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ABSTRACT: 
 
To address the multi-modal spatio-temporal data efficient scheduling problem of the diverse and highly concurrent visualization 
applications in cloud-edge-terminal environment, this paper systematically studies the cloud-edge-terminal integrated scheduling 
model of multi-level visualization tasks of multi-modal spatio-temporal data. By accurately defining the hierarchical semantic 
mapping relationship between the diverse visual application requirements of different terminals and scheduling tasks, we propose a 
multi-level task-driven cloud-edge-terminal multi-granularity storage-computing-rendering resource collaborative scheduling 
method. Based on the workflow, the flexible allocation strategy of cloud-edge-terminal scheduling service chain that consider the 
characteristics of spatio-temporal task is constructed. Finally, we established a cloud-edge-terminal scheduling adaptive optimization 
mechanism based on the service quality evaluation model, and developed a prototype system. Experiments are conducted with the 
urban construction and construction management, the results show that the new method breaks through the bottleneck of traditional 
spatiotemporal data visualization scheduling, and it can provide theoretical and methodological support for the visualization and 
scheduling of spatio-temporal big data. 
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1. INTRODUCTION  

The development of social network, sensor network, Internet of 
Things (IoT) and their multi-layer coupling data collection and 
recording technology makes the acquired spatio-temporal data 
of social world, computer world and material world have multi-
modal characteristics. These multi-modal spatio-temporal data 
describe the holographic feature information of multi-
granularity spatio-temporal objects in the full life cycle, such as 
the position, geometry, behavior, and semantic relationship of 
the multi-granular spatio-temporal objects. Multi-modal spatio-
temporal data generally includes photorealistic fine geometry, 
textures and materials, video, photos and non-photorealistic 
computing and simulation result data, abstract expression 
symbols (Valencia et al., 2015).  These unstructured and sparse 
data make a huge challenges for storage, computing, and 
rendering (Wang et al., 2013; Yang et al., 2013). In order to 
satisfy the requirements of high concurrency and high real-time 
during multimodal spatio-temporal data visualization, a hybrid 
architecture integrating cloud computing, edge computing and 
multi-terminal (cloud-edge-terminal) can be an effective 
solution. Although the hybrid architecture effectively reduce 
network delay and improve response speed by accelerating the 
computing with the edge equipment near the user terminal, it 
may also greatly increase complexity and instability of resource 
scheduling (Shi et al., 2016; Satyanarayanan 2017). The 
massive, high-dimensional and dynamic characteristics of 
multi-modal spatio-temporal data lead to visual content and 

