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ABSTRACT:

Nowadays there are many geospatial datasets available for the same area. This large availability is derivative from the advances in
remote sensing processes, which includes the popularization of drones and the increasing number of satellite platforms. These data
are built by distinct producers, with different requirements. It is fair presume that a more complete version of these datasets can be
created using data integration techniques. Among them we can find the map conflation methods, in which the first phase often begins
with an alignment between the datasets assessed. The procedure of find these correspondences between geospatial datasets is called
matching. In this study we present a new geographic context measure that can be used to implement a new matching method at the
feature level. This new measure is based on the shape context descriptor proposed by Belongie. The experiments showed that our
approach is a feasible solution, which is less sensible to data disturbance then other traditional methods.

1. INTRODUCTION

Recent developments in geospatial data science have increased
the  availability  of  data  sources.  Different  providers  lead  to
different needs, and their acquisition rules, designed to fit these
purposes.  So  it  is  straight  suppose  that  a  “best”  data  can be
obtained  by  the  fusion,  or  conflation,  of  distinct  geospatial
datasets.  The first  phase of map conflation is looking for the
correspondences  between  the  datasets  (Ruiz  et  al.,  2011),  a
process known as matching. Recent studies published show that
this topic has raised open issues for the geospatial data science
community (Wang et al., 2019, Ruiz-Lendínez et al., 2019).

Some authors pointed out that the similarity measures play an
important role in matching procedures (Li,  Goodchild,  2011).
Among the many similarity measures that can be applied for
feature matching, there are the context measures, which assess
the  geographic  context  of  a  feature  when  compared  to  its
neighbourhood.  There  are  few  approaches  available  in  the
literature focused in feature matching using context measures
(Samal  et  al.,  2004,  Kim  et  al.,  2010,  Zhang  et  al.,  2014).
However,  the  first  two studies  are  based  on  the  selection  of
landmarks,  which  can  be  difficult  to  determine  in  a  fully-
automated system.  The third study is  based on the Delaunay
triangulation, which can be limited when there are many objects
nearby.

In this sense, our research question arise from these issues: how
can we assess the context similarity of geospatial features? Our
hypothesis is that a context measure based on the shape context
descriptor  proposed  by  Belongie  et  al.  (2002)  configures  a
solution to effectively assess the geographic context. Therefore,
the aim of this study is to develop a new geographic context
measure  for  feature  matching  based  on  the  shape  context
designed for object recognition.

In this study we develop our proposal first presented by Xavier
(2017). We hope that this new measure can be used to improve

the precision and recall of a matching method, by providing a
new similarity aspect to be taken into account when evaluating
the correspondences between features. We hope that it could be
used jointly with the Euclidean distance, widely-used in many
point-based methods (Beeri  et  al.,  2004,  Mustière,  Devogele,
2008, and McKenzie et al., 2014)

This paper is structured as follows. Section 2 provides a brief
background about  context  measures  for  matching  methods.
Section  3  presents the  new  proposed  measure.  Section  4
provides  our  experiments  and  discussions.  Lastly,  section  5
brings some conclusions and future work.

2. BACKGROUND

Matching  methods  for  geospatial  data  requires  similarity
measures in order to evaluate whether two geospatial datasets
are similar or not.  Similarity measures define some objective
measurements  for  eliminating,  or  at  least  mitigating,  the
uncertainty  inherent  to  this  process.  Xavier  et  al.  (2016)
organizes the matching measures according to the nature of the
measured quantity: geometry, topology, attributes, context, and
semantics.

Context measures are used to quantify the geographic context of
features, which permits comparing their similarity. According to
Samal et  al.  (2004),  “geographic  context  refers to the spatial
relationships  between  objects  in  an  area”,  notably  the
relationships between an object and a limited set of landmarks.
Some authors argued that geographic context has the potential
to play an important role in the matching scenario. In this sense,
Zhang  et  al.  (2014)  affirm  that  the  similarity  of  geographic
features depends on the context, for some ambiguous cases.

To the best of the authors’ knowledge, the first study regarding
geographic context measures is that of Samal et al. (2004). The
authors  applied  landmarks  to  similarity  assessment.  By
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combining many metrics, such as positional and attribute, the
authors also proposed the use of landmarks to build a proximity
graph  in  order  to  compare  similarity  between  features.  The
proximity graph is a weighted directed graph defined to assess
geographic  context  similarity  considering  the  “proximity”
relative  to some  pre-selected  landmarks.  The  similarity  is
measured  using  the  total  vector  offset  of  the  corresponding
objects in both datasets.

Kim et al.  (2010) extended the previous context approach by
using  Voronoi  diagrams  and  triangulation  geometry.  In  this
method,  some  landmarks  are  used  to  determine  the
“neighbourhood” of a point  feature.  Comparing with Samal’s
method,  in the final analysis the two approaches differ. While
Samal et al.  (2004) use the total offset  vector to quantify the
context similarity, Kim et al. (2010) use the area/perimeter ratio
in the assembled triangles.

