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ABSTRACT: 

 
The trajectory data generated by various position-aware devices is widely used in various fields of society, but its conventional 
vector representation and various analysis algorithms based on it have high computational complexity. This makes it difficult to meet 
the application requirements of real-time or near real-time management and analysis of large-scale trajectory data. In view of the 
above challenges, this paper proposes a trajectory data management and analysis technology framework based on the Spatiotemporal 
Grid Model (STGM). First, the trajectory data is represented by spatiotemporal grid encoding instead of vector coordinates, and it 

can achieve dimensionality reduction and integrated management of high-dimensional heterogeneous trajectory data. Second, the 
trajectory computing and analysis methods based on STGM are introduced, which reduce the computing complexity of algorithms. 
Furthermore, various types of trajectory mining and applications are realized on the basis of high-performance computing 
technologies. Finally, a trajectory data management and analysis prototype system based on the STGM is developed, and 
experimental results verify the reliability and effectiveness of the proposed technology framework.  
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1. INTRODUCTION 

The rapid development of mobile internet technology has 
spawned a large amount of mobile trajectory data (Wu et al., 
2019). These trajectory data are widely used in smart 
transportation (Li et al., 2012), urban computing (Zheng et al., 
2015), social sensing (Liu et al., 2015) and other fields because 
of their rich spatiotemporal location and semantic information. 
For example, Li et al. (2019) used the vehicle trajectory data to 
extract coach operation information such as coach stations, 
routes and timetables, which provided data support for China’s 

national road passenger transportation ticketing platform. Some 
studies used taxi trajectory data to conduct passenger-finding 
strategies, spatiotemporal analysis of public transportation, road 
networks update and other studies to optimize urban traffic (Wu 
et al., 2016; Tang et al., 2017; Tu et al., 2018). Scholars also 
used mobile phone traces to study residents' mobility laws to 
assist scientific and smart city planning (Jiang et al., 2013; Chen 
et al., 2018). On the other hand, the huge trajectory data also 
bring challenges to data management and analysis due to its 
characteristics of large-scale, dynamic update, multi-source 
heterogeneity and high-dimensional (Feng, Zhu, 2016; Li et al., 

2016). The two typical representation models (vector and raster 
model) are difficult to cope with those problems and cannot 
satisfy the real-time or near real-time trajectory data mining and 
application needs.   
 
In recent years, the rapid development of computer technology 
has promoted rapid evolution of Discrete Global Grid System 
(DGGS). The characteristics of discreteness, multi-level, and 
low-dimensional of DGGS provide a new research perspective 

for efficient management and analysis of massive trajectory data 
(Zhou et al., 2009; Goodchild, 2018). Specifically, the 
discreteness of DGGS not only meets the requirements of 
computer for discretizing storage, but also facilitates the 

distributed processing of massive spatiotemporal data. The 
multi-level grid models can adaptively use the grid code to 
calculate and analyze the problems at different scales to 
improve efficiency. The low-dimensional encoding provides a 
basis for efficient and flexible storage and organization of 
trajectory data (Chen et al., 2002; Purss et al., 2016). 
 

2. THE FRAMEWORK DESIGN  

The trajectory data management and analysis technology 
framework based on the Spatiotemporal Grid Model (STGM) 
mainly includes five parts: multi-source trajectory data, 
spatiotemporal grid model, trajectory computing and analysis 

methods, high-performance computing (HPC) and trajectory 
mining applications, as illustrated in Figure 1, which provides 
the solutions for the knowledge discovery of massive trajectory 
data and various applications. The STGM represents multi-
source trajectory data through spatiotemporal grid encoding to 
achieve data fusion and dimensionality reduction. On this basis, 
the common trajectory computing and analysis methods are 
transformed based on the low-complexity code operations to 
accelerate trajectory mining. The high-performance computing 
technologies provide distributed storage resources and 
concurrent computing resources. On the top are various types of 

trajectory mining and applications. 
 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-471-2020 | © Authors 2020. CC BY 4.0 License.

