
RIDE VIBRATIONS: TOWARDS COMFORT-BASED BICYCLE NAVIGATION

Oskar Wage1,∗, Udo Feuerhake1, Christian Koetsier1, Anne Ponick2, Niklas Schild2, Thido Beening2, Samsondeen Dare2

1Institute of Cartography and Geoinformatics, Appelstraße 9a, 30167 Hannover, Germany
{wage, feuerhake, koetsier}@ikg.uni-hannover.de

2Student at Institute of Cartography and Geoinformatics

Commission IV, WG IV/4

KEY WORDS: routing, bike, roughness, volunteered geographic information

ABSTRACT:

Providers for common navigation systems and mobile applications apply their route choice concepts for cars almost unmodified
to cyclists. In contrast to motorists the latter are not significantly influenced by the traffic situation or speed limits, but notably by
other factors like slopes and path’s surface type and quality. In a volunteered geographic information fashion this paper contributes
a smartphone-based mobile sensing and evaluation approach for bicycle way’s roughness. It presents the complete process chain
from data acquisition using the mobile app ”RideVibes” to a detailed data analysis on street segment level to finally enable a comfort
sensitive route optimization and recommendation.

1. INTRODUCTION

Often providers of common navigation systems and corres-
ponding mobile applications apply their route choice concepts,
originally designed for car drivers, almost unmodified to cyc-
lists. In contrast to motorists they are not significantly influ-
enced in their route choice by the traffic situation or speed lim-
its, but notably by comfort factors such as road surface qual-
ities, slopes and number of necessary stops and safety aspects
like separate bike lanes.

Although focusing on E-bikes, apart from that, (Dane et al.,
2019) gives a good literature overview for different factors in-
fluencing cyclists route choice in general. As one of the first
times in (Bovy, Bradley, 1985) a study on cyclist route choice
behaviour also taking surface quality into account was conduc-
ted, if only based on hypothetical routes so far. In contrast, as
an example of recent years sensor driven studies like (Broach et
al., 2012) analyze several different facility attributes on cyclists
route choice behaviour based on GPS data, but do not directly
take the comfort or surface quality into account. As a current
example (McCarthy et al., 2016) states that cyclists are not only
interested in a direct or fast route, but are also quite sensitive to
comfort and safety aspects. More specifically, the thesis (van
Overdijk, R.P.J., 2016) claims that a good quality of bike fa-
cilities and low slopes can be worth more than 4 minutes of
travel time reduction. Likewise surface quality can be found
in the group of most relevant factors for comfortable routes.
This conclusion is also reached by the stated preference survey
in (Stinson, Bhat, 2003). After travel time and distance from
motorized traffic, the surface is of highest interest for cyclists.
Further, surface quality seems to be the most important aspect
compared to other comfort measures like hilliness, continuity
or delays from stops. Finally, it turns out to be a little more im-
portant preventing bad surfaces than prioritize good ones. All
this proves the relevance of surface conditions as a aspect of
comfort for a suitable navigation of cyclists.

Towards more comfort sensitive navigation applications for
cyclists, an automatized sensing and evaluation process of those
∗ Corresponding author

features is needed. Such an process provides an objective eval-
uation and is less time-consuming, since no considerations have
to be made through subjective assessment. This work focuses
on the surface roughness, which certainly affects the cycling
comfort. When evaluating the surface both, the covering type
(e.g. asphalt, pavement, cobblestone), but more important its
condition, has to be considered. It would be somehow pos-
sible collecting road classes and covering types from existing
administrative (official) sources, but when it comes to their con-
dition, an automated measurement is superior. Another advant-
age compared to subjective evaluations is the possible continual
scale gathered from recorded measurement data.

To represent a road’s roughness indices like the Dynamic Com-
fort Index (DCI) (Bı́l et al., 2015) and the International Rough-
ness Index (IRI) (Zang et al., 2018) have already been de-
veloped. They condense a series of high frequent and dynamic
acceleration measurements into a single representative value.
Thus they directly include a simple scoring of the surface’s
comfort. In the mentioned literature the indices have been ap-
plied on data, collected by experimental and specialized sensors
mounted on a single bike or the latter on cars.

