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ABSTRACT: 

 

One of the common problems at the intersection of geographical information science and transportation science is the estimation of 

origin-destination (OD) matrices. The emergence of sensor technologies offers unprecedented opportunities in this regard since 

massive amounts of traffic data can be collected in an easy way. Researchers and practitioners need to choose a suitable DataBase 

Management System (DBMS) among alternatives, such that storing and analysing traffic data to estimate the OD matrix is feasible. 

The aim of this paper is to compare the performance of two such notable DBMSs, PostgreSQL and MongoDB, in the context of OD 

matrix estimation. The experiments are carried out on New York City’s openly available taxi data on two different polygon sets: taxi 

zones and census blocks. These polygon layers consist of 263 and 38794 features respectively. The results suggest that Postgres 

outperforms MongoDB by generating the OD matrix instantly. The run time of MongoDB varies depending on the analysed time 

interval and follows a trip demand curve. As there are more trips involved in the generation of the OD matrix, so does the execution 

time increases in MongoDB. On the other hand, the query results are the same. Finally, the origin points of the taxi trips are visualised 

in QGIS using the ‘TimeManager’ plugin, and results are presented through a web-interface. 

 

1. INTRODUCTION 

Origin-Destination (OD) matrix is the representation of the travel 

demand between different origin and destination pairs of a study 

region. The OD matrix is a crucial input to a variety of research 

interests ranging from traffic simulation modelling to 

understanding mobility patterns and developing effective 

transportation systems. The cell value of an OD matrix represents 

the traffic flow between an individual OD pair. The progress in 

information technology plays a key role to increase the quality of 

an estimated OD matrix (Munizaga and Palma, 2012).  

 

Using probe vehicles to estimate an OD matrix is an emerging 

research interest due to the pervasive availability of vehicle 

tracking technology. In this way, time-stamped location data of a 

vehicle can be collected. Taxis are considered to be a valuable 

resource in this context due to their fine granularity in space and 

time (Garcia et al., 2018). Considering that there can be 

thousands of taxis in an urban environment, where each one 

makes tens of journeys in a day, it is easy to imagine the growth 

of data to analyse. Consequently, practitioners need to identify 

the correct DataBase Management System (DBMS) to store 

collected data. 

 

There are two main types of DBMSs: relational and non-

relational. Relational databases store data in tables, which is the 

traditional approach to manage data. Relationships between 

tables are established during the database design phase, which 

means that data are logically consistent. Relational databases 

follow the Atomicity, Consistency, Isolation and Durability, also 

referred to as ACID, meaning that each transaction is processed 

reliably (Sveen, 2019). On the other hand, non-relational 

databases also called NoSQL (Not Only SQL) do not follow a 

pre-defined schema. NoSQL databases are widely used in recent 

years due to the pervasive use of web and mobile technologies. 

Non-relational databases do not establish relationships between 

tables such as relational databases. Therefore, non-relational 
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databases are suitable when in streaming data, where it might be 

difficult to establish relationships or define a schema. Since non-

relational DBMSs are suitable for real-time and dynamic data, 

web-based systems usually rely on them (Bugiotti et al., 2014). 

Managing large volumes of traffic data through the web is also 

gaining importance due to the real-time estimation of traffic 

volume. 

 

Traffic volume increases with increasing population every year. 

Therefore, estimating traffic demand in real-time is an important 

problem. Furthermore, it is very important for planning and 

optimization of transportation management. For example, OD 

taxi demand prediction helps dynamic allocation of resources to 

meet travel demand and to reduce empty taxis on the streets (Xian 

et al., 2020). In this way, wasted energy, as well as traffic 

congestion, can be reduced. Therefore, the correct choice of 

DBMS becomes even more important in this case. Even though 

the necessity to rely on a DBMS to store and analyse traffic data 

to estimate the OD matrix is evident, there is no study comparing 

the performance of different DBMS. 

 

The aim of this paper is to compare the performance of two 

commonly used DBMSs, PostgreSQL (Postgres) and MongoDB, 

regarding the estimation of the OD matrix. The performance is 

measured in two aspects: spatial accuracy and run-time. The 

former DBMS has a natural linkage with QGIS due to its 

relational structure, whereas the latter is non-relational DBMS 

(NoSQL) that is commonly used in web-based applications 

(Gebetsroither-Geringer et al., 2018). In order to make the 

experimental results repeatable and improve their development, 

the source code of this research is shared on GitHub (Coskun, 

2020). 