scene dynamic changes for the visualization application (Peters 
et al., 2017). Diverse visualization tasks are interwoven, highly 
concurrent and relies heavily on storage, computing and 
visualization resources (Yang et al., 2011; Wong et al., 2012). 
The core problem for multi-level and diverse visual scheduling 
of multi-modal spatio-temporal data has been studied by the 
researchers, include null data visualization task model, dynamic 
spatio-temporal data scheduling, resource scheduling in cloud 
environment and so on. According to the decomposition of the 
visualization task and the association between tasks, the 
spatiotemporal data visualization task model can be divided into 
low-level, high-level and multi-level three categories (Amar et 
al., 2005; Tory et al., 2004; Brehmer et al., 2013). Pike (2009) 
has focused on data processing methods in visualization and 
analysis applications, which typical contents include browsing, 
identification, coding, abstraction, figuration and filtering 
(Ward et al., 2010). The description of the high-level 
visualization task model mainly focuses on the differences in 
the visual analysis stage, and its typical contents include data 
collection, data browsing, and data analysis and so on (Nazemi, 
2016). Andrienko (2003) and Nusrat (2015) have shown that the 
multi-level visualization task model can uniformly describe the 
coupling relationship between tasks, which typical contents 
include visualization purpose, visualization method, 
visualization content, visualization time, visualization space, 
and visualization user. However, the existing visualization task 
model is mainly data-centric, and it is difficult to meet the 
diverse and highly concurrent needs of visualization tasks.  
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Efficient spatio-temporal data dynamic scheduling method is 
the key to realizing high performance large-scale spatio-
temporal data visualization and other applications. For large-
scale terrain rendering, mainly by constructing a terrain 
pyramid and dynamically scheduling terrain tiles of different 
resolutions to achieve high efficient and high fidelity terrain 
scheduling and visualization (Kang et al., 2010; Strugar et al., 
2009). At the same time, a multi-level of detail model has been 
construct to solve the visualization of the urban 3D model with 
uneven spatial distribution, and the Out-of-Core Rendering 
technology is used for scheduling and visualization (Mason et 
al., 2001; Li et al., 2011; Biljecki et al., 2014). The performance 
of existing visualization and scheduling methods of spatio-
temporal scenes mainly rely on the spatial index, dynamic data 
scheduling and data simplification and other optimization 
methods (Chen et al., 2015; Maglo et al., 2015; Petring et al., 
2013). However, the most of existing visualization and 
scheduling methods are mainly focused on graphical algorithms, 
which lacks collaborative scheduling of visualization system 
resources. Generally, the existing spatio-temporal data 
scheduling schemes are mainly based on the optimization of 
graphics algorithms, which can take into account the diversified 
network environment and the differences in visualization 
equipment to a certain extent. However, the scene organization 
method determines that the spatio-temporal scene data needs to 
be processed according to a specific organization form, 
resulting in a fixed scene representation. At the same time, this 
scheduling method optimized by graphics can no longer meet 
the needs of diversified visualization for diverse computing 
platforms and access terminals (Evans et al., 2014; Evangelidis 
et al., 2014; Hähnle et al., 2015). 
In the cloud environment, storage, computing, and rendering 
resources are integrated into a huge virtual resource pool. 
According to the demand for resources, multiple computing 
nodes, which can be instantiated in the resource pool. Then, 
tasks such as data analysis and computing, and scene rendering 
are distributed and run on different computing nodes in the 
form of services or applications. How to allocate tasks with 
different resource requirements to various computing nodes and 
the dynamic expansion of computing nodes have become a 
research hotspot in resource scheduling in the cloud 
environment, thereby improve load balancing and maximize 
task execution efficiency with the premise of satisfying user 
service quality. There are two types of resource scheduling in 
the cloud environment: traditional resource scheduling and 
heuristic scheduling. Although the traditional resource 
scheduling method has a simple algorithm and low computing 
cost, its performance and flexibility are not high enough, which 
unsuitable for complex network environments and task 
scheduling with complex relationships between subtasks. 
Although the heuristic scheduling algorithm is an effective 
method to find the multi-objective optimal solution, there are 
still some defects. As the online video, augmented reality and 
virtual reality services spawned by the era of big data, more 
strict functions and performance requirements for caching, 
delay, policy control are put forward. Although the cloud 
computing has logical resource concentration advantage, rely 
on heavy cloud computing that is far away from the user 
terminal will inevitably lead to a bottleneck effect. For the 
diverse and high-concurrency and high real-time application 
requirements of large-scale spatio-temporal data, optimizing the 
collaborative scheduling algorithm of resources under the 
cloud-edge-terminal hybrid architecture becomes very 
important (Chen et al., 2016; Shi et al., 2016). 

In this paper, a new cloud-edge-terminal resources collaborative 
scheduling model for multi-level visualization of large-scale 
multi-modal data is proposed. Firstly, we systematically study 
the integrated scheduling model of cloud-edge-terminal for 
multimodal spatiotemporal data multi-level visualization tasks. 
This model accurately depicts the hierarchical semantic 
mapping relationships between the diversified visualization 
application requirements of different terminals and scheduling 
tasks. Then, a multi-granularity storage-computing-rendering 
resources collaboration method based on multi-level 
visualization task-driven is proposed. Finally, an adaptive task-
driven scheduling engine system is developed. 
The remainder of this paper is organized as follows. Section 2 
describes the system and method. Section 3 presents the related 
experiments. Section 4 summarizes this work and discusses 
future research directions. 
 

