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ABSTRACT: 

In the past 30 years, Kalman filter is a classical method to solve the problem of simultaneous localization and mapping (SLAM) of 

mobile robots. Extended Kalman filter (EKF) and unscented Kalman filter (UKF) are derived from Kalman filter. Extended Kalman 

filter (EKF) overcomes the nonlinear problem that Kalman filter cannot solve. However, when it is strongly nonlinear, EKF violates 

the assumption of local linearity, and EKF algorithm may make the filter diverge. Secondly, because the Jacobian matrix is needed in 

the online processing of EKF, its tedious calculation process makes the implementation of this method relatively difficult. Unscented 

Kalman filter (UKF) uses nonlinear model directly, avoids operation of Jacobian matrix of complex nonlinear function, and ensures 

the general adaptability of nonlinear system. In this paper, based on the square root unscented Kalman filter, sigma points are selected 

according to the square-root decomposition of prior covariance, and then weighted mean and covariance are calculated. The quaternion 

is used to represent the attitude, and the quaternion vector is converted to the rotation space for matrix operation. Comparing the robot 

poses estimated based on the square root traceless Kalman filter (QSR-UKF), square root traceless Kalman filter (SR-UKF), and 

extended Kalman filter (EKF), the simulation results show the QSR-UKF proposed in this paper is effective. 

1. INTRODUCTION

Mobile robots can be divided into three types: remote control, 

semi-autonomous and autonomous. At present, the hotspot of 

mobile robot research is focusing on autonomously tasks solution 

assigned to it by human beings. The difficulty of autonomous 

mobile robot is how to make the robot autonomously fulfil 

different needs in a complex environment. Autonomous mobile 

robot refers to a robot that has a high degree of self-planning, 

self-organization, and self-adaptability, and is suitable for 

working in a complex unstructured environment. It is a 

comprehensive system that combines perception, thinking, and 

decision-making [Wang, 2003]. In the late 1960s, Nilsson and 

others developed the first autonomous mobile robot named 

Shakey at Stanford College for the purpose of studying 

autonomous reasoning, planning, and control of artificial 

intelligence technology in complex environments [Nilsson, 

1996]. The Shakey robot has a perception system such as an 

electronic camera and a rangefinder. It applies artificial 

intelligence technology to the robot system so that it can perform 

independent reasoning, motion planning and real-time control in 

an unstructured environment. Shakey robots have simple 

perception, thinking and decision-making capabilities, for 

example, they can discover and grab wooden blocks according to 

human instructions. In the 21st century, with the rapid 

development of microelectronics technology, artificial 

intelligence technology, new materials technology, and computer 

technology, more researches focus their eyes on mobile robots. 

The French LAAS laboratory has launched the HILARE mobile 

robot [Giralt, Sobek, 1979]. HILARE is equipped with a TV 

camera and laser rangefinder and other sensing systems, which 

can realize the path planning and navigation functions of the 

global road marking system. In the 1980s, the development of 

mobile robots extended from the beginning of industrial robots 
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to service-oriented autonomous mobile robots. The applications 

of mobile robots have almost involved in our country such as 

industrial production, outer space and seabed exploration. There 

are huge application needs in lifestyle such as medical 

rehabilitation, housekeeping and entertainment as well. 

Wheelesley of Massachusetts Institute of Technology (MIT), 

Vamors-P and Caravelle systems of Germany, Sony AIBO 

entertainment robot of Japan, CMU-Rover of Carnegie Mellon 

University (CMU), Autonomous Guided of Australian Sharp 

University (Autonomous Guided Vehicles, AGV) and French 

Cybercar represent the higher level of mobile robot research 

direction [Durrant-Whyte, 1996]. 

Only when the mobile robot accurately grasps its own position 

and the position of obstacles in its environment can it safely 

achieve the goal-oriented movement and complete the 

established tasks. Therefore, studying the navigation technology 

of mobile robots is a research topic with practical significance. 

Leonard, Durrant-Whyte [Leonard, Durrant-Whyte, 1991] 

attributed the navigation problem to the following two questions: 

"Where am I?" And "How is the surrounding environment?". 

These two problems are manifested in mobile robot positioning 

and mobile robot map creation in mobile robot technology. When 

the robot cannot obtain a map of the working environment of the 

robot, and the robot itself does not carry sensors such as GPS to 

obtain positioning information, the mobile robot needs to sense 

its surrounding environment information through the sensors 

carried by the robot, incrementally establish an environmental 

map, and use the established map to update and estimate your 

position in the environment, this step is Simultaneous 

Localization and Mapping (SLAM). 

The map construction was proposed in the 1986 IEEE Robotics 

and Automation Conference (ICPA) conference. In the next few 
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years, the construction and positioning of robot maps have been 

widely discussed and made breakthrough progress. Both 

Durrant-Whyte [Durrant-Whyte, 1987] and Smith, Cheesman 

[Smith, Cheesman, 1987] proposed a consistent and probabilistic 

map construction method and introduced the theory of 

probability estimation. In 1995, the term "Simultaneous 

Localization and Mapping" was first used by Durrant-Whyte et 

al. [Durrant-Whyte, Rye, 1996] in a review of mobile robot 

research, and gave the basic framework of the SLAM problem 

and the results of convergence verification. 

The research of mobile robot SLAM mainly includes data 

association [Kaess, Dellaert, 2009], environmental feature 

extraction and representation [Movafaghpour, Masehian, 2012], 

target detection [Bakar, Saad, 2012], closed loop [Williams, 

Cummins, 2009] and so on. There are many uncertain factors in 

the SLAM problem of mobile robots, including the uncertainty 

of the environment, the influence of sensor noise, and the 

uncertainty of the motion model and the observation model. 