However, the indices have not been applied to the most omni-
present multi-sensor platform in our daily lives: smartphones.
Typically, smartphones include a three-axis accelerometer mak-
ing it possible to sense small movements as well as hard shocks.
Furthermore build-in GNSS receivers enable nearly continu-
ous outdoor localization on street level. According to (Zang
et al., 2018), smartphones have proved to be good measure-
ment devices, as they have a high correlation with the data from
high-quality instruments. Measuring the road surface rough-
ness with smartphones in a Volunteered Geographic Informa-
tion fashion, has several important advantages to the previous
measurement concepts. The approach of collaboration to col-
lect data of the roads surface quality makes it possible for many
different people to participate, leading to a possible large and
diverse dataset. On this dataset, in contrast to single measure-
ment routes, detailed statistical analysis like outlier detection
and classification can be performed, making it possible to de-
termine the road surface roughness more realistic and accurate.
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In this paper an approach and its complete process chain to
determine and evaluate the roughness of bike paths is presen-
ted. It is based on a crowd-sourced mobile sensing approach
for data collection, in which the cyclists run the own developed
app ”RideVibes” on their smartphones. Additionally, first ana-
lyses regarding the measured data quality are performed.

2. APPROACH

This paper’s approach can be summarized to the process chain
of data acquisition by the developed ”RideVibes” Android ap-
plication, matching the trajectories onto a routable path network
in a preprocessing step, to afterwards derive roughness indices
for the visited segments, which are finally integrated into a cus-
tom cyclist routing.

2.1 Data Acquisition

In a first step a data logging application for Android smart-
phones, called ”RideVibes”, has been developed. By this all
necessary sensor data can be acquire in a scalable and user-
friendly way. It allows participants just using their smartphone
and a bike with a holder to acquire data on their (daily) trips.
Fixing the smartphone to the bike (see Figure 1) minimizes ef-
fects from the user and maximizes forces by the surface via the
bike.

Figure 1. Measurement setup: smartphone with a solid holder
attached to a bicycle’s handlebar.

The application records the position (via GNSS-services) in-
cluding the smartphone’s speed by 1 Hz. Accelerations affect-
ing the smartphone are logged by at least 100 Hz. To exclude
the influence of the phone’s orientation, they are transformed
in that way that the z-axis points to the sky. To this end, a
rotation matrix is calculated with the help of either the mag-
netometer or the gyroscope of the smartphone. For maximum
control of the data, the user must start and stop recording the
sensor data individually for each trip. The data is logged loc-
ally on the phone and can afterwards be uploaded selectively
and pseudonymously to a backend infrastructure including a
database server.

Currently, there are about 1000 trips collected from 10 different
users. In total approximately 5000 km have already been recor-
ded. In Figure 2, all edges that have been visited at least once
are shown in yellow to green (for more visits). It further shows
that a large part of the Hannover center (Germany) is already
covered. Especially in the city centre, data is available in a high
density and very comprehensive.

Figure 2. Overview of the city center of Hannover. The street
segments are colored by the number of visits from yellow

(single) to dark green (about 100). Basemap from Stamen Tiles.

2.2 Data Pre-processing

All data is hold and managed in a PostgreSQL1 database system
extended by PostGIS2 for spatial capabilities. For routing tasks
it is further extended by pgRouting3.

Besides the collected sensor data, a routable graph represent-
ation of the test area’s bicycle way network is required. The
route optimization discussed in section 2.4 works on a cycling
network topology consisting of nodes (representing the road
intersections) and edges (street segments between). The rout-
ing graph is generated for the test region from OpenStreetMap4

(OSM) and processed by the tool osm2pgrouting5. It filters out
the relevant bike paths, transforms them into a routable graph
structure and stores them into the database.