2. METHOD  

2.1 Cloud-edge-terminal resources collaborative 
scheduling model 

In general, there are three characteristics of multi-modal spatio-
temporal data in cloud-edge-terminal application environment, 
stored in the cloud center, accelerated computing at the edge 
server and used in multi-terminal applications. As the 
traditional spatio-temporal data visualization scheduling mainly 
foucs on the single spatio-temporal scene display task, it cannot 
meet the needs of multi-terminal diversified visualization 
applications. Aiming at the limitation, a cloud-edge-terminal 
integrated scheduling model for multi-modal spatio-temporal 
data multi-level visualization tasks is proposed. The integrated 
scheduling model is shown in Figure. 1. There are three steps 
involved in the cloud-edge-terminal resources collaborative 
scheduling model.  
2.1.1 Construction of hierarchical semantic mapping 
relationship between the multi-level visualization tasks and 
scheduling tasks 
Based on the four dimensions of spatio-temporal data (Data ), 
analytical computing model (Model ), human-computer 
interaction (Interaction ) and rendering (Render ) included in 
the visualization, the multi-modal spatio-temporal data 
visualization task can be denoted as: 

= , , ,VTask Data Model Interaction Render     (1) 

where   VTask   = multi-modal spatio-temporal data 
visualization task  
By constructing data browsing, data analysis and knowledge 
acquisition models in the multi-modal spatio-temporal data 
visualization requirements, the multi-modal spatio-temporal 
data visualization task is described in three levels: display 
visualization task which only includes data scheduling and 
scene rendering task, analytical visualization task and 
exploratory visualization task. Analytical visualization task 
mainly includes data scheduling, computing analysis and scene 
rendering task, whereas exploratory visualization task includes 
data scheduling, computing analysis, interactive computing and 
scene rendering task. 

= ,

= , ,

= , , ,

V

A

E

VTask Data Render

VTask Data Model Render

VTask Data Model Interaction Render

      (2) 

 where   
VVTask   = display visualization task   
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Figure. 1  Integrated scheduling model of cloud-edge- terminal for multi-level visualization tasks 
 
 

AVTask   = analytical visualization task  

 
EVTask   = exploratory visualization task  

According to the three levels of content contained in the multi-
level visualization task model, the multi-level visualization task 
model can be described as: 

 = , ,V A EVTaskModel VTask VTask VTask     (3) 

Then, the system-level resources and spatio-temporal data scene 
optimization content on which the display, analytical, and 
exploratory visualization tasks in the multi-level visualization 
task model are defined. In order to realize the hierarchical 
semantic mapping of the multi-level visualization task to the 
scheduling task, we establish the dependency relationship 
between the multi-level visualization task and system resources 
and data content. The multi-level visualization task can be 
converted into multi-level scheduling task that include data 
scheduling task, computing analysis task, interactive computing 
task, and rendering task. 

= , , ,D A I VSTaskModel STask STask STask STask      (4) 

where  STaskModel   = multi-level scheduling task   
 

DSTask   = data scheduling task 

 
ASTask   = computing analysis task 

ISTask   = interactive computing task 

VSTask   = rendering task 

At the same time, display visualization task can be mapped to 
spatio-temporal data scheduling task and spatio-temporal data 
scene rendering task. Analytical visualization task add a 
spatiotemporal data computing and analysis task mapping 
compared to display visualization task. Compared to analytical 
visualization task, the exploratory visualization task further 

includes the spatio-temporal data interactive computing task 
mapping. 

= ,

= , ,

= , , ,

V D V

A D A V

E D A I V

VTask STask STask

VTask STask STask STask

VTask STask STask STask STask

      (5) 