 
471

mailto:junli@cumtb.edu.cn
mailto:juq.liu,%20xl.mei,%20wt.sun,%20yy.zhang,%20lw.qiao)@student.cumtb.edu.cn
mailto:czhang@cumtb.edu.cn
mailto:huangqian16@huawei.com


 

Similarity 

analysis

Trajectory computing and Analysis Methods

Density 

calculation

Proximity 

query

Pattern 

extraction

Grid 

subdivision 

theory

Multi-scale 

grid code 

representation

Grid code-

coordinate 

conversion

Basic 

operators of 

grid code

Multi-source Trajectory data

Taxi trajectory 

data
Bus IC card  

data

Trajectory Mining Applications

Mobile Phone 

signaling data
Social media 

data
…

H
ig

h
 P

erfo
rm

a
n

ce C
o

m
p

u
tin

g
, 

H
P

CCluster 

analysis

Road map 

update

Nearby 

Vehicle 

Search

Epidemic 

contacts 

tracking

Traffic 

condition 

monitoring

Visual 

analysis

Spatiotemporal Grid Model, STGM

Aircraft 

collision 

detection

Spatiotemporal 

grid encoding

…

 

  Figure 1. Technology framework of trajectory data management and analysis based on the STGM 

 

2.1 Spatiotemporal Grid Model 

The STGM uses the grid subdivision theory and spatial grid 
encoding technology to replace the vector floating-point 
coordinates with local unit address codes (Cui et al., 2007; Sun 
et al., 2008; Wan, Cao, 2016; Qian et al., 2019; Guo et al., 2019) 

(Figure 2a). Then, the time dimension is taken into account to 
realize the one-dimensional encoding representation of space-
time information. Furthermore, the trajectory data is mapped to 
the spatiotemporal grids to realize multi-scale coding 

representation (Figure 2b). In this way, the dimensionality 
reduction of the high-dimensional trajectory data is achieved, 
which greatly reduces the complexity of trajectory data storage, 
management and analysis. What's more, the STGM develops 

the conversion function between grid code and coordinates. 
Finally, two basic operators—proximity grid code query and 
spatial geometric measurement are developed, and they provide 
the foundation for upper-layer trajectory analysis algorithm. 
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(a)                                                                                                                (b)  

Figure 2. Spatiotemporal grid model, (a) Spatial grid coding,  

(b) Multi-scale coding representation of trajectory 
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2.2 Trajectory Computing and Analysis Methods 

The change of the trajectory data representation model will 
inevitably lead to reformation of the upper-level trajectory 
analysis algorithms. It is necessary to fully make use of the 
trajectory grid code representation characteristics to reform or 
improve a set of computing and analysis methods based mainly 
on the following strategies: a) The fast query of trajectories is 

realized based on the structural characteristics of "grid-coding is 
indexing, indexing is grid-coding", such as spatiotemporal 
proximity query and road matching with trajectory points. The 
basic idea is to organize the trajectory codes as a data index, so 
the trajectory query can be implemented on the index layer, 
which greatly accelerates the query operation of trajectories. In 
addition, instructed by the principle that the code prefixes of 
trajectories in the same grid are close in time and space, the fast 
spatiotemporal query can be achieved using code matching. b) 
The trajectory analysis algorithms can be transformed by a set 
of low complexity of code operations, such as trajectory 
distance measurement. The classical trajectory distance 

measurement algorithms include Dynamic Time Warping 
(DTW) (Keogh et al., 2000), Longest Common Subsequence 
(LCSS) (Vlachos et al., 2002), Edit Distance on Real sequence 
(EDR) (Chen et al., 2005), Fréchet distance (Fréchet et al., 1906) 
and Hausdorff distance (Lee et al., 2007). The time complexity 
of these methods is O(n*m)  (n and m are the number of points 
of the two trajectories respectively), which makes the 
calculation very time-consuming. Nevertheless, the trajectory 
distance based on grid code can be calculated through the 
Jaccard distance, Simpson coefficient, dice coefficient etc., 
which are very fast calculation operations. On the basis of this, 

most other trajectory analysis algorithms can be transformed, 
simplified and accelerated, such as trajectory similarity analysis, 
trajectory clustering. c) The flexibility of trajectory computing 
and analysis can be realized by the multi-scale grid code 
representation of trajectory. Although the classical vector 
coordinates have a high accuracy, it is difficult to handle cross-
scale analysis tasks such as a multi-mode traffic travel analysis, 
including large-scale flight trajectories, medium-scale intra-city 
and inner-city trajectories, and walking trajectories at a small 
scale. Based on the grid code, the cross-scale analysis can be 
easily achieved by selecting the trajectory codes at suitable 

scales. d) The multi-scale characteristics of trajectory codes can 
also serve for visual analysis. The trajectory data at a 
corresponding scale is visualized according to the scale of web 
view range to accelerate the visual analysis, which is similar to 
the image pyramid structure. 
 