To enable a roughness analysis for each road segment, the col-
lected sensor data needs to be linked to the routing graph. Thus,
the user’s trajectories (sequences of points) have to be mapped
to the graph’s edges, commonly called map-matching. Espe-
cially in such relatively dense and complex graphs as bike net-
works, assigning points naively to their closest edge gives noisy
and erroneous outputs, which influence subsequent analyses
badly. For that reason the more robust method of (Newson,
Krumm, 2009) is applied. In this, instead of assessing each
point individually, a Hidden-Markov-Model is used to find the
most probable sequence of edges. The difference of distances
and angular deviations is compared between the geographic and
graph space to evaluate possible matching candidates.

2.3 Comfort Factor

In general comfort can take into account several factors and
their corresponding effects on the cyclist. Primarily comfort

1 https://www.postgresql.org/
2 https://postgis.net/
3 http://pgrouting.org/
4 https://www.openstreetmap.org
5 https://pgrouting.org/docs/tools/osm2pgrouting.html
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aims to provide a safe and convenient ride for the cyclist by e.g.
score different traffic loads or road widths. The cyclist is ex-
posed to fewer stress situations and is therefore more conveni-
ent. In addition, the comfort can be influenced by the roughness
of the road. A rough road causes the bike to vibrate heavily,
which makes it difficult for the rider to control the bike and he
or she must expend more energy to ride without an accident. In
our approach, we focus only on the roughness of the way’s sur-
face. The safety aspect is not the in the focus of this research.

To represent the strength of this negative effect as numerical
value, the bike’s acceleration in z-direction is measured. This
provides information about the scale of the road’s roughness.

In Figure 3 acceleration plots for three exemplary road sur-
faces are shown. For an edge that represents a bad road, like
one of cobblestones, the acceleration’s amplitude in z-direction
reaches high values, while the measurements on a good road
vary only slightly around zero. This can also be seen in the
standard deviation of those measurements, which is an indic-
ator of how large the deviation is from the mean.

Figure 3. Exemplary acceleration plots for road surface types
cobblestone (red), paved (yellow) and asphalted (green).

Roughness indices are used to convert the obtained raw accel-
eration data into an interpretable and usable value. The latter
is used to determine the edge costs during the routing (section
2.4). Two well-known possibilities to calculate such an index
are the Dynamic Comfort Index (DCI) and the International
Roughness Index (IRI). Both are based on measurement data
obtained with an accelerometer and can therefore be applied to
our raw acceleration data directly.

The IRI was already introduced in 1986 by The World Bank, but
is still used for evaluating road systems. IRI is based on values
measured by a car, that is why the calculation is also known as
quarter car model. It indicates how much a tire (representing a
quarter of a car) is affected by the road profile. It is expressed
as the sum of vertical displacement of all sampling intervals
divided by the travel distance, where αz represents the vertical
acceleration and S the travel distance.

IRI =

∫∫ tstop
tstart

|αz|(dt)2

S
(1)

While the vertical displacement shown in Figure 4 is determ-
ined by the accelerometer, the travel distance is obtained by the
GPS sensor. The double integral of the absolute values of the
z-accelerations corresponds to the displacement in z-direction.
The IRI is commonly given in a unit of millimeter per meter

Figure 4. Graphic representation of the IRI. The red bars
represent the displacement in z-direction.

(mm/m), which can be imagined as displacement in z-direction
per meter driven (Zang et al., 2018). Thus, the higher the values
for the IRI, the rougher the road is.

The second index is the DCI, which was developed in 2015 by
(Bı́l et al., 2015) to provide an assessment of the quality of cycle
paths. The index is calculated from the inverted accelerations:

DCI =

√√√√ 1

n

n∑
i=1

a2zi

−1

, (2)

where n is the number of measurements during a time interval
t. In our experiment we chose t as one second, due to the po-
sition frequency. ai are the measured values of acceleration in
z-direction. Since the square of the accelerations is used, neg-
ative and positive accelerations cannot cancel each other out.

Large values for the accelerations are caused by a high road
roughness. A road out of cobblestone causes many vibrations
(Figure 3). Since the DCI inverts the cumulative accelerations,
bad conditions lead to a DCI value close to zero. Vice versa,
good conditions with less accelerations end up in a higher DCI
value. A well paved road will usually have a value slightly less
than one. Please note that the DCI is not a normalized measure
in every case, since by definition (equation (2)) it can also be
higher than one for very low accelerations values. However, for
most common situations, the DCI usually has a value between
zero and one.