2.1.2 Fine-grained decomposition of scheduling tasks 
based on spatiotemporal semantic association 
In order to reduce the complexity of the task and improve the 
balance and efficiency of the assignment of subsequent 
scheduled tasks, it is necessary to finely decompose the 
scheduling subtasks at different levels according to the 
spatiotemporal semantic association of multimodal 
spatiotemporal data. At the same time, consider decomposing 
the information interaction relationship between scheduling 
subtasks, constructing a combination of different levels of 
scheduling subtasks and nested task sets. Then, in order to 
reduce the degree of information interaction between the 
decomposed subtasks and improve the matching efficiency and 
accuracy of tasks and resources, the decomposed subtasks are 
grouped. Two factors should be considered when grouping, 
subtasks with high information interaction are classified into the 
same group as much as possible, and the workload of each 
group is balanced. Specifically, spatio-temporal data scheduling 
tasks can be subdivided into sub-tasks such as basic scene data 
scheduling, dynamic scene data scheduling, data scheduling 
required for computing analysis, and data scheduling required 
for interactive computing. The spatio-temporal data scene 
rendering tasks can be subdivided into sub-tasks such as basic 
scene rendering, dynamic scene rendering, scene interactive 
rendering, etc.  For space-time data computing and analysis 
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tasks and interactive computing tasks, fine-grained 
decomposition is required according to data content and 
computing analysis content. The data required for computing 
generates the corresponding data scheduling task, and the result 
generated by the computing is converted into the corresponding 
scene rendering task.  
2.1.3 Cloud-edge-terminal integrated scheduling model 
and workflow 
According to the characteristics of multi-modal spatio-temporal 
data in the cloud-edge-terminal application environment, the 
storage resources, computing resources and rendering resources 
on the cloud side can be described as: 

= , ,D C VResource Res Res Res                      (6) 

where      
DRes   = storage resources 

 
CRes   = computing resources 

VRes   = rendering resources 

The storage resources mainly perform data scheduling tasks, 
whereas computing resources mainly perform computing 
analysis and interactive computing tasks. The rendering 
resources mainly perform rendering tasks. By building a task 
manager for integrated scheduling on the cloud-edge-terminal, 
the computing, storage and rendering resources on the cloud-
edge-terminal are scheduled in an integrated manner. The 
cloud-edge-terminal integrated scheduling model can be 
described as: 

= ,

,

ResourceModel CloudResourceModel

EdgeResourceModel TerminalResourceModel

       (6) 

where      CloudResourceModel   = Cloud centre 
 EdgeResourceModel   = Edge server 

TerminalResourceModel   = User terminal resources 
The cloud centre mainly provides computing and storage 
resource functions, and performs computing analysis, 
interactive computing and data scheduling task. The edge server 
mainly provides computing, storage and rendering resource 
functions, and performs computing analysis, interactive 
computing, data scheduling and rendering tasks. The user 
terminal resources will vary greatly according to the differences 
between high-performance desktop terminals, lightweight 
mobile terminals, and virtual-augmented reality devices. After 
all, the cloud-edge-terminal integrated scheduling model can 
achieve a complete description of the storage, computing and 
rendering resources of the cloud centre, edge server and user 
terminal resources. At the same time, the cloud-edge-terminal 
integration model establishes the corresponding relationship 
between these resources and different levels of scheduling tasks. 
Through the mapping relationship between these scheduling 
tasks and multi-level visualization tasks, the cloud-edge-
terminal integration model realizes the construction of the 
dependency relationship between different levels of 
visualization tasks and cloud-edge-terminal storage, computing 
and rendering resources. 
2.2 Multi-granularity storage-computing-rendering 
resources collaboration method 

According to the characteristics and requirements of different 
levels of tasks, a multi-level task-driven cloud-edge-terminal 
multi-granularity storage and drawing resource collaborative 
scheduling method is designed. The new method enables the 
cloud-edge-terminal storage and drawing resources to 
collaboratively handle multi-level scheduling tasks such as 
spatio-temporal data scheduling, spatio-temporal data 
computing analysis, spatio-temporal data interactive computing, 
and spatio-temporal scene drawing. There are three steps 

