
PERFORMANCE MATTERS ON IDENTIFICATION OF ORIGIN-DESTINATION

MATRIX ON BIG GEOSPATIAL DATA

İ. B. Coşkun 1, A. Çakır1, B. Anbaroğlu 1*
1 Dept. of Geomatics Engineering, Hacettepe University, Turkey – (ihsan.coskun, abdulkadircakir, banbar)@hacettepe.edu.tr

Commission IV, WG IV/7

KEY WORDS: point-in-polygon, origin-destination, database performance, GIS, visualisation

ABSTRACT:

One of the common problems at the intersection of geographical information science and transportation science is the estimation of

origin-destination (OD) matrices. The emergence of sensor technologies offers unprecedented opportunities in this regard since

massive amounts of traffic data can be collected in an easy way. Researchers and practitioners need to choose a suitable DataBase

Management System (DBMS) among alternatives, such that storing and analysing traffic data to estimate the OD matrix is feasible.

The aim of this paper is to compare the performance of two such notable DBMSs, PostgreSQL and MongoDB, in the context of OD

matrix estimation. The experiments are carried out on New York City’s openly available taxi data on two different polygon sets: taxi

zones and census blocks. These polygon layers consist of 263 and 38794 features respectively. The results suggest that Postgres

outperforms MongoDB by generating the OD matrix instantly. The run time of MongoDB varies depending on the analysed time

interval and follows a trip demand curve. As there are more trips involved in the generation of the OD matrix, so does the execution

time increases in MongoDB. On the other hand, the query results are the same. Finally, the origin points of the taxi trips are visualised

in QGIS using the ‘TimeManager’ plugin, and results are presented through a web-interface.

1. INTRODUCTION

Origin-Destination (OD) matrix is the representation of the travel

demand between different origin and destination pairs of a study

region. The OD matrix is a crucial input to a variety of research

interests ranging from traffic simulation modelling to

understanding mobility patterns and developing effective

transportation systems. The cell value of an OD matrix represents

the traffic flow between an individual OD pair. The progress in

information technology plays a key role to increase the quality of

an estimated OD matrix (Munizaga and Palma, 2012).

Using probe vehicles to estimate an OD matrix is an emerging

research interest due to the pervasive availability of vehicle

tracking technology. In this way, time-stamped location data of a

vehicle can be collected. Taxis are considered to be a valuable

resource in this context due to their fine granularity in space and

time (Garcia et al., 2018). Considering that there can be

thousands of taxis in an urban environment, where each one

makes tens of journeys in a day, it is easy to imagine the growth

of data to analyse. Consequently, practitioners need to identify

the correct DataBase Management System (DBMS) to store

collected data.

There are two main types of DBMSs: relational and non-

relational. Relational databases store data in tables, which is the

traditional approach to manage data. Relationships between

tables are established during the database design phase, which

means that data are logically consistent. Relational databases

follow the Atomicity, Consistency, Isolation and Durability, also

referred to as ACID, meaning that each transaction is processed

reliably (Sveen, 2019). On the other hand, non-relational

databases also called NoSQL (Not Only SQL) do not follow a

pre-defined schema. NoSQL databases are widely used in recent

years due to the pervasive use of web and mobile technologies.

Non-relational databases do not establish relationships between

tables such as relational databases. Therefore, non-relational

* Corresponding author

databases are suitable when in streaming data, where it might be

difficult to establish relationships or define a schema. Since non-

relational DBMSs are suitable for real-time and dynamic data,

web-based systems usually rely on them (Bugiotti et al., 2014).

Managing large volumes of traffic data through the web is also

gaining importance due to the real-time estimation of traffic

volume.

Traffic volume increases with increasing population every year.

Therefore, estimating traffic demand in real-time is an important

problem. Furthermore, it is very important for planning and

optimization of transportation management. For example, OD

taxi demand prediction helps dynamic allocation of resources to

meet travel demand and to reduce empty taxis on the streets (Xian

et al., 2020). In this way, wasted energy, as well as traffic

congestion, can be reduced. Therefore, the correct choice of

DBMS becomes even more important in this case. Even though

the necessity to rely on a DBMS to store and analyse traffic data

to estimate the OD matrix is evident, there is no study comparing

the performance of different DBMS.

