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ABSTRACT:

Blockchain is an emerging immature technology that disrupt many well established industries nowadays, like finance, supply chain,
transportation, energy, official registries (identity, vehicles, ...). In this contribution we present a smart contracts library, named
Crypto-Spatial, written for the Ethereum Blockchain and designed to serve as a framework for geospatially enabled decentralized
applications (dApps) development. The main goal of this work is to investigate the suitability of Blockchain technology for the
storage, retrieval and processing of vector geospatial data. The design and the proof-of-concept implementation presented are
both based on the Open Geospatial Consortium standards: Simple Feature Access, Discrete Global Grid Systems (DGGS) and
Well Known Binary (WKB). Also, the FOAM protocol concept of Crypto-Spatial Coordinate (CSC) was used to uniquely identify
spatial features on the Blockchain immutable ledger. The design of the Crypto-Spatial framework was implemented as a set of
smart contracts using the Solidity object oriented programming language. The implemented library was assessed toward Etheruem’s
best practices design patterns and known security issues (common attacks). Also, a generic architecture for geospatially enabled
decentralized applications, combining blockchain and IPFS technologies, was proposed. Finally, a proof-of-concept was developed
using the proposed approach which main purpose is to port the UN/FAO-SOLA to Blockchain techspace allowing more transparency
and simplifying access to users communities. The smart contracts of this prototype are live on the Rinkeby testnet and the frontend
is hosted on Github pages. The source code of the work presented here is available on Github under Apache 2.0 license.

1. INTRODUCTION

Geospatial technology is nowadays in the heart of major socio-
economical processes giving experts and casual users valuable
insights to improve there performances, optimize there daily
tasks and make informed decisions. However, as for any in-
dustry sector, a growing number of deeptech technologies are
emerging and disrupting well known workflows and established
practices. In fact, the permeation of technologies such as IoT,
Big Data Analytics, Cloud Computing, Artificial Intelligence,
etc. have also greatly aided the spurt in adoption of Location
Intelligence solutions (Geospatal Media and Communications,
2019). Nevertheless, we noted that in the recent years, Block-
chain technology has not been intensively investigated for its
suitability to leverage geospatial applications, and it’s just in
july 2019 that the OGC announces the creation of a new Do-
main Working Group for Blockchain and Distributed Ledger
Technologies (BDLT/DWG) (OGC, 2019).

In addition, despite the existence of many initiatives to develop
standardized protocols for geospatial technology on the block-
chain, like (FOAM, 2019), (XYO, 2019), (Helium, 2020), we
notice that all those projects focus mainly on proof-of-location
wireless networks and not on geospatial data structures and ap-
plications. To fill this gap, we investigate in this contribution the
suitability of Blockchain technology for the storage, retrieval
and processing of vector geospatial data. Also, a generic ar-
chitecture for geospatially enabled decentralized applications,
is proposed and a proof-of-concept is developed using the pro-
posed approach.

2. DECENTRALIZED APPLICATIONS

2.1 Ethereum blockchain

Ethereum blockchain can be viewed as a transaction-based state
machine: we begin with a genesis state and incrementally ex-
ecute transactions to morph it into some final state. It is this
final state which we accept as the canonical “version” of the
world of Ethereum. The state can include such information
as account balances, reputations, trust arrangements, data per-
taining to information of the physical world; in short, anything
that can currently be represented by a computer is admissible.
Transactions thus represent a valid arc between two states; the
‘valid’ part is important. A valid state transition is one which
comes about through a transaction (Wood et al., 2014). Form-
ally:

σt+1 ≡ Υ(σt, T ) (1)

where Υ is the Ethereum state transition function. In Ethereum,
Υ, together with σ are considerably more powerful than any
existing comparable system; Υ allows components to carry out
arbitrary computation, while σ allows components to store ar-
bitrary state between transactions.

Transactions are collated into blocks; blocks are chained to-
gether using a cryptographic hash as a means of reference.
Blocks function as a journal, recording a series of transactions
together with the previous block and an identifier for the final
state. They also punctuate the transaction series with incent-
ives for nodes to mine. This incentivisation takes place as a
state-transition function, adding value to a nominated account
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(Wood et al., 2014). Formally, we expand to:

σt+1 ≡ Π(σt, B) (2)
B ≡ (..., (T0, T1, ...), ...) (3)

Π(σ, B) ≡ Ω(B,Υ(Υ(σ, T0), T1)...) (4)

Where Ω is the block-finalization state transition function; B
is this block, which includes a series of transactions amongst
some other components; and Π is the block-level state-
transition function.