Other interesting study was developed by Zhang et al. (2014).
The authors, inspired by the k-nearest approach of Zheng and
Doermann (2006), proposed the use of Delaunay triangulation
to  define  the  neighbourhood  of  objects,  considering  a
continuous influence from the closest objects.

3. GEOGRAPHIC CONTEXT MEASURE

As shown in the last section, there are few context approaches
available in the literature in order to match point features.  The
studies of Samal et al. (2004) and Kim et al. (2010) are based on
the selection of landmarks, and the study of Zhang et al. (2014)
is based on the Delaunay triangulation.

We developed a context  distance based on the shape context
descriptor  developed  by  Belongie  et  al.  (2002).  Despite  the
original  study  having  used  the  shape  context  to  find
correspondences between shapes, we adapted those concepts in
order  to quantify the geographic context  of point  features  by
using their relative positions against the closer objects.

The context distance is computed as follows. For each point in a
dataset  we  compute  a  common  histogram  with  the  polar
coordinates  of  all  other  close  points  relative  to  the  assessed
point.  Figure  1(a)  illustrates  how  the  histogram  bins  are
positioned in  the space considering the assessed point  in  the
center.  It  is  possible to note that not all  points are used,  just
those inside a neighbourhood limit, or rmax. So for each bin we
count the number of point features and fill the respective value.
After  counting  all  neighbours  inside  the  limit,  we  have  the
shape  context  for  the  assessed  point,  which  is  the  context
“signature” for that feature.

The  position  of  the  histogram  bins  differ  from  the  original
Belongie's  study,  where  the  authors  considered  a  log-polar
coordinate  system  (Belongie,  Malik  2000,  Belongie  et  al.,
2002). In our study we propose that the increment of radius r
should occur by the length of the previous arc. So it works as a
geometric progression that begins with an r0 and has a common
ratio equal to the angular step in radians.

We adopted the cost function proposed by Belongie et al. (2002)
as the context distance.  This  distance measures the similarity
between histograms, i.e. between shape contexts, using a χ² test
statistic  for  normalized  histograms.  This  distance  assumes
values from zero (completely similar) to one (dissimilar).

C( pi , q j)=
1
2∑k=1

K
[hi(k)−h j(k)]

2

hi(k)+h j(k)
(1)

where C represents the cost function that measures the context
similarity between points pi and qj, and hi(k) and hj(k) represent
the  K-th  normalized  histogram  bin  for  points  pi and  qj,
respectively.

4. EXPERIMENTS AND DISCUSSION

In  order  to  validate  our  proposal  of  a  context  measure  for
matching geospatial features, we developed a simple matching
method which uses the new measure, and tried it using a testbed
available  to  the  scientific  community,  called  MatchingLand
(Xavier et al., 2017).

This experiment has  four essays. The first  essay (P1) aims to
check the performance of the new context distance. The  other
essays compare the performance of the  new proposed measure
with the widely-used Euclidean distance in three configurations:
normal  conditions  (essay  P2),  in  presence  of  systematic
disturbance (P3), and with random disturbance (P4).

This matching method can be defined using three elements: the
measure,  its  associated  thresholds,  and  the  selection  criteria.
This experiment uses two measures: the new context measure

Figure 1. Geographic context measure. (a) Diagram of
histogram bins for the point in the center. (b) Resulting

histogram representing the number of points in each bin.
Source: based on Xavier (2017).
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and  the  Euclidean  distance.  Each  measure  has  its  own
thresholds: in context measure is a value for the cost function,
and for Euclidean distance it is in meters. The last element that
compounds the matching method is the selection criteria. This
element  defines  whether  two  assessed  features  should  be
marked as a “match” or not. In this study we consider that a
selection criteria is applied only inside the given thresholds, and
we adopt two criteria: both nearest, and closer.

In the  both nearest criterion two features in different datasets
(e.g.  datasets  A and  B)  are  marked  as  a  match  when  the
maximum  similarity  (or  minimum  distance)  occurs  in  the
forward  matching  (from dataset  A to  dataset  B),  and  in  the
backward matching (from dataset B to dataset A), so it allows
only  1:1  matches.  The  selection  criteria  closer marks  two
features as a match when the maximum similarity (or minimum
distance)  occurs in the forward matching or in the backward
matching. So, this approach permits m:n corresponding cases.

In  this  experiment  we  assess  three  variables  for  matching
geospatial features: precision, recall, and F-measure. Precision
and recall are concepts that come from the information retrieval
field (Van Rijsbergen, 1979). Precision evaluates the presence
of wrong matches (false positives) against the real matches (true
positives); while recall evaluates the presence of non-matches
(false  negatives)  against  those  real  matches.  The  F-measure
represents the harmonic mean between precision and recall (Do,
Rahm, 2002).