The aim of this paper is to compare the performance of two

commonly used DBMSs, PostgreSQL (Postgres) and MongoDB,

regarding the estimation of the OD matrix. The performance is

measured in two aspects: spatial accuracy and run-time. The

former DBMS has a natural linkage with QGIS due to its

relational structure, whereas the latter is non-relational DBMS

(NoSQL) that is commonly used in web-based applications

(Gebetsroither-Geringer et al., 2018). In order to make the

experimental results repeatable and improve their development,

the source code of this research is shared on GitHub (Coskun,

2020).

The remainder of this paper is organised as follows. The second

section provides the literature review regarding the use of origin-

destination matrixes and comparison of spatial databases. The

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2020, 2020
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-449-2020 | © Authors 2020. CC BY 4.0 License.

449

third section provides the methodology of the paper. The fourth

section provides the results on a large-scale taxi dataset and

visualisation of origin taxi trips. Finally, the fifth section

concludes the paper by providing a discussion of the results and

their implications for future studies.

2. LITERATURE REVIEW

There are a remarkable number of DBMSs in the market.

Specifically, 354 DBMSs are listed and compared based on their

popularity on the database ranking site db-engines.com as of

March 2020. Therefore, management of data becomes more

important and complex. Performance comparison of databases is

a prequisite to understand their effectiveness in certain situations.

Recent research evidence compares the performance of relational

DBMS and non-relational DBMS, in which MySQL and

MongoDB are used respectively (Deari et al., 2018). This

research shows that MongoDB is a serious competitive DBMS

compared to MySQL and it outperforms relational databases in

some situations, especially when the data are not structured and

simple to handle. Some researchers have already started

investigating the performance of spatial queries of different

database management systems. For example, Postgres and

MongoDB are compared based on the K-Nearest Neighbour

(KNN) query and it is found out that MongoDB is not only faster

but also more spatially accurate than Postgres on a large taxi

dataset (Coşkun et al., 2019).

Indexing of the data is applied to speed up the query in databases.

Spatial data can also be indexed using various data structures

including R-trees, kd trees or quadtrees. Indexing method is

important as it can significantly improve query performance. One

of the widely used spatial index structures is R-trees. An

investigation of performance comparison on R-trees methods,

such as the Hilbert R-tree and the SR-tree, shows that traditional

R-trees may not be the most efficient way of spatial indexing, and

one of the special method of R-tree which is ‘R-tree CR’ are

better in terms of point queries (Ciferri et al., 2003).

Consequently, in order to effectively identify an OD matrix,

researchers need to store their historical and real-time traffic data

in a DBMS (Lederman and Wynter, 2011). The spatial query that

is required to determine the OD matrix is referred to as point-in-

polygon (pip) query. Different DBMS is used to estimate the OD

matrix. For example, MySQL is used to estimate the OD matrix

using a transit passenger trip (Li et al., 2011). Another research

that investigated 60K distance computation per second utilised

Postgres (Peng et al., 2018). In some other researches that

mention the keyword ‘database’, it might not be clear which

DBMS they relied on. For example, research on the estimation of

OD matrix using time-dependent traffic information (Cho et al.,

2009), and using smartcard and GPS data (Munizaga et al., 2014)

have not specified the DBMS they relied on.

Different methods can be used to estimate an OD matrix. The

traditional method which is Levenshtein Distance (LD) is a string

metric for measuring the difference between two nodes. A study

on the OD matrix tries to develop this method and offers

Normalised Levenshtein Distance method for OD matrices

(NLOD). The sensitivity analysis shows that NLOD gives more

robust statistical results according to the LD method (Behara et

al., 2020).

