 

improvement of positioning performance in high dynamic scene 

is very obvious. 

 

Table 2 shows the results of experiments conducted on the 

EuRoc dataset. The environment of the EuRoc dataset is shown 

in Figure 4. Five sequences were selected for experiments to 

illustrate the resistance of our system to complex environments. 

 
(a) Trajectory of fr3_walking_rpy 

 
(b) Trajectory of fr3_walking_half 

Figure 9. Trajectory predicted by ORB_SLAM2 and our 

system. 

 

 

 
Figure 10. Trajectory graph of MH03 predicted by 

ORB_SLAM2 and our system. 

 

 

sequence ORB_SLAM2 our method improvement 

RMSE S.D. RMSE S.D. RMSE S.D. 

Low dynamic scene Sitting half 0.0242 0.0129 0.0226 0.0118 6.81% 8.38% 

Low dynamic scene Sitting static 0.0084 0.0039 0.0077 0.0038 8.46% 0.98% 

High dynamic scene Walking half 0.4175 0.2160 0.3838 0.1324 8.08% 38.67% 

High dynamic scene Walking rpy 1.0034 0.5387 0.5539 0.1819 44.80% 66.23% 

High dynamic scene Walkng static 0.4201 0.1710 0.3292 0.0999 21.66% 41.56% 

Table 1.  Absolute trajectory error (ATE) of TUM dataset (m) 

 

sequence ORB_SLAM2 Our method Improvement 

RMSE S.D. RMSE S.D. RMSE S.D. 

easy MH01 0.0434 0.0189 0.0258 0.0154 40.55% 18.64% 

medium MH02 0.0359 0.0186 0.0210 0.0099 41.49% 46.58% 

medium MH03 0.0392 0.0171 0.0279 0.0118 28.79% 31.08% 

difficult MH04 0.0594 0.0257 0.0640 0.0244 -7.76% 4.91% 

difficult MH05 0.0737 0.0400 0.0497 0.0225 32.57% 43.69% 

Table 2.  Absolute trajectory error (ATE) of EuRoC datasets(m) 
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As can be seen from the Table 2, in the five sequences, the 

RMSE and S.D. of our system are mostly lower than the ORB 

SLAM2 system, which proves that the stability and robustness 

of our system is better than the ORB SLAM2 system. Figure 10 

plots the trajectory of MH03 sequence predicted by the ORB 

SLAM2 system and our system respectively. 

 

For the MH03, the maximum ATE of ORB SLAM2 is 0.101m, 

and that of our method is 0.059m. The trajectory predicted by 

our system is closer to the real trajectory than ORB SLAM2 

system. In order to show the performance of the system more 

clearly, the trajectory error graph is displayed in Figure 11 and 

12. 

 

4. CONCLUSION 

In our paper, a VIO system based on semantic assistance is 

proposed. Compared with the traditional visual SLAM, it has a 

module for semantic recognition of dynamic objects, and its 

performance is improved in dynamic environment by removing 

feature points on dynamic objects. In addition, the joint 

optimization of IMU measurement errors and reprojection errors 

ensures the system to acquire good pose calculation results under 

low-textured environment. Experiments prove that the 

performance of our system has been improved in a complex 

indoor environment. In the future research, we will introduce 

semantic data association, that is, the fusion of semantic labels 

of static objects to the proposed system, and a semantic 

consistency map will eventually be established. 
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