involved in the multi-granularity storage-computing-rendering 
resources collaboration method. 
2.2.1 Construction of workflow for storage-computing-
rendering resources collaboration based on spatio-temporal 
semantics and distribution characteristics 
First of all, the infrastructure in cloud computing technology is 
used to gather the storage, computing and rendering resources 
distributed in the system to form a resource pool that can be 
allocated on demand. Then according to the spatio-temporal 
data reading and writing, analysis model and scene optimization 
to deal with the demand for resources. Multi-granular storage, 
computing and rendering services that can be dynamically 
configured and instantiated are published and managed by 
microservice architecture. Then, according to the requirements 
of spatio-temporal scene data and the demand for the operation 
of storage, computing and rendering resources, constructing a 
workflow for storage-computing-rendering resources 
collaboration based on spatio-temporal semantics and 
distribution characteristics. In addition, according to the spatio-
temporal semantic association relationship and distributed 
storage characteristics of multimodal spatiotemporal data is 
handled.  Task workflow include data scheduling tasks, scene 
rendering tasks, computing analysis tasks and interactive 
computing tasks and so on. Finally, establish a dynamic 
mapping relationship between the storage-computing-rendering 
resource collaborative scheduling workflow of cloud-edge-
terminal and the multi-granularity storage-computing-rendering 
services of cloud-edge-terminal.   
2.2.2 Dynamic construction of cloud-edge-terminal 
collaborative scheduling service chain based on workflow 
The collaborative scheduling workflow for storage-computing-
rendering resource on the cloud side provides a template 
process for multi-level scheduling tasks on the cloud-edge-
terminal, such as task scheduling, resource allocation, and status 
monitoring. Based on the collaborative scheduling workflow at 
the cloud-edge-terminal, the multi-granularity storage-
computing-rendering service can be constructed as a 
collaborative scheduling service chain according to demand, 
which shown in Figure. 2. First, build a service chain with 
different granularity of storage-computing-rendering services as 
basic units, and these service units can be dynamically 
combined in the service chain. Then, according to the storage, 
computing and drawing task requirements involved in the 
scheduling task, the scheduling service chain combines the 
service units of multi-granular storage-computing-rendering 
services. Finally, the scheduling tasks of the scheduling service 
chain are automatically executed based on the scheduling 
workflow. 
2.2.3 Flexible allocation strategy of scheduling service 
chain considering spatio-temporal characteristics 
The cloud-edge-terminal scheduling service chain not only 
needs to dynamically combine service units according to the 
requirements of scheduling tasks, but more importantly, it 
should provide a flexible service allocation mechanism. The 
flexible service allocation mechanism can allocate resources 
according to the scheduling tasks and cloud-edge-terminal 
resource load requirements, so as to quickly respond to various 
scheduling task requests of each user terminal. At the same time, 
due to continuous access to real-time data, interactive operation 
of spatio-temporal scenes and other reasons, changes in spatio-
temporal scenes may cause mutations in scheduling tasks. 
Therefore, it is necessary to carry out special targeted task 
scheduling and resource allocation optimization for the 
scheduling service chain based on the characteristics of spatio-
temporal tasks. Furthermore, we stablished a flexible allocation 
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strategy of cloud-edge-terminal scheduling service chain which considering the characteristic of spatio-temporal task.  

Figure. 2 Task driven multi-granularity storage-computing-rendering resources collaborative scheduling mechanism 
 
 

3. EXPERIMENTAL ANALYSIS 

3.1 Cloud-edge-terminal resources collaborative 
scheduling prototype system construction 

Based on task-driven collaborative scheduling method of cloud-
edge-terminal multi-granularity storage-computing-rendering 
services, an adaptive and task-driven scheduling engine 
prototype system was developed. We built a distributed cloud-
edge-terminal hardware environment composed of diversified 
terminals (terminal), edge server cluster (edge), cloud center 
equipment (cloud) and network equipment for testing. A 

microservice architecture with high performance, high 
availability and high scalability was built to realize 
decentralized governance in a high scalable cloud environment. 
We use the 3D model data of Shenzhen to build the 3D city 
scene, and dynamically access the IOT sensor data to build a 
multimodal spatio-temporal dataset. Aiming at different user 
terminals such as high-performance desktop terminal, 
lightweight mobile terminal and virtual / augmented reality 
terminal, three levels of visualization are used to verify the 
effectiveness of the cloud side collaborative scheduling 
prototype system in this paper. The cloud-edge-terminal 
microservice architecture of collaborative scheduling engine 
prototype system is shown in Figure. 3.  