Most of the existing research identified the OD matrix on a

desktop environment. Recent research efforts; however, also

focus on a web-based environment. A web GIS was developed

based on the New York taxi data set, which has approximately

170 million taxi trips, investigated point-in-polygon queries. The

most important feature of this study was that no database is used,

and data were stored in JSON files only. Additionally, point-in-

polygon query was applied using JavaScript. However, the

experiment relied on only two polygons, and the query time took

about 300 milliseconds on the backend side (Zhang et al., 2015).

In the results, only the working time of the query in the backend

is given, and reporting the total execution times might be equally

important.

3. METHODOLOGY

The proposed methodology assesses the performance of Postgres

and MongoDB on run-time and comparison of the OD matrices.

Three inputs are required from the user: date 𝑑, time range 𝛥𝑡,

and top K OD pairs. The parameter 𝑑 is one day within analysis

period, and 𝛥𝑡 defines the time interval of analysis in minutes.

Specifically, the OD matrix is generated for 𝑡 =
 {1,2, … , (24 ∗ 60) 𝛥𝑡⁄ } intervals within a day. Visualisation of

all OD pairs which had at least one trip would be difficult to

comprehend due to a large number of regions and taxi trips.

Therefore, this research is interested in the top-K OD pairs that

occurred within the analysed date d for each of the time interval

t. Consequently, for an analysed time interval t there are K tuples

with the following form: < 𝑂𝑘
𝑡 , 𝐷𝑘

𝑡 , 𝑦𝑘
𝑡 > , where 𝑘 =

 {1,2, … , 𝐾}, and 𝑦𝑘
𝑡 denotes the number of trips that occurred

from 𝑂𝑘
𝑡 to 𝐷𝑘

𝑡 at the analysed time interval t. The following

relation holds 𝑦𝑖
𝑡 ≥ 𝑦𝑗

𝑡 , ∀𝑖 < 𝑗. The methodology is illustrated in

Figure 1.

Figure 1. Methodology

Indexing improves data operations on a database table like

searching, updating etc. There are lots of methods to index data

like B-tree, R-tree etc (Nguyen, 2009). Which method to choose

depends on the data type. Generalized search three (gist) is one

of the most popular spatial indexes in Postgres. It is not

mandatory to create a spatial index in Postgres. On the other

hand, indexing is mandatory in MongoDB to run a spatial query.

Therefore, ‘2Dsphere’ spatial index is used in MongoDB. The

geometries are calculated on a sphere in this method.

Consequently, ‘gist’ and ‘2Dsphere’ are used to index taxi trip

start and end locations, for both of the polygon layers (i.e. taxi

zones and census blocks).

User Input
Point in Polygon

(PIP)

Point in Polygon

(PIP)

Data Input

Max K OD-pairs

Evaluation

-Date d

-Time Range Δt

-Top k OD pairs

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2020, 2020
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-449-2020 | © Authors 2020. CC BY 4.0 License.

450

The OD matrix can be identified in just a single query in Postgres.

Two tables are required, which are trips and polygons data. Trips

table contains whole trips of the year 2015. On the other hand,

‘poly’ represents the polygon layers, which might either be taxi

zones or census blocks. The PostGIS function that finds the

polygon which a point is in is ‘st_contains’. In the where

condition, start and end refer to the start time and end time of the

analysis, respectively. Different time intervals are analysed in

this paper to have a better understanding of its effect on the

execution time. Point-in-polygon (pip) query in Postgres is

shown in Figure 2.

Figure 2. Postgres – pip query

In MongoDB, pip query is more complicated than Postgres. It is

not possible to obtain the OD matrix in a single query.

Specifically, two queries are required to determine the OD

matrix. The queries will be used are shown in Figure 3.

Figure 3. MongoDB – pip query

The nyc2015 is the collection name. First query filters data

according to date time. In condition, start and end refer to the

analysis period that the OD matrix is generated. The second

query finds point in polygons with the aid of geoIntersects

function. Additionally, the second query is run twice for pickup

and dropoff locations. All of these processes complicate what is

a single query in Postgres.

3.1 Visualisation of Data

This section describes how to visualise the results. Queries are

executed within a Python 3.7 code written in Spyder Integrated

Development Environment (IDE). The results of the OD matrix

are exported as a txt file. Visualisation of the txt file will be

provided via the QGIS plugin entitled ‘Time Manager’. The steps

are illustrated in Figure 4.