This is the basis of the blockchain paradigm, a model that
forms the backbone of not only Ethereum, but all decentralized
consensus-based transaction systems to date.

In term of implementation, there are many choices of block-
chains: over 200 Bitcoin variants, Ethereum and other permis-
sioned blockchains. To meaningfully compare them, (Dinh et
al., 2017) identified four abstraction layers found in all of these
systems. (1) The consensus layer contains protocols via which
a block is considered appended to the blockchain. (2) The data
layer which contains the structure, content and operations on
the blockchain data. (3) The execution layer includes details
of the runtime environment support blockchain operations. Fi-
nally, (4) the application layer which includes classes of block-
chain applications.

The Crypto-Spatial framework, described in this contribution,
is designed for the Ethereum Blockchain and propose a set of
smart contracts for the execution layer and a cheap geometry
storage solution on IPFS for the application layer.

2.2 IPFS and OrbitDB

IPFS is a distributed file system which synthesizes successful
ideas from many peer-to-peer systems, including DHTs, Bit-
Torrent, Git, and SFS. The contribution of IPFS is simplifying,
evolving, and connecting proven techniques into a single co-
hesive system, greater than the sum of its parts. IPFS presents
a new platform for writing and deploying applications, and a
new system for distributing and versioning large data. IPFS
could even evolve the web itself. IPFS is peer-to-peer; no nodes
are privileged. IPFS nodes store IPFS objects in local storage.
Nodes connect to each other and transfer objects. These objects
represent files and other data structures (Benet, 2014).

OrbitDB. It is a distributed, peer-to-peer database that is built
on top of IPFS. OrbitDB supports various kinds of databases
including key-value and log databases. This makes OrbitDB
an excellent choice for the decentralized prototype (OrbitDB,
2020).

In the solution we present in this contribution, the geometry of
spatial features are stored in an OrbitDB IPFS database as OGC
Well Known Binary objects for simple parsing and visualiza-
tion. The databases also have listeners implemented that trig-
gers when the databases are replicating. Thereafter, the listeners
trigger the user interface to update. This ensures that the users
will always have the most recent geometry available.

2.3 Decentralized applications development

Developing applications for the Blockchain is very similar to
developing applications with traditional web technologies with
some key differences. In fact knowing if an application need

blockchain technology is as important as knowing blockchain
technology itself. To do that a developer must asses its needs
using the following key questions :

1. Is the system defining digital relationships? if yes, Block-
chain is suitable for this system.

2. Should data be dynamic and auditable? if yes, Blockchain
is suitable.

3. Should data be managed by a central authority? if yes,
Blockchain is not suitable in this case.

4. Is the speed of the network important? if yes, Blockchain
is also not suitable here.

The figure 1 illustrate the development workflow for an Eth-
ereum Blockchain decentralized application.

Figure 1. Blockchain development workflow

The proces start by creating an account using a wallet man-
ager like Metamask (Metamask, 2020) or Uport (UPort, 2020)
and fund it using a dedicated faucet for the selected testnet
(Rinkeby, Ropsten, ...). If we develop locally we can just use
ganache-cli (Truffle, 2020).

As we start to develop our decentralized application we can
use one of the ethereum smart contracts development tools like
(Truffle, 2020). Those tools allow us to compile, test and deploy
our smart contracts on the testnet we select to use for our test-
ing campaign before the ultimate deployment on the Ethereum
mainnet which require real Ether (cryptocurreny of Ethereum).

For the frontend, we will need a web3 library corresponding
to the programming language we use. Nevertheless, in gen-
eral in the Etheruem world the ReactJS (ReactJS, 2020) frame-
work is used to develop the User Interface (UI) with the web3.js
(Web3.js, 2020) library.
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3. THE CRYPTO-SPATIAL FRAMEWORK

The Crypto-Spatial Framework is a set of smart contracts writ-
ten in Solidity (object oriented programming language for Eth-
ereum) and serves as base classes that can be specialized
and customized to meet business needs. The architecture of
the Crypto-Spatial smart contracts is inspired from the OGC
Simple Features specifications (Herring et al., 2011).

