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ABSTRACT: 
  
Indoor positioning technologies represent a fast developing field of research due to the rapidly increasing need for indoor location-
based services (ILBS); in particular, for applications using personal smart devices. Recently, progress in indoor mapping, including 
3D modeling and semantic labeling started to offer benefits to indoor positioning algorithms; mainly, in terms of accuracy. This work 
presents a method for efficient and robust indoor localization, allowing to support applications in large-scale environments. To achieve 
high performance, the proposed concept integrates two main indoor localization techniques: Wi-Fi fingerprinting and deep learning-
based visual localization using 3D map. The robustness and efficiency of technique is demonstrated with real-world experiences. 
  
  

1. INTRODUCTION 

Recently, the need for indoor positioning systems is rapidly 
growing due to the emerging indoor commercial application 
market, including asset tracking, personal security and 
entertainment (Holman, 2012) with ILBS, fueled by the 
proliferation of using personal smart devices. In general, the 
typical requirements of indoor positioning techniques using 
smart devices are: low cost, high accuracy and availability in a 
large variety of scenarios; e.g., large-scale environments 
(Anagnostopoulos et al., 2017). Since GPS devices generally 
work poorly in indoor environment, various radio-frequency (RF) 
based alternative approaches with different signals and sensors, 
such as Wi-Fi, Bluetooth Low Energy (BLE) beacons, Radio 
Frequency Identification (RFID), Ultra-wideband (UWB), etc., 
have been proposed for indoor positioning (Yassin et al., 2016). 
However, the main drawbacks of these technologies are low 
accuracy and high cost of the required infrastructure. The typical 
2D localization accuracy for Wi-Fi, BLE and RFID system varies 
from 1-2 meters to a few tens of meters, while UWB can achieve 
accuracy on a few decimeters (Anagnostopoulos, 2017; Ficco et 
al., 2014).  On the other hand, BLE, RFID and UWB positioning 
systems need additional infrastructures and extra sensors on 
user’s end, which are not integrated in modern smart devices, 
therefore the cost for using these systems are relatively high.  
 
In the commercial arena, several companies have proposed 
indoor map solutions, such as Google Maps Indoor, or HERE 
Indoor Maps (Li et al., 2019). Obviously, the role of indoor maps 
is important for achieving high performance of any indoor 
localization system, besides the fundamental visualization (Li et 
al., 2019). For example, the requirements for 3D indoor maps to 
support indoor navigation applications have been investigated in 
(Brown et al., 2013) with respect to recover the 6 degree-of-
freedom (DOF) camera pose of a query image captured by smart 
devices. Many methods have been proposed for this task with 
different representation of 3D map data, such as (Sattler et al., 
2018; Sarlin et al., 2018) for outdoor environments with feature 
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maps or (Taira et al., 2018) for indoor environments with dense 
RGB-D point cloud. To improve the robustness of indoor image-
based localization, deep learning was introduced for processing 
and representing query image on object level (Xu et al., 2017) 
and feature level (Taira et al., 2018). Specifically, Taira et al., 
(2018) demonstrated that their open sourced visual indoor 
localization system, called InLoc1 , can achieve 40.7% at the 
localization accuracy of 0.5 m by using state-of-the-art CNN-
based image retrieving method followed by the 2D-3D dense 
matching with CNN features. However, the InLoc can fail in the 
photogrammetrically challenging scenarios, e.g., images contain 
a lot of dynamic elements, such as moving people and objects. 
Additionally, since lack of initial location estimation, the method 
needs to compare the query picture with all database images for 
every time of operation, and thus the image retrieving 
performance will be significantly decrease with the growing size 
of the map. 
 