Generally, the probability method is used to describe the 

uncertainty. The probability-based SLAM algorithm uses 

Bayesian filtering theory as the basic principle. The main 

algorithms include: SLAM algorithm based on Extended Kalman 

filter (EKF), SLAM algorithm based on Particle filter (PF), 

SLAM algorithm based on Extended Information filtering (EIF), 

and SLAM algorithm based on Expectation Maximization (EM). 

Kalman filtering (KF) is a data processing algorithm in mobile 

robots SLAM. The algorithm expresses the pose of mobile robots 

and the feature positions in the map with state vectors. It can 

estimate the posterior probabilities of all elements in real time, 

the estimation and correction can be performed cyclically. 

Kalman filter assumes that the system is a linear system, and the 

state and observation noise conform to the Gaussian distribution. 

However, in practical applications, the error is relatively large, 

so Extended Kalman filter (EKF) came into being.  Extended 

Kalman filter algorithm was first proposed by Smith [Smith, 

Cheeseman, 1990], which mainly approximates the nonlinear 

system by Taylor expansion of the nonlinear system. Its 

algorithmic process can be summarized as "forecast-update". 

Estimating the pose of the robot at the next moment according to 

the motion model, and calculating the predicted estimate of the 

entire state variable and its variance matrix, and then obtain the 

predicted value of the feature position according to the 

observation model, calculate the difference between the actual 

observation and the predicted observation. Integrated covariance 

of the system and calculates the Kalman filter enhancement, then 

uses it to correct the predicted estimates of the state variables. 

The mobile robot continuously circulates the process above, so 

as to eliminate accumulated errors as much as possible and get 

the most accurate positioning and composition results. In order 

to reduce the number of calculations of EKF SLAM algorithm, 

Jose.E et al. proposed a simple SLAM algorithm based on 

compressed EKF (CEKF) [Jose, Eduardo, 2001]. Paz.L.M et al. 

proposed a Divide and Conquer EKF-SLAM [Paz, Tardos, Jose, 

2008]. In order to reduce the impact of noise on the accuracy of 

EKF, Yingming proposed to treat the noise of the robot system 

as true noise and use the method of increasing the state variable 

dimension to convert the noise model into a Gaussian white noise 

model. The results show that it can improve the positioning 

accuracy [Yingming, Ding, 2010]. 

Because Kalman filter has the disadvantages of large 

linearization error and large amount of calculation, J.K. Uhlmann 

and S.J. Julier proposed an Unscented Kalman filter (UKF) 

[Julier, Uhlmann, 1997] that performs better in nonlinear 

systems. Unscented Transformation (UT) is the basic idea, 

directly using the system's nonlinear model, without the need to 

calculate a complex Jacobian or Hessians matrix, through a 

deterministic sampling strategy, select a set of Sigma points that 

can represent the statistical characteristics of the state variables 

and substitute non-linear function, and using the set of Sigma 

points to approximate the posterior probability density of the 

target state. Compared with EKF, the UKF filtering method can 

get a better estimate and less calculation. But there are two 

shortcomings of UKF SLAM. First, its calculation amount is the 

cubic of the state vector. As the observation road markings 

increase, the calculation amount will increase as well. Second, 

the UKF has an inconsistency in estimating the state. As a result, 

the expanded form of the Sigma point filtering method has also 

been widely used. Li [Li, Ni, 2010] proposed the square root of 

Sigma point Kalman filtering. Square root filter can ensure the 

non-negative qualitative and symmetry of the covariance matrix, 

increase its stability and estimation accuracy, and it has applied 

in the system state and parameter estimation, target tracking and 

other fields. 

Besides the SLAM method based on Kalman filtering, Particle 

filters (PF) are widely used in SLAM system as well. Particle 

filtering is a Sequential Lmportance Sampling (SIS) using 

Bayesian sampling estimation method [Murphy, 2000]. 

Montemerl et al. [Montemerl, Thrun, Koller, 2002] proposed a 

new method called FastSLAM algorithm, it divided the SLAM 

problem into two parts: robot pose estimation problem and 

positioning-based landmark position estimation problem. The 

algorithm uses the motion trajectory of each particle to represent 

the robot's motion path, uses EKF to estimate and update, and 

uses the observation information to calculate the weight of each 

particle to evaluate the quality of each path. However, the particle 

filtering uses a sequential importance sampling method, there 

must be "lack of particle diversity" and "depletion of particles". 

Also, if the number of particles is increased in order to avoid the 

above problems, the calculation time will increase a lot.  

This paper aims to solving the nonlinear optimization problem in 

the process of mobile robot motion. The SLAM algorithm of 

Extended Kalman filtering and Unscented Kalman filtering are 

introduced. Unscented Kalman filtering involves the square root 

operation of higher-order matrices, which increases the 

computational burden. In this paper, a square root filter is added 

on the basis of unscented Kalman filtering. At the same time, 

quaternions have the advantages of low computational 

complexity, high precision, non-singularity and full-attitude 

operation. In this paper, the square-root of the covariance matrix 

is calculated by Cholesky decomposition, and a quaternion 

Square-root Unscented Kalman filtering (QSR-UKF) algorithm 

with better numerical stability is proposed. After the comparison 

of EKF, UKF and QSR-UKF by simulation experiments, results 

show that QSR-UKF algorithm has a better precision.  

2. EKF AND UKF 

2.1 Linearization modelling of mobile robot SLAM 

The problem of mobile robots SLAM is to start moving from an 

unknown starting point in an unknown environment. During the 

process of movement, the surrounding information is sensed 

according to the observation of the sensor, and a map is formed 

in an incremental manner, perception and positioning are 

performed simultaneously. For the SLAM problem, define the 

following state vector at time k: 

𝑥𝑟,𝑘: State vector describing the pose of the robot, 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-381-2020 | © Authors 2020. CC BY 4.0 License.