2.3 High Performance Computing 

In the era of big data, the mining of massive trajectory data 
often requires the support of high-performance computing 
frameworks such as parallel computing and distributed 
computing (Gao et al., 2017). The STGM's discrete 
characteristic can be well combined with high performance 
computing, which realizes the distributed storage and 
concurrent computing of big trajectory data, and provides 
bidirectional power for the management and analysis of 
trajectory data. The specific performance includes: First, the 
trajectory codes are discretized  by slices (time slices), layers 

(different grid-coding levels), and blocks (space cells), and 
stored in existing distributed storage systems, such as 
MongoDB, HBase, PostgreSQL and other distributed databases, 

to achieve storage and management of massive trajectories. 

Then, the trajectory data is automatically distributed to each 
node under the distributed computing framework (such as 
Hadoop, Spark) or GPU parallel computing frameworks. Finally, 
the concurrent query and computing of massive trajectory data 
is implemented. 
 
2.4 Trajectory Mining Applications 

Trajectory mining applications often require frequent or real-
time services with high time efficiency, such as regular updates 
of road maps, real-time search of nearby vehicles, rapid filtering 
of epidemic contacts, real-time monitoring of traffic conditions, 
aircraft collision detection. The proposed trajectory data 
management and analysis technology framework based on the 
STGM uses the advantages of trajectory grid coding to 
accelerate trajectory computing and analysis, which makes it 
possible to meet these real-time or near real-time application 
requirements.  For example, (a) for the real-time dispatch of 
massive taxies, the proposed technology framework can quickly 

gather people’s travel demand, simultaneously conduct real-
time query of nearby taxies, and provide solutions for intelligent 
dispatch of taxis and peak hour pricing service. (b) For the 
filtering of epidemic contacts, we can take a large-scale 
individual trajectories as the target, and conduct similar 
trajectory analysis based on STGM to quickly identify and track 
suspected epidemic contacts among a large number of people to 
block the virus transmission chain. (c) In order to solve the 
problem of collision detection among flying aircrafts in a large-
scale, real-time scenario, the flying trajectories of aircrafts are 
grid-coded based on STGM. Then, the inclusion judgment 

based on grid codes is used to improve the efficiency of aircraft 
collision detection and ensure the flight safety of aircrafts 
(Zheng et al., 2019). 
 

3. EXAMPLE OF APPLICATION 

Based on the above theory and technology, a trajectory data 
management and analysis prototype system based on the STGM 
was developed (Figure 3). The system manages all the taxi 
trajectory data of Beijing, China, a total of approximately 
70,000 taxis, generating approximately a dozen GB of trajectory 
data every day. 

 
The trajectory analysis functions include spatiotemporal 
proximity query of trajectory, top-k similar trajectory query and 
other functions. The spatiotemporal proximity query of 
trajectory outputs adjacent trajectories of a target trajectory 
within a specific radius of a certain space-time position (Figure 
4a). Experimental results validate that the proximity query 
under tens of millions of trajectory points can be finished in less 
than a second with the grid index. Top-K similar trajectory 
query is to get the most K similar trajectories of a target 
trajectory in a large-scale dataset (Figure 4b). The system 
realizes fast query of similar trajectories through multi-scale 

code and highly efficient code operations. Experimental results 
show that the computing time is shortened by about two orders 
of magnitude with a similar accuracy, compared with the classic 
trajectory similarity analysis algorithms (e.g. DTW, LCSS, 
EDR). The multi-scale trajectory density calculation module 
calculates the trajectory density in each grid, and realizes fast 
switching among different view ranges (Figure 4c). 
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Figure 3. Interface of trajectory data management and analysis prototype system based on STGM 

 

     

(a)                                                                                                    (b)  

 
(c)  

Figure 4. Examples of trajectory analysis tools in the system, (a) Spatiotemporal proximity query of trajectory, (b) Top-k similar 

trajectory query, (c) Fast calculation of multi-scale trajectory density 
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4. CONCLUSION 

This paper proposes a trajectory data management and analysis 
technology framework based on the STGM, which mainly 
includes five parts: heterogeneous multi-source trajectory data, 
STGM, HPC, trajectory computing and analysis methods, and 
trajectory mining applications. In addition, we analyze and 
summarize the advantages and characteristics of storing 
trajectory data and simplifying the analysis algorithms based on 
spatiotemporal grid-coding. The computing and analysis 
algorithms of trajectory data are accelerated by using the 
features of grid index, multi-scale coding, and transformed 
analysis algorithms, which provide the possibility for real-time 
or near real-time trajectory mining applications. Finally, we 

developed a trajectory data management and analysis prototype 
system based on the STGM, which verified the effectiveness of 
the theories and technical methods presented in the paper. This 
work provides technical support for the management and 
analysis of massive trajectory data in future, and better serves 
various fields such as smart transportation, urban computing, 
city planning and social sensing. 
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