Figure 4. Methodology of visualisation

4. RESULTS

The experiments are carried out on openly available taxi dataset

of New York City (TLC, 2019). Each taxi trip is defined by 19

attributes including, but not limited to, the pickup and dropoff

locations, and start and end time of the trip. In addition, two

polygon layers are utilised that correspond to taxi zones and

census blocks. An exemplar data is illustrated in Figure 5.

Figure 5. A sample view of pickup locations, taxi zones and

census blocks

The overview of the systems and the data that are used in the

analyses are provided in Table 1. All the experiments are carried

out on a computer having a 16 GB RAM with a CPU of 3.60

GHz.

 Postgres MongoDB

Version
9.6.11 with

PostGIS 2.5
4.1.6

Licence
PostgreSQL

License

GNU

AGPL v3.0

Gui pgAdmin III Studio 3T

Spatial Index Gist 2dsphere

Temporal Index Btree Ascending

Size on Disk 27.5 GB 22.3 GB

Total trips 144,112,989

Table 1. Overall view of the DBMSs

Two types of analysis have been carried out. One day analysis is

carried out on a selected random day. The parameters are kept

constant to form preliminary ideas. The second part is general

analysis describes changing parameters on a selected random

Select z1.gid as origin_zone, z2.gid as destination_zone, count(*)

as total_trips

From trips

Full Join poly z1 on St_Contains (z1.geom, t.l_pickup)

Full Join poly z2 on St_Contains (z2.geom, t.l_dropoff)

Where t.t_pickup >= start and t.t_pickup <= end

Group By z1.gid, z2.gid

Order By total_trips desc

db.nyc2015.find({

 $and: [

 $Properties.tpep_pickup_datetime:

{ $gte: Start },

{ $lt: End }] })

db.nyc2015.find({

 $geometry_pk: {

 $geoIntersects: {

 $geometry: {

 type: "Point",

 coordinates: [p.x, p.y] } } }) x2

OD Matrix Txt

File

QGIS

(TimeManager)

Visualisation

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2020, 2020
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-449-2020 | © Authors 2020. CC BY 4.0 License.

451

day. The results obtained in this section will add further support

to the ones obtained in the former section.

4.1 One Day Analysis

The first experiment is executed with a random day d being 2

February 2015, 𝛥𝑡 = 120 minutes, and 𝐾 = 3. The OD matrix is

generated based on the taxi zones consisting of 263 polygons. It

should be noted that some pickup or dropoff locations might not

fall into a region. In such cases the corresponding 𝑂𝑘
𝑡 or 𝐷𝑘

𝑡 values

will be ‘None’. OD matrix generation time of Postgres and

MongoDB is illustrated in Figure 6.

Figure 6. Time comparison of the Query result for taxi zones

Postgres executes almost instantly for taxi zones. On the other

hand, MongoDB followed a trip demand curve where the

execution lasted longer in morning and afternoon peak periods.

As there are more taxi trips occurring at these intervals, so does

the execution time last longer in MongoDB.

Additionally, the OD matrix is generated based on the census

blocks consisting of 65K polygons. The same parameters are

used, and run times are recorded accordingly. Census blocks OD

matrix generation time of Postgres and MongoDB is illustrated

in Figure 7.

Figure 7. Time comparison of the Query result for census

blocks

Consequently, the run time of queries are very close to each other

for taxi zones and census blocks. Postgres produced almost

instantly again. However, MongoDB execution times vary

depending on the analysed time interval. The main reason of this

that the query cannot be made directly in MongoDB, and

execution time increases with the number of trips occurred in the

analysed time interval. Therefore, the execution time follows a

similar trend with what we would expect to see in terms of taxi

demand. It is also important to highlight that the number of

polygons did not affect the execution time of the query.