To uniquely identify spatial features on the Blockchain distrib-
uted ledger, the FOAM space concept of CryptoSpatial Co-
ordinate (CSC) is used (Foamspace Corp, 2018). Nevertheless,
some modifications was implemented to explore the alternat-
ives suggested by (Gobe, Lathouwer, 2018) as the use of the H3
javascript library (H3, 2020), with an average Hexagon Edge
Length of 0.5 km (resolution 15), which it is a partially con-
forming implementation of the Geodesic Discrete Global Grid
Systems OGC standard (Purss et al., 2016).

3.1 Framework Design

The Crypto-Spatial smart contracts library, illustrated in the fol-
lowing class diagram, is designed and implemented using inher-
itance and interfaces to simplify its resusability.

Figure 2. Crypto-Spatial Library Class Diagram

With this approach the developer should be able to :

1. inherit/use the Solidity components to build his custom
contracts and develop more complex geospatial decentral-
ized system.

2. use a deployed Crypto-Spatial smart contracts and libraries
that suit his business needs from an ENS (ens.domains)
resolvable Ethereum addresses.

3. integrate/download the solidity reusable components (con-
tacts) from npmjs.com and/or ethpm.com as a standalone
packages or included in a widely accepted library, like
openZeppelin (OpenZeppelin, 2020)

4. visualize on a map all the geospatial features stored on the
permanently deployed registry (as features index) to ad-
minister the features belonging to his registries.

5. access a fully featured dashboard displaying all useful in-
formations about the permanently deployed features regis-
tries (the features index)

3.1.1 CSFeature The library design, inspired from OGC
Simple Features, comprises a base abstract CSFeature smart
contract to represent any type of spatial features. This smart
contract is specialized to handle Points, Curves and Surfaces
with the CSPoint, CSCurve and the CSSurface smart contracts
respectively.

The CSFeature smart contract includes all necessary state vari-
ables, modifiers, events and functions to store and manipulate
spatial features. Main members are :

bytes32 csc: the Crypto-Spatial Coordinate, which is the
Keccak-256 hash of the DGGS index of the spatial feature and
the owner address.
bytes32 wkbHash: the Well Known Binary Hash.
bytes15 dggsIndex: the Disrcete Global Geodetic System in-
dex.
uint h3Resolution: the H3 resolution used by the registry.
enum CSGeometryType: the geometry type (Point, Curve,
Surface).
constructor: the constructor that initiate all state variables.
function getGeometryType: getter for geometry type.
function getFeatureCSC: getter for CSC.
function getFeatureDGGSIndex: getter for DGGS Index.
function fetchFeature: fetch all the state variables of the spa-
tial feature.
function setWkbHash: setter for wkbHash.
function kill: to permanently remove the spatial feature from
the blockchain ledger.

3.1.2 CSFeatureRegistry The second important abstract
smart contract of the Crypto-Spatial core library design is the
CSFeatureRegistry which serves as the spatial features collec-
tion. The CSFeatureRegistry smart contract includes all neces-
sary state variables, modifiers, events and functions to store and
manipulate spatial features. The main members of this smart
contract are :

uint h3Resolution: the H3 resolution of the spatial feature re-
gistry (from 1 to 15) see [.....].
string name: the displayed name.
string srs: the Spatial Reference System code (EPSG or equi-
valent).
uint256 featuresCount: the Counter of the added features.
mapping features: an addresses mapping to handle the spatial
features added to the registry.
mapping addedIndexes: a boolean mapping to keep trace of
added indexes.
mapping indexOwner: a mapping to keep trace of DGGS in-
dexes owners.
constructor: the constructor that initiate all state variables.
function addFeature: a modifier that must be called by the
addFeature function of inherited smart contracts.
function getFeatureCount: getter of the featureCount.
function getFeature: getter for a designated spatial feature.
function dggsIndexExist: to confirm if an Index exist in the
registry.
function dggsIndexOwner: returns the owner of a designated
feature.
function removeFeature: permanently remove the spatial fea-
ture from the registry and the blockchain ledger.