 

The remainder of this paper is organised as follows. The second 

section provides the literature review regarding the use of origin-

destination matrixes and comparison of spatial databases. The 
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third section provides the methodology of the paper. The fourth 

section provides the results on a large-scale taxi dataset and 

visualisation of origin taxi trips. Finally, the fifth section 

concludes the paper by providing a discussion of the results and 

their implications for future studies. 

 

2. LITERATURE REVIEW 

There are a remarkable number of DBMSs in the market. 

Specifically, 354 DBMSs are listed and compared based on their 

popularity on the database ranking site db-engines.com as of 

March 2020. Therefore, management of data becomes more 

important and complex. Performance comparison of databases is 

a prequisite to understand their effectiveness in certain situations.   

 

Recent research evidence compares the performance of relational 

DBMS and non-relational DBMS, in which MySQL and 

MongoDB are used respectively (Deari et al., 2018). This 

research shows that MongoDB is a serious competitive DBMS 

compared to MySQL and it outperforms relational databases in 

some situations, especially when the data are not structured and 

simple to handle. Some researchers have already started 

investigating the performance of spatial queries of different 

database management systems. For example, Postgres and 

MongoDB are compared based on the K-Nearest Neighbour 

(KNN) query and it is found out that MongoDB is not only faster 

but also more spatially accurate than Postgres on a large taxi 

dataset (Coşkun et al., 2019).  

 

Indexing of the data is applied to speed up the query in databases. 

Spatial data can also be indexed using various data structures 

including R-trees, kd trees or quadtrees. Indexing method is 

important as it can significantly improve query performance. One 

of the widely used spatial index structures is R-trees. An 

investigation of performance comparison on R-trees methods, 

such as the Hilbert R-tree and the SR-tree, shows that traditional 

R-trees may not be the most efficient way of spatial indexing, and 

one of the special method of R-tree which is ‘R-tree CR’ are 

better in terms of point queries (Ciferri et al., 2003). 

 

Consequently, in order to effectively identify an OD matrix, 

researchers need to store their historical and real-time traffic data 

in a DBMS (Lederman and Wynter, 2011). The spatial query that 

is required to determine the OD matrix is referred to as point-in-

polygon (pip) query. Different DBMS is used to estimate the OD 

matrix. For example, MySQL is used to estimate the OD matrix 

using a transit passenger trip (Li et al., 2011). Another research 

that investigated 60K distance computation per second utilised 

Postgres (Peng et al., 2018). In some other researches that 

mention the keyword ‘database’, it might not be clear which 

DBMS they relied on. For example, research on the estimation of 

OD matrix using time-dependent traffic information (Cho et al., 

2009), and using smartcard and GPS data (Munizaga et al., 2014) 

have not specified the DBMS they relied on. 

 

Different methods can be used to estimate an OD matrix. The 

traditional method which is Levenshtein Distance (LD) is a string 

metric for measuring the difference between two nodes. A study 

on the OD matrix tries to develop this method and offers 

Normalised Levenshtein Distance method for OD matrices 

(NLOD). The sensitivity analysis shows that NLOD gives more 

robust statistical results according to the LD method (Behara et 

al., 2020).  

 

Most of the existing research identified the OD matrix on a 

desktop environment. Recent research efforts; however, also 

focus on a web-based environment.  A web GIS was developed 

based on the New York taxi data set, which has approximately 

170 million taxi trips, investigated point-in-polygon queries. The 

most important feature of this study was that no database is used, 

and data were stored in JSON files only. Additionally, point-in-

polygon query was applied using JavaScript. However, the 

experiment relied on only two polygons, and the query time took 

about 300 milliseconds on the backend side (Zhang et al., 2015). 

In the results, only the working time of the query in the backend 

is given, and reporting the total execution times might be equally 

important. 

 

3. METHODOLOGY 

The proposed methodology assesses the performance of Postgres 

and MongoDB on run-time and comparison of the OD matrices. 

Three inputs are required from the user: date 𝑑, time range 𝛥𝑡, 

and top K OD pairs. The parameter 𝑑 is one day within analysis 

period, and 𝛥𝑡 defines the time interval of analysis in minutes. 

Specifically, the OD matrix is generated for 𝑡 =
 {1,2, … , (24 ∗ 60) 𝛥𝑡⁄ } intervals within a day. Visualisation of 

all OD pairs which had at least one trip would be difficult to 

comprehend due to a large number of regions and taxi trips. 