 
382



𝑢𝑘: The control vector of the robot from time k-1 to time k, 

𝑥𝑓𝑖: Vector describing the feature position in time i, and the true 

position of the feature does not change with time, 

𝑧𝑘: Observation vector of the current position of the robot to the 

feature. 

Then the SLAM problem can be described as the formula (1). 

P(𝑥𝑟,𝑘 | 𝑧1:𝑘, 𝑢1:𝑘)                           (1) 

According to the Bayes theorem and Markov assumption, the 

calculation of the estimated posterior probability density 

distribution P (xk| zk, uk) can be solved by two stages of prediction 

and update: 

Prediction stage: Based on the robot's motion model and current 

position, the state of the robot at the next moment is predicted. 

The prior probability density of the robot system is: 

P(𝑥𝑘 | 𝑧𝑘−1,𝑢𝑘)= 

∫ P(x𝑘| 𝑥𝑘−1, 𝑢𝑘)  P(x𝑘−1| 𝑧𝑘−1, 𝑢𝑘−1)d𝑥𝑘−1            (2) 

Update stage: According to the observation model of the robot, 

the information obtained by the sensor is used to update the state 

estimation of the system. The posterior probability density of the 

system is: 

P(𝑥𝑘 | 𝑧𝑘, 𝑢𝑘)=
P(𝑧𝑘| 𝑧𝑘−1,𝑢𝑘)P(𝑥𝑘| 𝑧𝑘−1,𝑢𝑘)

P(𝑧𝑘| 𝑧𝑘−1,𝑢𝑘)
                   (3) 

P( 𝑧𝑘 | 𝑥𝑘 ) is the observation model. According to Markov 

assumption, when current state is known, the previous 

observation and the current observation are independent of each 

other, so P(𝑧𝑘| 𝑧𝑘−1, 𝑢𝑘) is the normalization constant. 

If motion model and observation model satisfy the linear 

distribution, the Kalman filter algorithm can be used for solving. 

When it is not satisfied, the integral calculation is difficult to 

achieve, and the extended Kalman filter can be used for solving. 

2.2 Extended Kalman filtering 

Extended Kalman filtering is a nonlinear filtering method. Its 

principle is to perform Taylor expansion of the system state 

equation and measurement equation at the prediction point 

�̂�𝑘,𝑘−1  and ignore all nonlinear expansion high-order terms to 

achieve linearization approximation of nonlinear equations. EKF 

needs to calculate the Jacobian matrix for derivation, and use 

Kalman recursion formula for filter recursion calculation 

[Armesto, Tomero, 2004]. 

The model of the nonlinear discrete system is: 

𝑥𝑘=f(𝑥𝑘−1)+ 𝑤𝑘−1                               (4) 

𝑧𝑘=h(𝑥𝑘)+ 𝑣𝑘                                    (5) 

Among them, 𝑤𝑘  and 𝑣𝑘  are subject to Gaussian white noise 

respectively. 

Taylor's expansion of the state transfer function f(𝑥𝑘−1)  at �̂�𝑘−1 

f(𝑥𝑘−1)= 

f(�̂�𝑘−1)+
∂f

∂x
|𝑥=𝑥𝑘−1

(𝑥𝑘−1 − �̂�𝑘−1)+𝑜2(𝑥𝑘−1 − �̂�𝑘−1)       (6) 

Letϕk|k−1=
∂f

∂x
|x=x̂k−1

, then the state equation (4) can be written 

as: 

𝑥𝑘= f(�̂�𝑘−1)+ 𝜙𝑘|𝑘−1(𝑥𝑘−1 − �̂�𝑘−1)+𝑜2(𝑥𝑘−1 − �̂�𝑘−1)+𝑤𝑘  (7) 

Ignoring the influence of higher order terms, equation (7) can be 

abbreviated as 

𝑥𝑘=f(�̂�𝑘−1)+ 𝜙𝑘|𝑘−1(𝑥𝑘−1 − �̂�𝑘−1)+𝑤𝑘             (8) 

Using state transition function, the one-step prediction value of 

the state is: 

�̂�𝑘|𝑘−1= f(�̂�𝑘−1)                                    (9) 

Therefore, the state vector one-step prediction error variance 

matrix can be expressed as： 

𝑃𝑘|𝑘−1 = 𝐸[(𝑥𝑘 − �̂�𝑘|𝑘−1)(𝑥𝑘 − �̂�𝑘|𝑘−1)𝑇] 

= ϕk|k−1𝑃𝑘|𝑘−1𝑄𝑘|𝑘−1
𝑇+𝑄𝑘                         (10) 

Similarly, expand the measurement function h(𝑥𝑘) at �̂�𝑘−1 into 

Taylor expansion： 

h(𝑥𝑘)= 

h(�̂�𝑘|𝑘−1)+
∂h

∂x
|𝑥=𝑥𝑘−1

(𝑥𝑘−1 − �̂�𝑘|𝑘−1)+𝑜2(𝑥𝑘−1 − �̂�𝑘|𝑘−1)   (11) 

The one-step prediction value of the measurement vector 

obtained from the measurement function is: 

𝑧𝑘|𝑘−1= h(�̂�𝑘|𝑘−1)                            (12) 

Therefore, prediction error variance matrix of the measurement 

vector is: 

𝑃𝑘=E[(𝑧𝑘 − 𝑧𝑘|𝑘−1)(𝑧𝑘 − 𝑧𝑘|𝑘−1)𝑇]= 𝑃𝑘|𝑘−1𝐻𝑘
𝑇     (13) 

State enhancement matrix is: 

𝐾𝑘=𝑃𝑥𝑧,𝑘𝑃𝑥𝑧,𝑘
−1=𝑃𝑘|𝑘−1𝐻𝑘

𝑇(𝐻𝑘𝑃𝑘|𝑘−1𝐻𝑘
𝑇 + 𝑅𝑘)−1  (14) 

Therefore, estimated state vector at time k is: 