To avoid using sensors not available in smart devices, in this 
work we integrated received signal strength (RSS)-based Wi-Fi 
fingerprinting positioning (WFP) with the InLoc. Since WFP is 
robust in complex indoor environment against non-line-of-sight 
(NLoS), signal fluctuation and multipath effect (He, 2015), we 
use WFP to provide a coarse estimation of the position as initial 
position estimation or as the final location when the visual 
algorithm fails. In our approach, InLoc is supplied with WFP 
results to perform coarse-to-fine 6DOF estimation using a 
RGBD-based 3D indoor map. The details of proposed method is 
discussed in the remainder of this paper, organized as follows. 
Section 2 reviews the techniques integrated in our indoor 
localization system (Figure 1); which are WFP and InLoc. The 
field experiment setup, including building indoor maps with 
different representations of the environment, and results are 
presented in Section 3. Finally, the conclusions are summarized 
in Section 4.  
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2. THE PROPOSED SYSTEM 

2.1 Wi-Fi Fingerprinting Positioning System 

In Wi-Fi fingerprinting techniques, fingerprints or signatures 
represent the information and clues about the environment. In the 
case of WFP methods, the fingerprints are built from Wi-Fi 
received signal strength. While RSS is the essential component 
of fingerprints, other geo-related information, such as IP number, 
MAC address of Wi-Fi access points (APs), which are helpful for 
localization in large-scale environments, can also be added in the 
fingerprint (Honkavirta et al., 2009). One typical example of 
using IP and MAC addresses for localization is the Geolocation 
module in Google Maps2 . Since the location is estimated by 
matching user fingerprint measurements against the fingerprint 
database, WFP generally consists of two phases: a training phase 
(offline), and then a localization phase (online) (Kim et al., 2012). 
The workflow of WF algorithm used in this study is shown in 
Figure 2. 
  

 
Figure 1. Overview of the proposed system. 

 
 

 
Figure 2. Workflow of the Wi-Fi fingerprinting positioning 

system. 

 
2 https://developers.google.com/maps/documentation/geolocatio

n/intro 

 

To create the radio map in training phase, we applied the mean 
peak value to sample the RSS observations (Mallozzi et al., 1996). 
Such Peak-based Wi-Fi Fingerprinting (PWF) technique shows 
robustness and improved accuracy by overcoming the RSS 
variance problem (Kim et al., 2012). With the probabilistic 
assumptions, such as probabilistic independence or Gaussian 
noise in the samples from different APs (He et al., 2015), the 
matching problem is solved to obtain the posterior distribution by 
using Bayes’ rule, which is described as: 
 

𝑝(𝑙|𝑜) = !(#|%)!(%)
!(#)

                                   (1) 
where  𝑝(𝑙|𝑜) = posterior of a possible CP location 𝑙 by given 

the observation 𝑜 
 𝑝(𝑜|𝑙) = likelihood 
 𝑝(𝑙) = prior probability 
                𝑝(𝑜) = margin 
 
Then the possible CP location where the maximum posterior was 
calculated, is used as 2D positioning results (𝑥), 𝑦)). 
  
2.2 InLoc 

InLoc is a state-of-the-art visual indoor localization system, 
which can estimate 6DOF camera pose of a query image by using 
dense matching with an RGBD-based indoor map, including 3D 
model and image database. The pipeline of InLoc is summarized 
as follows: 
 

1. Given a query image taken by a smartphone, the system 
firstly retrieves N=100 most similar images from the 
whole dataset by comparing the CNN-based descriptor 
resulted from NetVLAD (Arandjelovic et al., 2016). The 
architecture of NetVLAD is shown in Figure 3. 

2. The CNN features are built with output of 17th (fine 
features: length=256) and 30th (coarse features: 
length=512) CNN layers from NetVLAD and dense 
matched in a coarse-to-fine manner, in which the 
matches of finer features are restricted by the 
correspondences of the matches of coarse features. In 
the next, the camera poses of N candidate images are 
computed using associated 3D model with Perspective-
3-Points Random Sample Consensus (P3P-RANSAC) 
(Fischler & Bolles, 1981). Then top 10 candidates are 
picked out based on the number of RANSAC inliers. 

3. In the final pose verification step, the best 6DOF pose 
estimation is picked from the previous 10 camera poses 
by comparing the differences between the query image 
and the re-projected synthetic image. 