4.2 General Analysis

Secondly, the tuples < 𝑂𝑘
𝑡 , 𝐷𝑘

𝑡 , 𝑦𝑘
𝑡 > obtained from Postgres are

compared with the ones obtained from MongoDB for different

time intervals 𝛥𝑡 = {15,30,60,120}, and for different 𝐾 =
 {3,10,100}. In addition, taxi zones and census blocks are used in

this experiment. All these queries run times and results are saved.

As a result, average run times are calculated for each K value

separated by time intervals. Average execution times for

MongoDB are shown in Figure 8.

Figure 8. MongoDB run times of queries

As expected, query time increased with a time interval. Sum of

the query time is approximately seven seconds when 𝛥𝑡 =
15 minutes. Furthermore, run times are approximately 12, 24

and 48 seconds when 𝛥𝑡 = {30, 60,120} respectively. On the

other hand, results show that query of times is independent from

K and number of zones. For example, query time is about 24

seconds when K=3 and 𝛥𝑡 = 60 minutes. It is similar to what had

been observed when K= {10,100} with 𝛥𝑡 = 60 minutes.

Unexpectedly, number of zones does not change this time. Taxi

zone and census results are very similar to each other. The same

queries are applied in Postgres and results are shown in Figure 9.

Figure 9. Postgres run times of queries

Postgres query run times very different from MongoDB. The

results are found instantly by Postgres. The query of times close

to 0.002 seconds when K=3 regardless of time interval and

number of zones. The sensitivity analysis demonstrates that the

query execution time increases with the K value and time interval

although this increase is meaningless with that scale. The

maximum query time is 0.005 seconds when K=100 and 𝛥𝑡 =
120 minutes on census data. Consequently, Postgres gave the

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2020, 2020
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-449-2020 | © Authors 2020. CC BY 4.0 License.

452

results almost instantly, and it is much faster than MongoDB.

After that, the results are compared based on spatial accuracy.

4.3 Spatial Accuracy

The results suggest a match between the results; however, the

order of tuples might vary when 𝑦𝑘
𝑡 is equal to 𝑦𝑘+1

𝑡 . Please note

that some regions have the same number of different trips. In such

cases, although the databases give different travel numbers, they

are considered to be the same. Consequently, Postgres and

MongoDB gave exactly the same OD matrix.

4.4 Visualisation

An open-source code has been developed to visualise of OD

matrix via QGIS time manager plugin. Therefore, the importance

of reporting the top K OD pairs becomes clear. The results are

recorded as a video and shared on YouTube, which demonstrates

the clutter once K value increases on the pickup of trips (Coskun

B, 2020). Examples of screenshots taken when the top-K origins

are visualised by QGIS time manager for 𝛥𝑡 = 15 when K= {3,

10, 100} at 20.00 pm in Figure 10.

Figure 10. Origin taxi trip visualisation on taxi zones 𝛥𝑡 = 15

minutes at 20.00 pm on 2015-02-02 of a) k=3 b) k=10 c) k=100

The first observation is related to the traffic density in the

Manhattan region. In addition, it is observed that taxi demand is

also intense at JFK airport. Secondly, as seen from the figures,

the complexity increases with the increasing number of K.

Consequently, there is an inverse proportion between the K value

and legibility. It should also be highlighted that only the top-K

origins are visualised, and once all the OD pairs are visualised

the legibility will reduce substantially. Therefore, having a K

value fit-for-purpose is important. On the other hand, census

blocks have much more polygons than taxi zones. Consequently,

relying on census blocks might be an ineffective choice.

4.5 Web GIS

The Postgres queries discussed in this paper are transferred to a

dedicated website – http://nyc.hacettepe.edu.tr/. It is important to

provide a web GIS environment to facilitate queries to detect OD

matrix so that results can be investigated easily. In addition, it

will be possible to experiment on how the performance varies on

a desktop and web environment. An exemplar image of the

website is shown in Figure 11.

Figure 11. The interactive web interface to conduct OD analysis

There are two types of regions, taxi zones and census blocks

under the menu ‘Polygon Types’. Three types of queries are

present under the ‘Queries’ tab. Once a polygon is selected the

first query, ‘Origin->Destination’, asks the user to provide a time

interval, and the query returns the number of trips that originated

from this polygon to other polygons as a CSV file. The second

query, ‘Destination->Origin’ assumes the selected polygon is the

destination zone and identifies the number of trips from other

polygons that ended up in this polygon. Finally, the top-K OD

query determines the top K OD pairs in the provided time

interval, which is the same query that is investigated in the

previous sections.