  Figure. 2  The cloud-edge-terminal microservice architecture of prototype system  

The traditional integrated GIS architecture has many problems, 
such as centralized deployment, high coupling between 
components, and difficult to maintain and continuously update. 
In this paper, the GIS microservice architecture is designed to 
realize decentralized deployment, loose coupling between 
services, decentralized governance in a highly scalable cloud 
environment, and significantly improve the agility and 
maintainability of multimodal spatiotemporal data visualization 
system iteration. 
According to the idea of GIS microservice architecture, the 
traditional integrated service application architecture is 
decomposed into independent service clusters.  Each service in 
the service cluster runs in its own process and uses a unified 

multilingual service description.  Lightweight communication 
mechanism is used for data interaction between services and 
services. Thus, it can ensure the mutual invocation of 
heterogeneous services and support the independent 
deployment of services. At the same time, through the service 
registry to manage and track the call dependency relationship 
between services, we can realize the efficient management of 
multi granularity services with complex relationship. 
The container management of microservices is shown in figure 
4. Container technology is used to package the service and its 
dependent software running environment as image. Each 
service is packaged through docker container, and unified 
service arrangement and management are carried out through 
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kubernetes. At the same time, isito is used to build and manage 
the service mesh composed of mutual calls between 
microservices. 
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Figure. 4  Container management of microservices 

 
3.2 Experimental application 

In this paper, a cloud side distributed hardware test environment 
is built, which is composed of diversified terminals (end), edge 

server cluster (edge), cloud center equipment (cloud) and 
network equipment. Then, we simulate multi-user concurrency 
in multi-terminal to build a large-scale user high concurrency 
experimental test environment. At last, we test visualization 
capabilities for different terminals, such as high-performance 
desktop terminals, lightweight mobile terminals, virtual / 
augmented reality terminals, etc. Experiments show that the 
system can increase the number of service instances and 
improve the system throughput through horizontal expansion 
when the resource conditions allow. For different terminals, the 
system has the ability to store, compute and draw resources 
adaptively 

In order to meet the needs of smart city construction, three 
typical cases are validated and analyzed: the visualization of 
large-scale 3D city scene visualization, the visualization of 
dynamic city traffic flow simulation, and the exploration of 
indoor fire evacuation. The result shows that the proposed 
framework can effectively provide the multi-level visual 
application of multi-domain in the whole life cycle of urban 
overview, planning, operation, maintenance, and emergency 
disaster response. The spatio-temporal multi-level visualization 
application cases are shown in Figure. 5.  

 

(a) Large-scale 3D city scene visualization                 (b) City traffic flow simulation           (c) Indoor fire evacuation simulation 

Figure. 5 The spatio-temporal multi-level visualization application cases 

 

4. CONCLUSION 

Nowadays, the traditional spatio-temporal data visualization 
scheduling method of has been difficult to meet the 
requirements of diverse visualization applications of different 
terminals, as it is usually used for a single display task of 
desktop terminals. Due to the limitations of the traditional 
methods that lacks cloud-edge-terminal integrated scheduling 
model for multi-level visualization tasks, the self-adaptive 
scheduling mechanism of efficient collaborative scheduling for 
cloud-edge-terminal storage-computing-rendering resources is 
further studied in this paper.  
Based on the cloud-edge-terminal hybrid architecture, this 
paper systematically studies thecloud-edge-terminal resource 
collaborative scheduling method for multi-level visualization 
tasks. First, the dependency relationship between multi-level 
and diverse visualization requirements and data and system 
resources is described based on the multi-level visualization 
task model of multi-modal spatio-temporal data. Then, a task-
driven cloud-edge-terminal multi-granularity storage and 
drawing resource collaborative service method is proposed, 
which efficiently coordinate the scheduling of cloud-edge-
terminal storage-computing-rendering resources and realizes the 
rapid response of multi-level visualization analysis application. 
Experiments are conducted with the urban construction and 

construction management, the results show that the new method 
breaks through the bottleneck of traditional spatiotemporal data 
visualization scheduling, and it can provide theoretical and 
methodological support for the visualization and scheduling of 
spatio-temporal big data. 
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