�̂�𝑘 = �̂�𝑘|𝑘−1 + 𝐾𝑘(𝑧𝑘 − 𝑧𝑘|𝑘−1)                     (15) 

The state error covariance matrix is updated to: 

𝑃𝑘 = 𝐸[(𝑥𝑘 − �̂�𝑘)(𝑥𝑘 − �̂�𝑘)𝑇] 
=(I-𝐾𝑘𝐻𝑘) 𝑃𝑘|𝑘−1(I − 𝐾𝑘𝐻𝑘)𝑇+𝐾𝑘𝑅𝑘𝐾𝑘

𝑇              (16) 

 Summarizing the above reasoning process, the basic flow of the 

EKF filtering algorithm is： 

1. Initialization: Set the state initial value x_0 and error 

variance matrix P_0 

2. Time update： 

ϕk|k−1=
∂f

∂x
|x=x̂k−1

                               (17) 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-381-2020 | © Authors 2020. CC BY 4.0 License.

 
383



�̂�𝑘|𝑘−1= f(�̂�𝑘−1)                                  (18) 

P𝑃𝑘|𝑘−1= ϕk|k−1𝑃𝑘|𝑘−1𝑄𝑘|𝑘−1
𝑇+𝑄𝑘                 (19) 

3. Measurement update: 

Hk=
∂h

∂x
|x=x̂k−1

                                 (20) 

𝑧𝑘|𝑘−1= h(�̂�𝑘|𝑘−1)                             (21) 

4. States Enhancement: 

𝐾𝑘=𝑃𝑘|𝑘−1𝐻𝑘
𝑇(𝐻𝑘𝑃𝑘|𝑘−1𝐻𝑘

𝑇 + 𝑅𝑘)−1                (22) 

                            �̂�𝑘 = �̂�𝑘|𝑘−1 + 𝐾𝑘(𝑧𝑘 − 𝑧𝑘|𝑘−1)                     (23) 

𝑃𝑘=(I-𝐾𝑘𝐻𝑘) 𝑃𝑘|𝑘−1(I − 𝐾𝑘𝐻𝑘)𝑇+𝐾𝑘𝑅𝑘𝐾𝑘
𝑇            (24) 

EKF is the application of Kalman filtering in nonlinear systems. 

The algorithm only achieves the first-order estimation accuracy 

for nonlinear systems, ignoring the influence of Taylor higher-

order expansion terms. When encountering a strong nonlinear 

system, the neglected higher-order truncation error will have 

large impact on the filter accuracy, and even cause the filter to 

not converge. Moreover, the calculation of the Jacobian matrix is 

a difficult problem and extremely error-prone. In the calculation 

process of Jacobian matrix, modern number operations are 

frequently generated, which is easy to produce errors. On this 

basis, unscented Kalman filtering is proposed. 

2.3 Unscented Kalman filter 

Considering that Extended Kalman filtering is prone to produce 

larger linearization errors in stronger nonlinear systems, and 

more cumbersome Jacobian matrix must be calculated, in recent 

years, an Unscented Kalman filtering (UKF) algorithm based on 

UT transformation has been proposed. That algorithm first 

selects a set of deterministic sampling points based on prior mean 

and variance of the system state, called Sigma points. To make 

sure statistical characteristics of this group of sampling points are 

consistent with the prior statistical characteristics of state. Linear 

transfer function obtains a new set of sampling points, and finally 

uses weighted statistical linear regression (WSLR) technique to 

obtain the statistical characteristics of this set of sample points as 

the posterior statistical distribution of the nonlinear function. 

Unscented Kalman filtering (UKF) approximates the probability 

density distribution of non-linear functions instead of 

approximating non-linear functions. There is no need to know 

explicit expression of non-linear functions, and it is possible to 

deal with non-differentiable nonlinear functions without 

calculating Jacobian matrix. 

The number of particle points (generally called Sigma points) 

sampled by UKF is very small, and the specific number depends 

on the sampling strategy selected. The most commonly used is 

2n + 1 Sigma point symmetric sampling. The calculation amount 

of UKF is basically equivalent to that of Extended Kalman 

filtering algorithm, but its performance is better than EKF, and it 

uses deterministic sampling to avoid the problem of particle point 

degradation of Particle filtering [PF]. 

The basic idea of UT transformation is: select a set of point sets 

(Sigma point sets) on the premise of ensuring the sampling mean 

x and covariance P, and perform nonlinear transformation on 

these Sigma point sets to obtain the mean and covariance of the 

transformed points, applied to each Sigma point of sampling, and 

then obtain a set of points after nonlinear conversion. This 

deterministic sampling method extracts state-specific statistical 

characteristic information, and can obtain more observation 

hypotheses than the EKF algorithm. Therefore, the estimation of 

the state statistical characteristics is more accurate than the EKF 

algorithm.  

The selection and scale of Sigma points can be selected according 

to the following formula： 

λ=α2(n+χ)-n                                   (25) 

Sigma point sequence is： 

χ0=�̂� 

χ𝑖=�̂�+(√(n + χ)P)𝑖 i=1,…,n                       (26) 

χ𝑖=�̂�+(√(n + χ)P)𝑖−𝑛 i=n+1,…,2n 

The weights of covariance and the mean of the Sigma point 

sequence are calculated as: 

𝑊0
(𝑚)

=λ/(n+λ) 

𝑊0
(𝑐)

=λ/(n+λ)+(1-α2 + 𝛽)                     (27) 

𝑊𝑖
(𝑚)

= 𝑊𝑖
(𝑐)

= 1/[2(n+λ)] i=1, …,2n 

Among them, α is scale parameter, it determines the spread of 

Sigma points, n is dimension of state vector, β≥0, x obey 

Gaussian distribution, β is optimal when 2 is taken. The square 

root of matrix can be obtained by Cholesky decomposition. 