Therefore, this research is interested in the top-K OD pairs that 

occurred within the analysed date d for each of the time interval 

t. Consequently, for an analysed time interval t there are K tuples 

with the following form: < 𝑂𝑘
𝑡 , 𝐷𝑘

𝑡  , 𝑦𝑘
𝑡 > , where 𝑘 =

 {1,2, … , 𝐾}, and 𝑦𝑘
𝑡  denotes the number of trips that occurred 

from 𝑂𝑘
𝑡  to 𝐷𝑘

𝑡  at the analysed time interval t. The following 

relation holds 𝑦𝑖
𝑡 ≥ 𝑦𝑗

𝑡 , ∀𝑖 < 𝑗. The methodology is illustrated in 

Figure 1. 

 

 
Figure 1. Methodology 

 

Indexing improves data operations on a database table like 

searching, updating etc. There are lots of methods to index data 

like B-tree, R-tree etc (Nguyen, 2009). Which method to choose 

depends on the data type. Generalized search three (gist) is one 

of the most popular spatial indexes in Postgres. It is not 

mandatory to create a spatial index in Postgres. On the other 

hand, indexing is mandatory in MongoDB to run a spatial query. 

Therefore, ‘2Dsphere’ spatial index is used in MongoDB. The 

geometries are calculated on a sphere in this method. 

Consequently, ‘gist’ and ‘2Dsphere’ are used to index taxi trip 

start and end locations, for both of the polygon layers (i.e. taxi 

zones and census blocks). 

 

User Input
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The OD matrix can be identified in just a single query in Postgres. 

Two tables are required, which are trips and polygons data. Trips 

table contains whole trips of the year 2015. On the other hand, 

‘poly’ represents the polygon layers, which might either be taxi 

zones or census blocks. The PostGIS function that finds the 

polygon which a point is in is ‘st_contains’. In the where 

condition, start and end refer to the start time and end time of the 

analysis, respectively. Different time intervals are analysed in 

this paper to have a better understanding of its effect on the 

execution time. Point-in-polygon (pip) query in Postgres is 

shown in Figure 2. 

 

 
Figure 2. Postgres – pip query  

 

In MongoDB, pip query is more complicated than Postgres. It is 

not possible to obtain the OD matrix in a single query. 

Specifically, two queries are required to determine the OD 

matrix. The queries will be used are shown in Figure 3. 

 

 
Figure 3. MongoDB – pip query 

 

The nyc2015 is the collection name. First query filters data 

according to date time. In condition, start and end refer to the 

analysis period that the OD matrix is generated. The second 

query finds point in polygons with the aid of geoIntersects 

function. Additionally, the second query is run twice for pickup 

and dropoff locations. All of these processes complicate what is 

a single query in Postgres.  

 

3.1 Visualisation of Data 

This section describes how to visualise the results. Queries are 

executed within a Python 3.7 code written in Spyder Integrated 

Development Environment (IDE). The results of the OD matrix 

are exported as a txt file. Visualisation of the txt file will be 

provided via the QGIS plugin entitled ‘Time Manager’. The steps 

are illustrated in Figure 4. 

 

 
Figure 4. Methodology of visualisation 

 

4. RESULTS 

The experiments are carried out on openly available taxi dataset 

of New York City (TLC, 2019). Each taxi trip is defined by 19 

attributes including, but not limited to, the pickup and dropoff 

locations, and start and end time of the trip. In addition, two 

polygon layers are utilised that correspond to taxi zones and 

census blocks. An exemplar data is illustrated in Figure 5. 

 

 
Figure 5. A sample view of pickup locations, taxi zones and 

census blocks 

 

The overview of the systems and the data that are used in the 

analyses are provided in Table 1. All the experiments are carried 

out on a computer having a 16 GB RAM with a CPU of 3.60 

GHz. 

 

 Postgres MongoDB 

Version 
9.6.11 with 

PostGIS 2.5 
4.1.6 

Licence 
PostgreSQL 

License 

GNU  

AGPL v3.0 

Gui pgAdmin III Studio 3T 

Spatial Index Gist 2dsphere 

Temporal Index Btree Ascending 

Size on Disk 27.5 GB 22.3 GB 

Total trips 144,112,989 

Table 1. Overall view of the DBMSs 

 

Two types of analysis have been carried out. One day analysis is 

carried out on a selected random day. The parameters are kept 

constant to form preliminary ideas. The second part is general 

analysis describes changing parameters on a selected random 

Select z1.gid as origin_zone, z2.gid as destination_zone, count(*) 

as total_trips

From trips

Full Join  poly  z1 on St_Contains (z1.geom, t.l_pickup)