3.2 Solidity Implementation

To demonstrate the suitability of the previous design, all the
smart contracts library components has been implemented in
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Solidity using the Truffle Suite (Truffle, 2020). Hereafter, a
code snipet of the addFeature modifier demonstrating the abil-
ity to reuse business logic on the Etheruem smart contracts :

modifier

addFeature(bytes15 dggsIndex,

bytes32 wkbHash,

address _sender) {

require(!paused(), "Contract is paused");

require(dggsIndex.length != 0, "Empty dggsIndex");

require(addedIndexes[dggsIndex] == false,

"DGSS Index already exist");

require(wkbHash.length != 0, "Empty wkbHash");

_;

addedIndexes[dggsIndex] = true;

indexOwner[dggsIndex] = _sender;

bytes32 csc = CSGeometryLib.computeCSCIndex(

_sender, dggsIndex);

emit LogNewFeatureAdded(name, csc, dggsIndex,

wkbHash, _sender);

featuresCount = featuresCount.add(1);

}

The complete implementation of the Crypto-Spatial framework
can be found in the project github repository (BENAHMED
DAHO Ali, 2020a).

3.3 Security issues and design patterns

3.3.1 Security issues mitigation In this section we synthes-
ize the security vulnerabilities of Ethereum smart contracts and
the vulnerabilities that can be (actually, most of them have
been) exploited to carry on attacks. To avoid these common
attacks a set of counter-measures have been implemented and
some of them are described below.

Arithmetic Over/Under Flows To mitigate under/overflow
vulnerabilities we use the openZeppelin ’SafeMath’ mathem-
atical library.

Reentrancy To mitigate the reentrancy vulnerability we place
any code that performs external calls after the logic updating
state variables.

Also, to avoid security vulnerabilities, the Crypto-Spatial smart
contracts libray have been audited using common Ethereum
security tools, formally : MythX/Mythril (MythX, 2020) and
Slither (Slither analyzer, 2020). All the detected vulnerabilities
have been fixed.

3.3.2 Design patterns As smart contracts are special im-
mutable code executing on the Ethereum blockchain, a number
of design patterns has to be applied to guarantee they are cor-
rectly prepared for all situations. This include checking the in-
puts as early as possible in the function body and throws an ex-
ception if the condition is not met, and restricting access to the
smart contract functions that change the states using the (Open-
Zeppelin, 2020) libraries ’Ownable’ and ’Roles’ .

4. DECENTRALIZED APPLICATIONS

Knowing that smart contracts takes only in charge the immut-
able part of the business logic of an application, it is also ne-
cessary to implement a frontend application to interact with
the final user, set/get state variables and make calls to smart
contracts functions. In the Ethereum techspace, this is gener-
ally done using ReactJS with the web3.js javascript library. To
build a geospatially enabled decentralized application (Geod-
App), integrating webmapping components with web3 enabled
User Interface (UI) is necessary.

4.1 Geospatial dApps Architecture

To build Geospatially enabled dApps for the Ethereum block-
chain the following 3-tiers architecture is recommended:

1. The smart contracts written in Solidity.
2. The IPFS/OrbitDB Storage.
3. The frontend web application (built with ReactJS or oth-

ers).

The generic interaction between the previous components of a
GeodApp can be described by the sequence diagram on figure
3.

Figure 3. Geospatial dApps sequence Diagram

The choice to store the geometries of the spatial features on the
IPFS (OrbitDB) is justified by the gas cost of the storage on the
Ethereum Blockchain. It is cheaper to store the Well Known
Binary (WKB) hash on the Blockchain and the WKB of the
spatial feature geometry on OrbitDB/IPFS.

4.2 Decentralized land administration (DeLA)

As a proof-of-concept for the proposed architecture for a Geo-
spatial Decentralized Application (GeodApp), we built DeLA
(Decentralized Land Administration) which main objective is
to implement on the Ethereum blockchain all the features of
the the open source SOLA-FAO (Solutions for Open Land Ad-
ministration) (FAO, 2017) which is a J2EE implementation that
has many uses cases in Africa and Asia. Using SOLA al-
lows us to incorporate international best practice and standards,
namely the ISO 19152:2012 standard - Geographic information
— Land Administration Domain Model (LADM)) (Van Oost-
erom et al., 2013).
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One of the major goals for porting this land registry solution
to the Etherum blockchain is the ability to use it as a crowd
sourcing land registry platform (Seufert, 2013) to collect tenure
relationships and as a tool for communities to assess and clarify
their tenure regimes so to protect the individual and collective
rights of their members.