The roughness indices are not only influenced by the surface
roughness of the road, but also by the driven speed, the bike
type, the tire’s pressure, smartphone setting and the cyclist’s
weight as well as posture. Higher speed results in more ener-
getic vibrations and thus stronger accelerations. According to
(Olieman et al., 2012) the relation between speed and roughness
index is approximately proportional. The bicycle type has less
influence on the indices (Werner, 2018). A higher tire pressure
results in increased vibrations, which has a negative effect on
the comfort (Olieman et al., 2012). Obviously the smartphone
setting, where and how it’s placed during driving, can have a
huge influence on the logged sensor data and thus we assume it
to be fixed at the bike’s handle bar to keep it stable.

2.4 Routing

Depending on their custom needs the users should be provided
with different route options. To this end, the user can rate the
importance of various criteria to get a customized route. In this
work we focused on the criteria length, duration and comfort.
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For finding a optimal route in the routing graph between a given
start and end, the Dijkstra algorithm is used (Dijkstra, 1959).
This algorithm finds the route through the graph with the least
summed up costs of visited edges. Thus, to find the shortest
path from A to B, the length cost cl of the edges correspond to
their lengths l.

cl = l (3)

To find the fastest path, the time spent on the edges, which is
derived from the speed value v provided by the GPS measure-
ment, is used as cost cv .

cv =
l

v
(4)

In order to include the comfort in the custom routing, the
lengths of the edges are modified based on their roughness. For
this purpose, we scale the lengths of the edges based on their
estimated roughness factor r, determined by one of the indices
from section 2.3, which have to be normalized into a range of
[0, 1] first. The linear change of the lengths is chosen between
75% and 125% of the original lengths. To calculate a comfort
cost cc the following equation was designed.

cc =

(
5

4
− 1

2
r

)
· l (5)

To meet the the users’ preferences the edge cost components
determined by the speed, the length and the comfort have to
be combined. For this reason and to overcome the problem of
having different units, the comfort and length costs, both ori-
ginally given in meters, are expressed as time needed for a cer-
tain edge by applying the total average speed vavg . To adjust
the different components among each other, weighting factors
are introduced. wl corresponds to the ratio of importance for
the length of the route, wc for the comfort and wv for the fast-
est route. These weights can be adapted by the user on his/her
needs. Therefore, the custom edge cost ccustom is determined
by the weighted sum of the cost components

ccustom = wl ·
cl
vavg

+ wc ·
cc
vavg

+ wv · cv, (6)

where wl + wc + wv = 1.

Moreover, to also consider different typical rider speed categor-
ies, i.e. slow, medium, fast riders, the speed measurements
of the edges are divided into three clusters by applying the
k-means algorithm. Using the speed values of each cluster
a corresponding average speed per cluster vavg,cat is calcu-
lated. Those resulting average speeds represent the different
rider speed categories. They are used to replace the total aver-
age speed vavg in (6) to consider the rider categories.

ccustom = wl ·
cl

vavg,cat
+ wc ·

cc
vavg,cat

+ wv · cv (7)

3. EXPERIMENTS & DISCUSSION

In order to compare the different roughness indices, explained
in section 2.3, a test route was recorded. The test route was
chosen in a way that it includes various road qualities, such
as asphalt, gravel and cobblestone. This allows to investigate
whether the scores of the two roughness indices and the stand-
ard deviation itself are able to represent the different road sur-

faces and how they behave for different data acquisition con-
ditions. The length of the test track is 3.2 km and consists of
90 edges in the routing graph. The map in Figure 5 shows the
distribution of the different surface types along the route.