Full Join  poly  z2 on St_Contains (z2.geom, t.l_dropoff)

Where t.t_pickup >=  start  and t.t_pickup <=  end 

Group By z1.gid, z2.gid

Order By total_trips desc

db.nyc2015.find( {

    $and: [

    $Properties.tpep_pickup_datetime: 

{ $gte:  Start   }, 

{ $lt:  End   } ] } )

db.nyc2015.find( {

    $geometry_pk: {

      $geoIntersects: {

          $geometry: {

            type: "Point",

            coordinates: [p.x, p.y] } } } ) x2

OD Matrix Txt 

File

QGIS 

(TimeManager)

Visualisation
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day. The results obtained in this section will add further support 

to the ones obtained in the former section.  

  

4.1 One Day Analysis 

The first experiment is executed with a random day d being 2 

February 2015, 𝛥𝑡 = 120 minutes, and 𝐾 = 3. The OD matrix is 

generated based on the taxi zones consisting of 263 polygons. It 

should be noted that some pickup or dropoff locations might not 

fall into a region. In such cases the corresponding 𝑂𝑘
𝑡  or 𝐷𝑘

𝑡  values 

will be ‘None’. OD matrix generation time of Postgres and 

MongoDB is illustrated in Figure 6.  

 

 
Figure 6. Time comparison of the Query result for taxi zones 

 

Postgres executes almost instantly for taxi zones. On the other 

hand, MongoDB followed a trip demand curve where the 

execution lasted longer in morning and afternoon peak periods. 

As there are more taxi trips occurring at these intervals, so does 

the execution time last longer in MongoDB. 

 

Additionally, the OD matrix is generated based on the census 

blocks consisting of 65K polygons. The same parameters are 

used, and run times are recorded accordingly. Census blocks OD 

matrix generation time of Postgres and MongoDB is illustrated 

in Figure 7.  

 

 
Figure 7. Time comparison of the Query result for census 

blocks 

 

Consequently, the run time of queries are very close to each other 

for taxi zones and census blocks. Postgres produced almost 

instantly again. However, MongoDB execution times vary 

depending on the analysed time interval. The main reason of this 

that the query cannot be made directly in MongoDB, and 

execution time increases with the number of trips occurred in the 

analysed time interval. Therefore, the execution time follows a 

similar trend with what we would expect to see in terms of taxi 

demand. It is also important to highlight that the number of 

polygons did not affect the execution time of the query.  

 

4.2 General Analysis 

Secondly, the tuples < 𝑂𝑘
𝑡 , 𝐷𝑘

𝑡 , 𝑦𝑘
𝑡 > obtained from Postgres are 

compared with the ones obtained from MongoDB for different 

time intervals 𝛥𝑡 =  {15,30,60,120}, and for different 𝐾 =
 {3,10,100}. In addition, taxi zones and census blocks are used in 

this experiment. All these queries run times and results are saved. 

As a result, average run times are calculated for each K value 

separated by time intervals. Average execution times for 

MongoDB are shown in Figure 8. 

 
Figure 8. MongoDB run times of queries 

 

As expected, query time increased with a time interval. Sum of 

the query time is approximately seven seconds when 𝛥𝑡 =
15 minutes. Furthermore, run times are approximately 12, 24 

and 48 seconds when 𝛥𝑡 = {30, 60,120} respectively. On the 

other hand, results show that query of times is independent from 

K and number of zones. For example, query time is about 24 

seconds when K=3 and 𝛥𝑡 = 60 minutes. It is similar to what had 

been observed when K= {10,100} with 𝛥𝑡 = 60 minutes. 

Unexpectedly, number of zones does not change this time. Taxi 

zone and census results are very similar to each other. The same 

queries are applied in Postgres and results are shown in Figure 9. 

 

 
Figure 9. Postgres run times of queries 

 

Postgres query run times very different from MongoDB. The 

results are found instantly by Postgres. The query of times close 

to 0.002 seconds when K=3 regardless of time interval and 

number of zones. The sensitivity analysis demonstrates that the 

query execution time increases with the K value and time interval 

although this increase is meaningless with that scale. The 

maximum query time is 0.005 seconds when K=100 and 𝛥𝑡 =
120 minutes on census data. Consequently, Postgres gave the 
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results almost instantly, and it is much faster than MongoDB. 

After that, the results are compared based on spatial accuracy.  