Based on the non-discrete linear system, applying the UT 

transform to the nonlinear system, the unscented Kalman filter 

algorithm can be obtained： 
1. Initialization: 

�̂�0 = 𝐸[𝑥0]                                      (28) 

𝑃0 = 𝐸[(𝑥0 − �̂�0)(𝑥0 − �̂�0)𝑇]                        (29) 

2. Time update: 

Selection of Sigma point and weight in time update: 

χ0,𝑘−1=�̂�𝑘−1                                    (30) 

χ𝑘−1(𝑖)=�̂�𝑘−1+(√(n + λ)𝑃𝑘−1)𝑖 i=1,…,n        (31) 

χ𝑘−1(𝑖)=�̂�𝑘−1-(√(n + χ)𝑃𝑘−1)𝑖 i=n+1,…,2n          (32) 

Calculating one-step prediction of the system state at time k, 

mean and covariance by non-linear measurement function 

χ𝑘|𝑘−1(𝑖)=f(χ𝑘−1(𝑖)), 

�̂�𝑘|𝑘−1=∑ 𝜔𝑖
𝑚2𝑛

𝑖=0 �̂�𝑘|𝑘−1                          (33) 

𝑃𝑘|𝑘−1 = ∑ 𝜔𝑖
𝑚

2𝑛

𝑖=0

[(�̂�𝑘|𝑘−1 − �̂�𝑘|𝑘−1(𝑖)) (�̂�𝑘|𝑘−1�̂�𝑘|𝑘−1(𝑖))
𝑇

] 
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+ 𝑄𝑘−1                                           (34) 

3. Measurement update: 

Selection of Sigma point and weight in measurement update: 

ξ0,𝑘|𝑘−1=�̂�𝑘|𝑘−1 i=0                             (35) 

ξ𝑘|𝑘−1(i)=�̂�𝑘|𝑘−1+(√(n + λ)𝑃𝑘|𝑘−1)𝑖 i=1,…,n    (36) 

ξ𝑘|𝑘−1(i)=�̂�𝑘|𝑘−1-(√(n + λ)𝑃𝑘|𝑘−1)𝑖 i=n+1,…,2n  (37) 

Calculating one-step prediction of the system state at time k, 

mean and variance and cross-covariance by non-linear 

measurement function Z𝑘|𝑘−1(i)=h(ξ𝑘|𝑘−1(i))： 

�̂�𝑘|𝑘−1=∑ 𝜔𝑖
𝑚2𝑛

𝑖=0 �̂�𝑘|𝑘−1(i)                          (38) 

𝑃𝑧𝑧,𝑘= 

∑ 𝜔𝑖
𝑚2𝑛

𝑖=0 [(�̂�𝑘|𝑘−1 − 𝑧𝑘|𝑘−1(i))(�̂�𝑘|𝑘−1 − 𝑍𝑘|𝑘−1(i))𝑇]+𝑅𝑘  (39)  

𝑃𝑥𝑧,𝑘= 

∑ 𝜔𝑖
𝑚2𝑛

𝑖=0 [(�̂�𝑘|𝑘−1 − 𝑥𝑘|𝑘−1(i))(�̂�𝑘|𝑘−1 − 𝑍𝑘|𝑘−1(i))𝑇]+𝑅𝑘  (40) 

4. States Enhancement: 

State enhancement matrix, estimated value and state error 

variance value are： 

𝐾𝑘=𝑃𝑥𝑧,𝑘𝑃𝑧𝑧,𝑘
−1                                     (41) 

 �̂�𝑘 = �̂�𝑘|𝑘−1 + 𝐾𝑘(𝑧𝑘 − 𝑧𝑘|𝑘−1)                            (42) 

𝑃𝑘=𝑃𝑘|𝑘−1 − 𝐾𝑘𝑃𝑧𝑧𝐾𝑘
𝑇                            (43) 

Compared with EKF, the estimation accuracy of UKF reaches the 

second order or above, and have a better filtering performance 

from the formula above. In addition, the UKF algorithm also 

avoids the calculation problem of the EKF algorithm value 

nonlinear function Jacobin matrix, and expands the application 

range of the UKF algorithm in some extent. 

3. SQUARE-ROOT-UKF 

Sigma point sampling involves the square root operation of the 

error variance matrix P, and the square root operation of the 

higher order matrix will undoubtedly greatly increase the 

calculation burden of the system and affect the real-time 

performance of the system. AT the same time, numerical 

rounding error during calculation may also destroy the non-

negative qualitative and symmetry of the error covariance matrix, 

and reducing the stability of the filter. Therefore, the UKF 

algorithm based on square-root was proposed by R. Merwer and 

E. Wan [Merwer, Wan, 2001]. This algorithm uses singular value 

decomposition and Cholesky decomposition to implement the 

square root operation of the error variance matrix, so that the 

numerical operation characteristics of the UKF algorithm can be 

significantly improved. 

3.1 Initialization 

�̂�0 = 𝐸[𝑥0]                                        (44) 

𝑆0 = 𝑐ℎ𝑜𝑙{𝐸[(𝑥0 − �̂�0)(𝑥0 − �̂�0)𝑇]}                  (45) 

Where chol {} represents the Cholesky decomposition of the 

matrix. 