Figure 5. The test route is used to evaluate the different scores
under different conditions. The colors encode the different

surface types asphalt (green), stone (yellow) and cobblestone
(red). Source of basemap: ESRI

3.1 Comparison of Roughness Indices

Based on Figure 6, in which red numbers represent the worst
comfort in the respective calculation method and green numbers
the best comfort, it can be seen that the three calculation meth-
ods behave similarly for three edges with different road qualit-
ies. The cobblestone road is rated the worst in every method,
the gravel road with medium values and the asphalt road is rated
the best.

Figure 6. Mean scores of the three possible of roughness
representations for different surface types. Red colored numbers

indicate the worst comfort compared to the others, yellow
medium comfort and green colored numbers mean highest

comfort.

The advantage of the IRI seems first that it also takes the driven
distance into account. But taking the position’s uncertainty (and
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thus distance) into account, can also have a negative effect. The
index is not only dependent on one single measurement, but on
two (GPS and acceleration) whereas the DCI is only dependent
on the acceleration measurements. Furthermore, the double in-
tegral in the IRI has a high impact on the error propagation. A
further advantage of the DCI is that it is normalized, which al-
lows a direct usage for the edge’s cost in the routing. Since IRI
and DCI behave similar representing the surface roughness and
because of the advantages mentioned before, the DCI is used as
a comfort factor for the routing.

3.2 Surface Type

Furthermore, we investigated whether the evaluated scores can
reliably represent the different surface types. For this purpose,
we investigate each score individually by identifying trajectory
segments of homogeneous score values and comparing them to
the corresponding actual surface types. The actual surface types
are labelled manually. To find the homogeneous trajectory seg-
ments we cluster the corresponding score values using the k-
means algorithm, where k is equal to the number of different
surface types. After smoothing, to eliminate outliers, we calcu-
late the relative overlap of the segments by comparing the actual
labels to the assigned cluster labels. In this way, we obtain an
average overlap of approximately 82% for all of the scores. The
results and the deviations of this analysis are shown in Figure
7.

Figure 7. Comparison of the derived homogeneous trajectory
segments (colored dots) to the actual surface types (colored

background). Source of basemap: ESRI

There are mainly four major regions that can be identified where
the ground truth labels and measurements do not match. For
regions A, B and C the problem is that those streets are actually
asphalted but in a bad condition and thus identified as stone
ground. The condition itself is not represented in the ground
truth class labels, however, it leads to worse roughness scores,
and thus to a label representing the next worse surface type, i.e.
stone instead of asphalt.

3.3 Bike Setting

Different conditions during data acquisition lead to different
values in the scores of the roughness indices. In our research
we focused on the influence of the bicycle type and tire pressure
on the scores. Therefore, the test route was driven with two city
bikes and two racing bikes twice with different air pressure on
the tires. It was made sure that everyone drove one after the
other with the same speed. Thus, the factor speed has the same
influence on all types of bicycles.

Table 1 shows the average DCI and IRI values for all four bikes
for low and high tire pressure. The average is calculated from
the respective DCI and IRI values of all edges of the test route.
Here it can be seen that racing bikes have higher sensitivity to
the ground and thus worse comfort ratings than city bikes. This
is due to the fact that the used city bikes have better vibration
damping, due to their geometry and balloon like wheels com-
pared to the racing bikes. In addition, the racing bikes generally
have a higher tire pressure which also has an impact on the in-
dices (Olieman et al., 2012).

Table 1. Average DCI and IRI values of the four bikes with
different tire pressures.

Bike Low tire pressure High tire pressure
Type # DCI IRI DCI IRI

Race Bike 1 0.17 9.62 0.14 12.86
Race Bike 2 0.28 6.47 0.27 8.44
City Bike 1 0.30 5.54 0.29 6.01
City Bike 2 0.38 5.26 0.31 6.41

When comparing low and high tire pressures, it can be observed
that low tire pressure results in values that indicate a higher
comfort. This is because a tire that is not fully inflated has (up
to a certain point) a damping effect. Here it is important to note
that the tire pressure is not the same when comparing city and
racing bike. On a city bike, low tire pressure is around 2 bar
and high tire pressure around 3 bar. On a racing bike, however,
low tire pressure is 6 bar and high tire pressure is 8 bar.