In this work, the original CNN model3 in InLoc is used, 
since it was trained with a bigger dataset (254,064 images) 
than our test dataset. 
 

 
Figure 3. CNN architecture with the NetVLAD layer. 

(Arandjelovic et al., 2016) 
 

3 https://www.di.ens.fr/willow/research/netvlad/ 
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In this work, we improve the efficiency and robustness of InLoc 
by (1) applying Wi-Fi positioning results as initial information to 
significantly reduce the image retrieving search space as well as 
the map matching space; particularly, effective in large-scale 
environment, (2) the Wi-Fi positioning results can also be offered 
to user as the final localization estimation when InLoc failed. In 
our tests, we use images with top-2 Wi-Fi fingerprinting 
matching posteriors for InLoc processing. More details of the 
methods are given in the experiment section. 
 

3. EXPERIMENTS 

3.1 Mapping 

The map used in this research contains two components: (1) Wi-
Fi radio/fingerprint map, and (2) RGBD-based 3D indoor map, 
including RGB images, depth maps, and 3D indoor models. To 
minimize the drifting of RGBD SLAM algorithm, data was 
collected in a typical office hallway (55m x 3m) at the Ohio State 
University, see Figure 4.  
 

(a)                                    (b) 

 
(c) 

Figure 4. Experiment area (a) and the 3D model rendered by 
RTAB-map (b and c). 

 
4 http://introlab.github.io/rtabmap/ 

3.1.1 Radio Map: For the Wi-Fi radio map, 18 calibration 
points are used for collecting fingerprints at the center of cells. 
As a trade-off between accuracy and effort (Cherntanomwong et 
al., 2009), we set the interval between every two calibration 
points to 3 m, hence the length of cells is also 3 m. The 
measurement time of fingerprints varied from 50 to 60 seconds, 
and the MAC addresses and IP information of APs are also 
recorded. A VAIO Z Canvas laptop was used for Wi-Fi data 
collection. The coordinates of CP are manually picked from 3D 
model rendered from RGBD SLAM. 

3.1.2 3D Indoor Map: The platform used for indoor 3D 
mapping is the LooMo robot with a Kinect V1 RGBD camera 
mounted on the top, see Figure 5, and data was collected at 10Hz. 
The data is processed with an RGBD SLAM technique, named 
RTAB-map4 (Labbé and Michaud, 2019), which resulted in an 
indoor 3D model of about 55 million points in color, see Figure 
4 b and c, 5122 key frames including RGB images (640*480), 
3D scan data, and 6DoF camera poses.  

 

 
Figure 5. 3D mapping platform.  

 
After optimizing and noise filtering, the 3D indoor map dataset 
is integrated with the Wi-Fi radio map by (1) sampling and 
storing 5 RGB images from key frames for each cell with an 
average 0.6m interval between images, (2) the depth maps for 
each stored images are made with the registered and optimized 
3D scans within 8 m range from the camera location, see Figure 
6, (3) in order to reduce the calculation cost for the final step in 
InLoc, the 3D model of the floor is segmented and stored in each 
cell. The length of segments varies from 6m to 30m. 
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Figure 6. Stored RGB image (top) and corresponding depth map 

(bottom). 
 

3.2 Test Data 

Test dataset is created on 13 points, including two groups: (1) six 
query images, selected from 3D map dataset with 6DoF camera 
pose as ground-truth, (2) seven query images, taken by a cell 
phone with 2D location ground-truth (X, Y). The Wi-Fi 
fingerprints are collected on all test points with about 10 second 
measuring time for each fingerprint. In order to avoid scale 
problem, the coordinates of CP and ground-truth of test points 
are manually picked from the 3D model, according to the markers 
of different colors, see Figure 7. Then Group 1 query images, 
associated with 6DoF camera poses are selected from the 3D map 
dataset as the ones, which are closest to corresponding locations 
of black markers. A SONY XPERIA X cellphone is used for Wi-
Fi data collection and taking query images (2160*2880) on green 
markers. For Group 2 test data, Wi-Fi fingerprint is measured 
right after taking image on each point. For Group 1 test data, Wi-
Fi fingerprints are collected after the robot stopped on the green 
markers when 3D mapping processing is ongoing. The intrinsic 
parameters of the cellphone camera are calculated with 
MATLAB camera calibration function, and those of Kinect are 
manufacturer data, which are used in RTAB-map as default 
setting.  