5. CONCLUSION AND DISCUSSION

The travel demand between origin and destination polygons can

be captured within an OD matrix, which has an important role in

various real-world problems including, transportation planning,

urban and regional planning. With the growing technology, it

becomes more important to do this in real-time. However,

performance benchmark tests are required to have an informed

decision regarding the correct choice of DBMS to store data. In

this way, researchers can have a better understanding of the

performance of different DBMS and how they operate.

The experiments carried out in this paper relied on the openly

available New York yellow taxi data set obtained in 2015, which

(a)

(b)

(c)

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2020, 2020
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-449-2020 | © Authors 2020. CC BY 4.0 License.

453

http://nyc.hacettepe.edu.tr/

consists of about 144 million trips. Additionally, two different

polygon data, taxi zones and census blocks are utilised to identify

the OD matrix through a point-in-polygon query. Two different

DBMS are analysed: Postgres and MongoDB, a representative of

relational and NoSQL DBMS respectively.

Results show that Postgres performed queries much faster than

MongoDB. In addition, obtained OD matrices are compared in

terms of spatial accuracy, and it is identified that both DBMS

provide the same results. Consequently, this paper suggests that

Postgres with PostGIS extension is better than MongoDB on

point-in-polygon query. In addition, different tools are

investigated to visualise the results. First, ‘Time Manager’ plugin

is utilised to demonstrate the top K origin polygons in a given

time interval. This visualisation demonstrated the importance of

relying on the K parameter rather than displaying all the possible

polygons that generated trips. In addition, an interactive web

interface is developed to provide users with an online means of

querying data to conduct OD analysis. Future work will focus on

improving the performance of web GIS queries. The

effectiveness of different OSGeo tools such as GeoMesa or

GeoWave can be investigated in this regard.

ACKNOWLEDGEMENTS

This research is supported by the Scientific and Technological

Research Council of Turkey (TÜBİTAK) with the grant number

of 118Y282. The contents of this paper reflect the views of the

authors, who are responsible for the facts and the accuracy of the

results presented herein.

REFERENCES

Behara, K.N.S., Bhaskar, A., Chung, E., 2020. A novel approach

for the structural comparison of origin-destination matrices:

Levenshtein distance. Transportation Research Part C: 513–530.

https://doi.org/10.1016/j.trc.2020.01.005

Bugiotti, F., Cabibbo, L., Atzeni, P., Torlone, R., 2014. Database

Design for NoSQL Systems, in: Yu, E., Dobbie, G., Jarke, M.,

Purao, S. (Eds.), Conceptual Modeling, Lecture Notes in

Computer Science. Springer International Publishing, Cham,

223–231. https://doi.org/10.1007/978-3-319-12206-9_18

Cho, H.-J., Jou, Y.-J., Lan, C.-L., 2009. Time Dependent Origin-

destination Estimation from Traffic Count without Prior

Information. Netw Spat Econ 9, 145–170.

https://doi.org/10.1007/s11067-008-9082-7

Ciferri, R.R., Salgado, A.C., Times, V.C., Nascimento, M.A.,

Magalhaes, G.C., 2003. A performance comparison among the

traditional R-trees, the hilbert R-tree and the SR-tree, in: 23rd

IEEE, 3–12. https://doi.org/10.1109/SCCC.2003.1245440

Coskun, B, 2020. YouTube-channel Pip-Videos:

https://www.youtube.com/channel/UCWuoZtYYv3Vzu7U9rlev

myg (30 May 2020)

Coşkun, İ.B., Sertok, S., Anbaroğlu, B., 2019. K-Nearest

Neighbour Query Performance Analyses On a Large Scale Taxi

Dataset: Postgresql Vs. Mongodb. Int. Arch. Photogramm.