Figure 8. Comparison between a city bike and a racing bike
regarding the DCI. On the x-axis the ridden edges of the test

route are sorted by the visit time.

Figure 8 shows the comparison between a city bike and a racing
bike with higher tire pressure over the entire course of the test
route. The city bikes consistently show higher DCI values, i.e.
higher comfort (which supports the previous statement). Nev-
ertheless, the calculated values also behave similar. As written
in section 2.3, the bike type shouldn’t have a big influence on
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Figure 10. Comparison between two different air pressures on
the bicycle wheels. On the x-axis the ridden edges of the test

route are sorted by the visit time.

the DCI, so the difference between the city and the racing bike
probably occur because of the difference in the tire pressure
which again depends on the type of tire (racing bikes usually
have tires that require a higher pressure). Figure 10 shows the
comparison between a city bike with low inflated and more in-
flated tires over the entire course of the test track. This result
demonstrates that it is essential to make sure that a less inflated
tire is not confused with more comfort. Because it is far more
strenuous to ride a bicycle that does not have sufficient tire pres-
sure.

4. CONCLUSION AND OUTLOOK

In this paper a smartphone-based mobile sensing and evaluation
approach for bike path’s roughness is presented. The conducted
experiments on real data, collected on a test route, show that the
vibrations are affected by different factors like the surface type
and condition, the bike type and the tire pressure. They further
prove that common smartphone sensors can be used to estim-

ate the riding comfort in this different situations. The evaluated 
indices IRI and DCI are able to reasonably represent the situ-
ation on the street segments. Because of the advantages of the 
DCI over the IRI, it is used to calculate the required costs for 
the routing offered as a service on a website. Besides the typ-
ical shortest and fastest route the routing service also provides 
a custom route considering the users preferences.

Under https://webmap.ikg.uni-hannover.de/ridevibesweb/ a 
fully working demo can be found. There, the routing 
service can already be used for the city of Hannover, 
Germany. In Figure 9, this web-application is shown. On 
the website, the user is offered various input options. So, 
besides the inputs for the origin and destination, different 
sliders are implemented to enable custom weighting of 
the route criteria costs. Furthermore, the rider category 
can be chosen (slow, medium and fast). The bike type is 
not taken into account in the current version. The results for 
the different routes can be easily compared on the integrated 
web map. In addition to that, some route statistics are shown.

However, the experiments and the discussion of the results also 
show that there are outstanding issues, which have to be ad-
dressed in following studies. First tests using the web map as 
a navigator for cyclists deliver realistic results that match our 
experience. Due to the insufficient data on some roads, the re-
dundancy of visits is still not high enough on most minor streets 
(see Figure 2). Therefore, outliers tend to have too much influ-
ence. In this case, an outlier test should be performed. Ad-
ditionally, clustering algorithms, like DBSCAN (Ester et al., 
1996), can be used to identify outliers beforehand. Neverthe-
less, an outlier search can only be done if enough data with a 
wide variation of users and respectively bikes is available.

Further, since every driver usually drives his common routes 
(e.g. the way to work), there exists edges in the road network 
measured only by a small group of people or even a single user. 
Therefore, the velocity data will be (slightly) biased towards 
the dominant user (group) for this edges.

This affects the ride type clustering if the edge is not visited 
by users belonging to different categories. Acquiring more data

Figure 9. The routing service is offered on the website https://webmap.ikg.uni-hannover.de/ridevibesweb/. Source of basemap: ESRI
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with a wider variation of users will result in better fitted clusters
for each routing calculation. In further experiments the influ-
ence of riders speed on the comfort indices should be investig-
ated systematically. With the use of GPS and accelerometers
present in most mobile devices, we have an effective and easy
way to acquire data. Furthermore, the influences of different
bikes and tire pressures as well as rider weights have to be con-
sidered when calculating comfort costs.

Moreover, the usability of additional features can be analyzed to
extend the routing. For instance, the collected data also includes
the accelerations in x- and y- direction. This data can be used
to detect sudden maneuvers, e.g. in dangerous situations. This
information can be used to derive a safety factor which can be
included in the routing.
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