3.2 Time update: 

Selection of Sigma point and weight in time update: 

χ0,𝑘−1=�̂�𝑘−1 i=0                                        (46) 

χ𝑘−1(𝑖)=�̂�𝑘−1+(√(n + λ)𝑆𝑘−1)𝑖  i=1,…,n           (47) 

χ𝑘−1(𝑖)=�̂�𝑘−1-(√(n + χ)𝑆𝑘−1)𝑖  i=n+1,…,2n          (48) 

Calculating one-step prediction of the system state at time k, 

mean and cross-covariance by non-linear measurement function  
Z𝑘|𝑘−1(i)=h(ξ𝑘|𝑘−1(i))， 

�̂�𝑘|𝑘−1=∑ 𝜔𝑖
𝑚2𝑛

𝑖=0 𝑥𝑘|𝑘−1(i)                         (49) 

𝑆𝑘|𝑘−1=qr{√𝑤𝑖
𝑐(𝑥𝑘|𝑘−1(i)- 𝑥𝑘|𝑘−1)√𝑄𝑘}             (50) 

𝑆𝑘|𝑘−1=cholupdate{𝑆𝑘|𝑘−1,(𝑥𝑘|𝑘−1(0) − �̂�𝑘|𝑘−1),𝜔0
𝑐}(51) 

Among them, qr {…} represents the singular value 

decomposition of the matrix, cholupdate {…} represents the 

update of the matrix. 

3.3 Measurement update: 

Selection of Sigma point and weight in measurement update: 

ξ0,𝑘|𝑘−1=�̂�𝑘|𝑘−1 i=0                               (52) 

ξ𝑘|𝑘−1(i)=�̂�𝑘|𝑘−1+(√(n + λ)𝑆𝑘|𝑘−1)𝑖 i=1,…,n      (53) 

ξ𝑘|𝑘−1(i)=�̂�𝑘|𝑘−1-(√(n + λ)𝑆𝑘|𝑘−1)𝑖  i=n+1,…,2n   (54) 

Calculating one-step prediction of the system state at time k, 

mean and cross-covariance by non-linear measurement 

function Z𝑘|𝑘−1(i)=h(ξ𝑘|𝑘−1(i)), 

�̂�𝑘|𝑘−1=∑ 𝜔𝑖
𝑚2𝑛

𝑖=0 �̂�𝑘|𝑘−1(i)                    (55) 

𝑆𝑧𝑧,𝑘= qr{√𝑤𝑖
𝑐(𝑧𝑘|𝑘−1(i)- �̂�𝑘|𝑘−1)√𝑅𝑘}          (56) 

𝑆𝑧𝑧,𝑘 = cholupdate{𝑆𝑧𝑧,𝑘 ,(𝑧𝑘|𝑘−1(0) − �̂�𝑘|𝑘−1),𝜔0
𝑐}   (57) 

𝑃𝑥𝑧,𝑘= 

∑ 𝜔𝑖
𝑚2𝑛

𝑖=0 [(𝑥𝑘|𝑘−1(𝑖) − �̂�𝑘|𝑘−1)(𝑍𝑘|𝑘−1(i) − �̂�𝑘|𝑘−1)𝑇(58) 

3.4 States Enhancement: 

State enhancement matrix, estimated value and state error 

variance value are: 

𝐾𝑘=（𝑃𝑥𝑧,𝑘/𝑆𝑧𝑧,𝑘
𝑇 ）𝑆𝑧𝑧,𝑘

−1           (59) 

�̂�𝑘|𝑘 = �̂�𝑘|𝑘−1 + 𝐾𝑘(𝑧𝑘 − �̂�𝑘|𝑘−1)                  (60) 
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𝑈𝑘 = 𝐾𝑘𝑆𝑧𝑧,𝑘                                      (61) 

𝑆𝑘=chol(𝑆𝑧𝑧,𝑘
−1 , 𝑈𝑘 , −1)                          (62) 

4. QUATERNION SQUARE-ROOT-UKF 

To solve pose estimation of mobile robots, traditional nonlinear 

optimization method usually faces the problem of large amount 

of calculation. Quaternion has the advantages of small 

calculation amount, high precision, non-singularity and can work 

in full attitude. Quaternion is currently the most commonly used 

attitude representation parameter [Pittelkau, 2003]. In the field of 

attitude determination, it is of great practical significance to study 

quaternion nonlinear filtering. W.R. Hamilton introduced the 

concept of quaternion as early as the 19th century, but it has not 

been applied due to calculation conditions. Since the 1960s, with 

the widespread application of high-performance computers and 

the rapid development of aircraft posture research, quaternions 

have been applied. Compared with Euler angle, quaternion is not 

only simple to calculate, but also avoids singularity problem of 

Euler angle, thus achieving the ability of mobile robot to work in 

full posture. Quaternions are widely used in Extended Kalman 

filtering. Vathsal et al. [Vathsal. 1987] proposed a second-order 

EKF algorithm based on quaternions, calculated second-order 

accuracy of Taylor expansion, and improved the accuracy of pose 

estimation, but the amount of calculation is also increased. 

Crassidis et al. proposed an unscented Kalman filter algorithm 

for aircraft attitude determination based on conversion between 

modified Rodriguez parameters and attitude quaternion 

[Crassidis, Markley, 2003]. The algorithm effectively improves 

the accuracy of pose estimation through the mutual conversion 

between parameters, but this mutual conversion undoubtedly 

increases the complexity of the algorithm. This paper presents a 

Quaternion Square Root UKF (Quaternion Square-root UKF, Q-

UKF) algorithm. The algorithm uses the Lagrange cost function, 

transforming the quaternion mean problem into extreme value 

problem of cost function. Multiplicative error quaternion is used 

to represent the distance between quaternion point and mean 

point, which avoids large calculation burden of singular value 

decomposition and the tedious calculation steps of the 

eigenvector method. In addition, the algorithm only takes 

quaternion vector part as pose variable, while scalar part is 

calculated by the unit quaternion constraint. This solves the 

problem of disturbing the selection of quaternion Sigma points, 

and also reduces the dimension of filtering state, reducing the 

amount of filtering operations. At the same time, combining 

square root unscented Kalman filter and quaternion introduced 

earlier in the article greatly increases the stability of the operation 

value. Next, we will introduce the quaternion square root 

unscented Kalman filter algorithm. 