The source code of this GeodApp is available on (BENAHMED
DAHO Ali, 2020b) and a working version, deployed on the
Rinkeby testnet, is live on (BENAHMED DAHO Ali, 2020c).

The class diagram on figure 4 illustrate the inheritance mechan-
ism used to easily implement specific business logic with solid-
ity smart contracts.

Figure 4. DeLA class Diagram

To illustrate the ability to reuse business logic on the Ether-
uem smart contracts, hereafter a code snipet of the claimParcel
function reusing the CSFeature addFeature modifier.

function

claimParcel(bytes15 dggsIndex,

bytes32 wkbHash,

string memory extAddr,

string memory label,

uint area,

string memory landUseCode,

LAParcel.CadastralTypeCode cadastralType)

public

addFeature(dggsIndex, wkbHash, msg.sender)

returns (bytes32) {

...

return csc;

}

5. BLOCKCHAIN BUSINESS MODELS

The adoption of the proof-of-concept described in this contri-
bution can open many business opportunities as those described
bellow and inspired from (Nitish Singh, 2018).

5.1 Developement plateform

The main goal of Crypto-Spatial is to deliver a framework of
geospatially enabled smart contracts and libraries for secure
GeodApps development. It will provide implementations of
standards like OGC Simple Features Access, OGC Discrete
Global Grid Systems, ISO 19107 Geographic information -
Spatial schema (ISO, 2008) and the FOAM protocol.

The smart contracts and libraries can be deployed, as-is or ex-
tended to suit business needs, as well as Solidity components
to build custom contracts and more complex decentralized sys-
tems.

After reaching certain maturity, this framework can be submit-
ted as a candidate to OpenZeppelin, or as an EIP (Ethereum
Improvement Proposal) for standardization by the community.

5.2 Blockchain as a service (BaaS)

To fully operate the DeLA platform, a set of permanently de-
ployed components are required. In addition to the geospatially
enabled smart contracts and libraries deployed on the Etheruem
network (test in the development phase and mainnet after) the
platform will require :

1. a mapping server with its geospatial database to store the
spatial features (The Feature Index). The final platform
can be implemented using PostgreSQL database, PostGIS
middleware and Geoserver webmapping server.

2. a frontend web server to store and publish the platform
Dashboard Application.

3. (optionally) a backend web server to manage business
logic tasks, mainly the smart contracts events handling
needed to catch the ledger recorded spatial features and
populate the Features Index (database)

The components 1 and 3 are by design a shared services that can
be easily monetized for further integration in custom blockchain
geospatially enabled applications, without the need to redeploy
them.

5.3 Blockchain based Software products

The DeLA (Decentralized Land Administration) platform
presented in this contribution is the first built prototype of a
GeodApp.

This prototype will serve as a fully operational demonstration of
the proposed approach and could therefore be used in a variety
of tastes, including :

1. Permissionless/Permissioned application for govern-
mental agencies responsible for land administration and
lacking critical resources to undertake there missions as
described in (McKay et al., 2016)

2. An open data crowd sourcing platform, like OpenStreet-
Map, delivering useful land parcel informations where no
authoritative or commercial data are available.

3. A building block for specific business case GeodApps us-
ing land information like Real estate, Investments valu-
ation, Social responsibility, Environmental protection,
Disaster management...
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6. CONCLUSION

In this paper we investigate the suitability of Blockchain Tech-
nology to serve as a data layer for geospatial features. We then
propose an open architecture for geospatially enabled decent-
ralized applications (GeodApps) based on Ethereum blockchain
and IPFS/OrbitDB peer-to-peer storage.

The main objective of this investigation have been reached and
the proposed design have been successfully implemented in
a proof-of-concept GeodApp which is live on the Ethereum
Rinkeby testnet and available for further test and improvement
as an open source project.

Main implications arising from those findings are summarized
on the Business models section and further works should be
done to port this solution to other type of protocols supporting
smart contracts but not using solidity, like Hyperledger fabric.
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