 

4.3 Spatial Accuracy 

The results suggest a match between the results; however, the 

order of tuples might vary when 𝑦𝑘
𝑡  is equal to 𝑦𝑘+1

𝑡 . Please note 

that some regions have the same number of different trips. In such 

cases, although the databases give different travel numbers, they 

are considered to be the same. Consequently, Postgres and 

MongoDB gave exactly the same OD matrix. 

 

4.4 Visualisation 

An open-source code has been developed to visualise of OD 

matrix via QGIS time manager plugin. Therefore, the importance 

of reporting the top K OD pairs becomes clear. The results are 

recorded as a video and shared on YouTube, which demonstrates 

the clutter once K value increases on the pickup of trips (Coskun 

B, 2020). Examples of screenshots taken when the top-K origins 

are visualised by QGIS time manager for 𝛥𝑡 = 15 when K= {3, 

10, 100} at 20.00 pm in Figure 10.  

 

 
Figure 10. Origin taxi trip visualisation on taxi zones 𝛥𝑡 = 15 

minutes at 20.00 pm on 2015-02-02 of a) k=3 b) k=10 c) k=100 

 

The first observation is related to the traffic density in the 

Manhattan region. In addition, it is observed that taxi demand is 

also intense at JFK airport. Secondly, as seen from the figures, 

the complexity increases with the increasing number of K. 

Consequently, there is an inverse proportion between the K value 

and legibility. It should also be highlighted that only the top-K 

origins are visualised, and once all the OD pairs are visualised 

the legibility will reduce substantially. Therefore, having a K 

value fit-for-purpose is important. On the other hand, census 

blocks have much more polygons than taxi zones. Consequently, 

relying on census blocks might be an ineffective choice.  

 

4.5 Web GIS 

The Postgres queries discussed in this paper are transferred to a 

dedicated website – http://nyc.hacettepe.edu.tr/. It is important to 

provide a web GIS environment to facilitate queries to detect OD 

matrix so that results can be investigated easily. In addition, it 

will be possible to experiment on how the performance varies on 

a desktop and web environment. An exemplar image of the 

website is shown in Figure 11. 

 

 
Figure 11. The interactive web interface to conduct OD analysis  

 

There are two types of regions, taxi zones and census blocks 

under the menu ‘Polygon Types’. Three types of queries are 

present under the ‘Queries’ tab. Once a polygon is selected the 

first query, ‘Origin->Destination’, asks the user to provide a time 

interval, and the query returns the number of trips that originated 

from this polygon to other polygons as a CSV file. The second 

query, ‘Destination->Origin’ assumes the selected polygon is the 

destination zone and identifies the number of trips from other 

polygons that ended up in this polygon. Finally, the top-K OD 

query determines the top K OD pairs in the provided time 

interval, which is the same query that is investigated in the 

previous sections.  

 

5. CONCLUSION AND DISCUSSION 

The travel demand between origin and destination polygons can 

be captured within an OD matrix, which has an important role in 

various real-world problems including, transportation planning, 

urban and regional planning. With the growing technology, it 

becomes more important to do this in real-time. However, 

performance benchmark tests are required to have an informed 

decision regarding the correct choice of DBMS to store data. In 

this way, researchers can have a better understanding of the 

performance of different DBMS and how they operate.  

 

The experiments carried out in this paper relied on the openly 

available New York yellow taxi data set obtained in 2015, which 

 
(a) 

 

 
(b) 

 

 
(c) 
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consists of about 144 million trips. Additionally, two different 

polygon data, taxi zones and census blocks are utilised to identify 

the OD matrix through a point-in-polygon query. Two different 

DBMS are analysed: Postgres and MongoDB, a representative of 

relational and NoSQL DBMS respectively.  

 

Results show that Postgres performed queries much faster than 

MongoDB. In addition, obtained OD matrices are compared in 

terms of spatial accuracy, and it is identified that both DBMS 

provide the same results. Consequently, this paper suggests that 

Postgres with PostGIS extension is better than MongoDB on 

point-in-polygon query. In addition, different tools are 

investigated to visualise the results. First, ‘Time Manager’ plugin 

is utilised to demonstrate the top K origin polygons in a given 

time interval. This visualisation demonstrated the importance of 

relying on the K parameter rather than displaying all the possible 

polygons that generated trips. In addition, an interactive web 

interface is developed to provide users with an online means of 

querying data to conduct OD analysis. Future work will focus on 

improving the performance of web GIS queries. The 

effectiveness of different OSGeo tools such as GeoMesa or 

GeoWave can be investigated in this regard.  
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