Selected state variable x=[𝜌𝑇 , 𝛽𝑇]𝑇，Where ρ is the vector part 

of the pose quaternion and β is the gyro drift 

4.1 Initialization: 

�̂�0 = 𝐸[𝑥0]                                    (63) 

𝑆0 = 𝑐ℎ𝑜𝑙{𝐸[(𝑥0 − �̂�0)(𝑥0 − �̂�0)𝑇]}              (64) 

4.2 Time update 

The Sigma point avoids the square root operation of the state 

error variance matrix: 

δχ𝑘−1(𝑖)= (√(n + λ)𝑆𝑘−1)𝑖                     (65) 

The state Sigma point is divided into a gesture part and a gyro 

drift part: 

δχ𝑘−1(𝑖)=[
δχ𝑘−1

𝜌
(𝑖)

δχ𝑘−1
𝛽

(𝑖)
]                             (66) 

Considering passing by the quaternion in the filter update 

process, so here the Sigma point is selected as the quaternion 

point: 

χ𝑘−1(0)= �̂�𝑘−1                                 (67) 

χ𝑘−1(𝑖)= δ�̂�𝑘−1(i)⊗ �̂�𝑘−1(i)                     (68) 

χ𝑘−1(𝑖)= δ�̂�𝑘−1
−1 (i) ⊗ �̂�𝑘−1(i)                    (69) 

Gyro drift Sigma point is selected as: 

χ𝑘−1
𝛽

(0)= �̂�𝑘−1
𝛽

(i)                               (70) 

χ𝑘−1
𝛽

(i)= �̂�𝑘−1
𝛽

(i)+δχ𝑘−1
𝛽

(i) i=1,…,n                  (71) 

χ𝑘−1
𝛽

(i)= �̂�𝑘−1
𝛽 (i) − δχ𝑘−1

𝛽
(i) i=n+1,…,2n               (72) 

Time update is also divided into quaternion part and non-

quaternion part. The formula for calculating the quaternion 

partial time is： 

χ𝑘−1
𝑞

(i)=Ω𝑑(�̂�𝑘−1) χ𝑘−1
𝑞

(i)                          (73) 

Since the gyro drift is a linear transfer process, its time is updated 

to: 

χ𝑘−1
𝛽

(i)= 𝑥𝑘−1
𝛽 (i) + δχ𝑘−1

𝛽
(i)·Δt                     (74) 

Like the mean calculation, the quaternion variance calculation 

also needs to be treated as a rotation vector. Here, the 

multiplicative error quaternion δχ𝑘|𝑘−1
𝑞 (𝑖) is used to represent 

the state prediction value χ𝑘|𝑘−1
𝑞

(𝑖)  to the predicted mean  

�̂�𝑘|𝑘−1. Then the state prediction error variance matrix S𝑘|𝑘−1
𝜌

 of 

the quaternion vector part is: 

δχ𝑘|𝑘−1
𝑞 (𝑖) = �̂�𝑘|𝑘−1 ⊗ (χ𝑘|𝑘−1

𝑞 (𝑖))−1            (75) 

S𝑘|𝑘−1
𝜌

(𝑖)= qr{√𝑤𝑖
𝑐δχ𝑘|𝑘−1

𝑝 (𝑖)√𝑄𝑘} i=1,2, …,2n    (76) 

S𝑘|𝑘−1
𝜌

(0) = cholupdate{S𝑘|𝑘−1
𝜌

, δχ𝑘|𝑘−1
𝑝 (0),𝜔0

𝑐}  i=0(77) 

δχ𝑘|𝑘−1
𝑝

 is the vector part of the prediction error quaternion. 

State prediction mean and covariance of the gyro drift part are 

respectively: 

�̂�𝑘|𝑘−1 = ∑ 𝜔𝑖
𝑚2𝑛

𝑖=0 �̂�𝑘|𝑘−1
𝛽

(i)                      (78) 

S𝑘|𝑘−1
𝛽

(𝑖)= qr{√𝑤𝑖
𝑐δχ𝑘|𝑘−1

𝛽 (𝑖)√𝑄𝑘} i=1,2, …,2n       (79) 
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S𝑘|𝑘−1
𝛽

(0) = cholupdate{S𝑘|𝑘−1
𝛽

, δχ𝑘|𝑘−1
𝛽 (0),𝜔0

𝑐}  i=0   (80) 

4.3 Measurement update 

Similar to the Sigma point selection of time update, the 

disturbance Sigma point is selected as： 

δZ𝑘−1(𝑖)= (√(n + λ)𝑆𝑘−1)𝑖                    (81) 

Divide it into quaternion and gyro drift： 

δZ𝑘−1(𝑖)=[
δZ𝑘−1

𝜌
(𝑖)

δZ𝑘−1
𝛽

(𝑖)
]                           (82) 

Sigma part of the quaternion in the measurement update is 

selected as； 

ξ𝑘|𝑘−1
𝑞

(0)=�̂�𝑘|𝑘−1                             (83) 

ξ𝑘|𝑘−1
𝑞

(i)= δZ𝑘−1
𝑞

(𝑖) ⊗ �̂�𝑘|𝑘−1 i=1,…,n             (84) 

ξ𝑘|𝑘−1
𝑞

(i)= (δZ𝑘|𝑘−1
𝑞

(𝑖))−1 ⊗ �̂�𝑘|𝑘−1 i=n+1,…,2n      (85) 

Gyro drift part Sigma in measurement update is selected as 

ξ𝑘|𝑘−1
𝛽

(0)=�̂�𝑘|𝑘−1                               (86) 

ξ𝑘|𝑘−1
𝛽

(i)= �̂�𝑘|𝑘−1 + δZ𝑘|𝑘−1
𝛽

(i)                   (87) 

ξ𝑘|𝑘−1
𝛽

(i)= �̂�𝑘|𝑘−1 − δZ𝑘|𝑘−1
𝛽

(i)                   (88) 