Remote Sens. Spatial Inf. Sci. XLII-2/W13, 1531–1538.

https://doi.org/10.5194/isprs-archives-XLII-2-W13-1531-2019

Coskun, (2020) 2020. Pip: https://github.com/bugracoskun/OD-

Matrix (30 May 2020)

Deari, R., Zenuni, X., Ajdari, J., Ismaili, F., Raufi, B., 2018.

Analysis And Comparision of Document-Based Databases with

Relational Databases: MongoDB vs MySQL, in: 2018, IEEE,

Varna, 1–4. https://doi.org/10.1109/InfoTech.2018.8510719

Garcia, J.C., Avendaño, A., Vaca, C., 2018. Where to go in

Brooklyn: NYC Mobility Patterns from Taxi Rides, in: Rocha,

Á., Adeli, H., Reis, L.P., Costanzo, S. (Eds.), 203–212.

https://doi.org/10.1007/978-3-319-77703-0_20

Gebetsroither-Geringer, E., Stollnberger, R., Peters-Anders, J.,

2018. Interactive Spatial Web-Applications as New Means of

Support for Urban Decision-Making Processes, in: ISPRS

Annals of Photogrammetry, Remote Sensing and Spatial

Information Sciences. 59–66. https://doi.org/10.5194/isprs-

annals-IV-4-W7-59-2018

Lederman, R., Wynter, L., 2011. Real-time traffic estimation

using data expansion. Transportation Research Part B: 1062–

1079. https://doi.org/10.1016/j.trb.2011.05.024

Li, D., Lin, Y., Zhao, X., Song, H., Zou, N., 2011. Estimating a

Transit Passenger Trip Origin-Destination Matrix Using

Automatic Fare Collection System, in: Xu, J., Yu, G., Zhou, S.,

Unland, R. (Eds.), 502–513. https://doi.org/10.1007/978-3-642-

20244-5_48

Munizaga, M., Devillaine, F., Navarrete, C., Silva, D., 2014.

Validating travel behavior estimated from smartcard data.

Transportation Research Part C: Emerging Technologies 44, 70–

79. https://doi.org/10.1016/j.trc.2014.03.008

Munizaga, M.A., Palma, C., 2012. Estimation of a disaggregate

multimodal public transport Origin–Destination matrix from

passive smartcard data from Santiago, Chile. Transportation

Research Part C: Emerging Technologies 24, 9–18.

https://doi.org/10.1016/j.trc.2012.01.007

Nguyen, T., 2009. Indexing PostGIS databases and spatial Query

performance evaluations. International Journal of

Geoinformatics 5, 1–9.

Peng, S., Sankaranarayanan, J., Samet, H., 2018. DOS: a spatial

system offering extremely high-throughput road distance

computations, in: 26th ACM SIGSPATIAL 199–208.

https://doi.org/10.1145/3274895.3274898

Sveen, A.F., 2019. Efficient storage of heterogeneous geospatial

data in spatial databases. J Big Data 6, 102.

https://doi.org/10.1186/s40537-019-0262-8

TLC., 2019.TLC Trip Record Data.

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

(30 May 2020)

Xian, X., Ye, H., Wang, X., Liu, K., 2020. Spatiotemporal

Modeling and Real-Time Prediction of Origin-Destination

Traffic Demand. Technometrics 1–13.

https://doi.org/10.1080/00401706.2019.1704887

Zhang, J., You, S., Xia, Y., 2015. Prototyping A Web-based

High-Performance Visual Analytics Platform for Origin-

Destination Data: A Case study of NYC Taxi Trip Records, in:

Proceedings of the 1st International ACM SIGSPATIAL

Workshop on Smart Cities and Urban Analytics - UrbanGIS’15.

16–23. https://doi.org/10.1145/2835022.2835025

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2020, 2020
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-449-2020 | © Authors 2020. CC BY 4.0 License.

454

https://www.youtube.com/channel/UCWuoZtYYv3Vzu7U9rlevmyg
https://www.youtube.com/channel/UCWuoZtYYv3Vzu7U9rlevmyg