 
Figure 7. Examples of markers (left), in which CP is denoted in 
red, Group 2 test point is in black and Group 1 test point is in 

green; (Right) shows markers in the 3D model. 
 

3.3 Test Results 

Comparing to the original InLoc system, our workflow has 
efficiently reduced the search space for image retrieving and 
computation cost, see Table 1. 

 InLoc WFP+InLoc 

Searching space 
Brute-force search 
in whole dataset 

(global) 

Search in a certain 
region with unique IP 

and MAC address 
information (local) 

Number of 
candidates for 
P3P-RANSAC 

100 images 10 images from top-2 
cells after WFP 

Number of 
candidates for 
pose verification 

10 images 3 images 

Table 1. Comparison of the original InLoc to our system. 
 

For the step 2 in InLoc pipeline, dense matching with CNN-based 
(VGG-16) feature significantly outperforms the classic features, 
such as SURF in the texture-less hallway testing area, see Figure 
8, and Table 2. 
 
In the next step, the best pose estimation is determined by 
evaluating image similarity on comparing local patch descriptors 
between query image and synthetic image. The examples of best 
pose estimation on Group 1 and Group 2 data are visualized in 
Figures 9 and 10, respectively. Warm colors denote large errors. 
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Figure 8. RANSAC feature matching inliers with CNN features 

(top) and SURF (bottom) on Group 1 testing data. 
 

Matching method Inliers 
CNN feature + RANSAC 3742 
SURF + RANSAC 23 

Table 2. Comparison on feature matching performance between 
CNN and SURF features in texture-less area. 

 
The statistic of localization and pose estimation (for group 1 
data) performance are summarized in Table 3. 

Localization 
method 

ME of Horizontal 
localization (m) 

MAE of Rotation 
estimation (radian) 

WFP (Group 1 
data) 1.39 NAN 

WFP (Group 2 
data) 1.54 NAN 

WFP + InLoc 
(Group 1 data) 1.06 0.13 

WFP + InLoc 
(Group 2 data) 0.44 NAN 

Table 3. Mean absolute error of rotation and mean error of 
horizontal localization estimation with different positioning 

methods and test datasets. 
  

 
Figure 11. CDF of horizontal localization error of WFP and 

WFP + InLoc with 13 test datasets. 

 

 

 
Figure 9. Example of pose verification with synthetic image 

(2nd row) on Group 1 data (1st row) and error map. 
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Figure 10. Example of pose verification with synthetic image 
(2nd row) on Group 2 data, in which the image contains a 

moving person (1st row) and error map.  

The Table 3 shows that the horizontal positioning accuracy 
increased after InLoc process compared to WFP standalone 

results. Note that the performance of system with Group 2 data is 
better than with Group 1 data. The reason may be related to the 
accuracy of intrinsic parameters. Most of the WFP + InLoc 
localization results are better than WFP, though the error budget 
is higher than WFP, as plotted in Figure 11. Clearly, the quality 
of the 3D model directly impacts the performance of InLoc (Taira 
et al., 2018). Note that the quality of 3D model in this study is 
limited by the performance of RGBD SLAM on data obtained by 
inexpensive sensors. 

4. CONCLUSION

In this study, we have demonstrated the efficiency of our system 
in terms of increased search and computation speed. With the 
help of InLoc, the localization performance is better than using 
only WFP. However, the localization accuracy is impact by the 
quality of 3D model. In the future work, we will try to (1) make 
improvement on the quality of 3D model, and then (2) test the 
system on large-scale indoor environment. 
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