Quaternion measurement is updated to： 

Z𝑘−1
𝑞

(𝑖)= ξ𝑘|𝑘−1
𝑞

(i)                               (89) 

Quaternion measurement error covariance matrix and state 

measurement error variance matrix are: 

𝑆𝑧𝑧,𝑘(𝑖)= qr{√𝑤𝑖
𝑐δZ𝑘|𝑘−1

𝜌
(𝑖)√𝑅𝑘} i=1,2, …,2n       (90) 

𝑆𝑧𝑧,𝑘(0) = cholupdate{S𝑘|𝑘−1
𝜌

, δZ𝑘|𝑘−1
𝜌

(0) ,𝜔0
𝑐}  i=0   (91) 

4.4 States Enhancement： 

From above, state enhancement matrix is： 

𝐾𝑘=（𝑃𝑥𝑧,𝑘/𝑆𝑧𝑧,𝑘
𝑇 ）𝑆𝑧𝑧,𝑘

−1             (92) 

State error vector is updated to： 

δ�̂�𝑘=𝐾𝑘 ⊗ δ�̂�𝑘|𝑘−1
𝑞

                              (93) 

Thus the quaternion state update amount and gyro drift update to: 

�̂�𝑘=δ�̂�𝑘 ⊗ �̂�𝑘|𝑘−1                                (94) 

�̂�𝑘=�̂�𝑘|𝑘−1 + δ�̂�𝑘                                 (95) 

State error variance matrix is: 

𝑈𝑘 = 𝐾𝑘𝑆𝑧𝑧,𝑘                                   (96) 

𝑆𝑘=chol(𝑆𝑧𝑧,𝑘
−1 , 𝑈𝑘 , −1)                           (97) 

5. EXPERIMENTAL RESULTS AND ANALYZES 

This paper utilizes MATLAB platform for mobile robot SLAM 

simulation experiment, and EKF, SR-UKF and QSR-UKF are 

simulated respectively. First create an experimental environment 

based on point features, with a size of 80m X 80m, a total of 15 

navigation marks, and a number of randomly set point features. 

The sampling time of Lidar is 0.2s, maximum detection distance 

is 30m, speed of robot during the motion v = 4m / s, process noise 

covariance matrix Q is [1.9 0 0; 0 1.2 0; 0 0 0.8], covariance 

matrix of observation noise R is [0.5 0; 0 0.1]. During the 

experiment, the trajectory diagrams of the robot running with 

EKF, SR-UKF and QSR-UKF are displayed. Among them, the 

solid line represents the true trajectory of the robot movement, 

and the dotted line represents the path estimation of the robot 

planning. "·" And "+" indicate the actual position and estimated 

position of the environmental feature. 

Figures 2, Figures 3 and Figures 4 are the comparison of the 

position and attitude angle errors of the X and Y directions after 

the robot runs under the three calculation methods. The figure 5 

further shows the absolute error comparison of the location of the 

environmental features estimated by the three methods with the 

actual environmental features. The table shows the performance 

comparison of the three methods. It can be seen from the chart 

that the estimation accuracy of the two improved algorithms is 

higher than that of the original EKF-SLAM. based on the EKF-

SLAM filtering method, when the covariance matrix is small, 

that is, the process noise is small, the accuracy of the EKF-SLAM 

algorithm is not much different from that of SR-UKF-SLAM and 

QSR-UKF-SLAM. By adjusting the covariance matrix and 

increasing the noise error, it is obvious that SR-UKF and QSR-

UKF-SLAM have higher accuracy in pose estimation. At the 

same time, it can be found in the table that QSR-UKF improves 

the stability of the robot's movement process, and the specific 

performance is better than EKF-SLAM and SR-UKF-SLAM 

 
Figure 1: Simulation Environment   Figure 2: Estimate result of EKF 

 

 

 Mean value of 

error in X 

direction(m) 

Mean value of 

error in X 

direction(m) 

Mean value of 

attitude angle 

error(rad) 

Error variance 

in X 

direction(m2) 

Error variance 

in Y 

direction(m2) 

Error variance 

of attitude 

angle (rad2) 

EKF 0.5736 0.3981 0.0137 0.2938 0.2265 0.0203 

SR-UKF 0.2451 0.2058 0.0043 0.0824 0.0769 0.0079 

QSR-UKF 0.1477 0.1536 0.0039 0.0442 0.0592 0.0088 

Table 1.  performance comparison of the three methods 
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Figure 3: Estimate result of QRUKF Figure 4: Estimate result of QRUKF 

 

 
Figure 5: Estimate result of Three algorithm 

 

6. CONCLUSION 

 This paper presents a better solution to the nonlinear 

optimization problem of mobile robot SLAM. This paper first 

introduces and analyses the algorithms of extended Kalman 

filtering and unscented Kalman filtering, and proposes the 

limitations of these two algorithms. Aiming at these problems, 

corresponding solutions are given. This paper proposes to add the 

square root form of Sigma points to the unscented Kalman filter 

to increase its stability and estimation accuracy. Because the 

quaternion has the advantages of small calculation amount and 

high precision, this paper proposes a method of calculating the 

quaternion mean based on the Lagrangian cost function method, 

and only takes the vector part of the quaternion as the pose 

variable. Solve the problem of disturbing the selection of 

quaternion Sigma points, and also reduce the dimension of the 

filtering state, reducing the amount of filtering operations as well. 

To this end, this paper combines the Square Root UKF algorithm 

and proposes Quaternion Square Root UKF algorithm. 

Simulation experiment results show that, compared with EKF 

and SR-UKF algorithms, QSR-UKF algorithm uses a relatively 

simple singular value decomposition and Cholesky 

decomposition to implement square-root operation of the error 

variance matrix, which makes the algorithm's numerical 

operation characteristics be improved to some extent and more 

stability as well. 
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