4.1 Geographic context measure

In our  first  essay (P1)  we investigate  the geographic  context
distance as similarity measure for point features. We combined
a  set  of  thresholds  (0.3,  0.5,  0.9)  and  the  two criteria:  both
nearest and closer. Table 1 summarizes the results for this essay.

Both nearest Closer

Variable 0.3 0.5 0.9 0.3 0.5 0.9

precision 54.6 54.7 62.6 18.7 16.3 14.5

recall 46.4 49.8 53.3 78.3 86.0 95.3

F-measure 49.6 52.0 56.9 25.0 24.0 22.7

Notes: average values for 9 regions in each combination of 
parameters.

Table 1. Results for the essay P1 (geographic context).

The  both  nearest  criterion  with  the  largest  threshold  (0.9)
presented the best results,  with an average F-measure around
56.9%. The closer criteria, which supports m:n cases, presented
a  worse  F-measure  than  the  both  nearest  criteria  in  all
thresholds. Besides it reaches the best recall (95.3%) the global
result was influenced by the low precision.

The  configuration  with  best  results,  0.9  threshold  and  both
nearest criterion, will be used in the following essays.

4.2 Comparing the context measure with Euclidean distance

In  this  essay we  compare  the  performance  of  the  context
measure  with  the  Euclidean  distance.  There  are  three
configurations: Euclidean distance with the closer criterion and
threshold  of  10  m  (10C);  Euclidean  distance  with  the  both
nearest criterion  and  threshold  of  25 m  (25B);  and  the
geographic context measure with the both nearest criterion and
threshold of 0.9 (CTT). Table 2 summarizes the results for this
essay, presenting the average values for 9 regions.

Variable 10C 25B CTT

precision 97.8 95.7 62.6

recall 98.4 97.8 53.3

F-measure 98.1 96.7 56.9

Notes: 10C means Euclidean distance, closer criterion, 10 m 
threshold; 25B means Euclidean distance, both nearest, 25 m; 
CTT means geographic context measure, both nearest, 0.9 
threshold.

Table 2. Results for the essay P2 (comparison geographic
context vs Euclidean).

Table  2  shows  that  the  Euclidean  distance  reached  the  best
results, with an average F-measure beyond 96%.

4.3 Systematic disturbance

The next essay refers to systematic perturbations applied over
point data (P3). In this  essay we used two configurations from
the previous essay: 10C and CTT, but we changed the original
data for a disturbed version (see Xavier et al., 2017).

These systematic disturbances include 32 different translations,
24 rotations, and 8 scalings. In this essay, we “freezed” the other
systematic  disturbances and  assessed  the  performance  of
matching  methods  using  just  one  kind  of  disturbance:
translation, rotation, or scaling. Table 3 summarizes the results
for this essay.

translation rotation scaling

variable 10C CTT 10C CTT 10C CTT

precision 34.0 62.5 76.4 62.5 71.4 62.8

recall 26.5 52.7 58.5 52.7 53.4 52.9

F-measure 27.8 56.4 62.4 56.5 56.9 56.7

Notes: 10C means Euclidean distance, closer criterion, 10 m 
threshold; CTT means geographic context measure, both 
nearest, 0.9 threshold.

Table 3. Results for the essay P3 (systematic disturbance).

The results represent an average value of 288 measured values
for translations,  216 for rotation,  and 72 for scaling.  Table  3
shows that the results with the Euclidean distance were largely
influenced  by  the  systematic  disturbances,  notably  in  the
translations. The geographic context measure presented stability
in presence of this kind of disturbance. 

4.4 Random disturbance

The last  essay  refers  to  assess  the  performance  of  matching
methods over the presence of random disturbance in the datasets
(essay  P4).  We  used  the  same  two  configurations  from  the
previous essays: 10C and CTT.

These  random disturbances  include  100  iterations  over  three
distinct  standard  displacements:  5  m,  25  m,  and  50  m.  The
testbed includes a fourth value: 12.5 (Xavier et al., 2017), but it
was not used here in order to simplify the analysis. Henceforth
the two configurations (10C and CTT, Euclidean and context
measure) were tested against 900 disturbed datasets (9 regions x
100 iterations) for each standard displacement (5,  25, and 50
meters). Table 4 summarizes the results for this essay.
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5 m 25 m 50 m

variable 10C CTT 10C CTT 10C CTT

precision 97.2 62.6 65.2 62.4 32.3 61.4

recall 97.6 52.8 33.1 52.1 9.0 50.6

F-measure 97.4 56.5 42.1 56.1 13.2 54.8

Notes: 10C means Euclidean distance, closer criterion, 10 m 
threshold; CTT means geographic context measure, both 
nearest, 0.9 threshold.

Table 4. Results for the essay P4 (random disturbance).

Table  4  shows  a  similar  result  from  that  obtained  with  the
systematic disturbance in the previous essay (P3). The overall
performance of the Euclidean distance was getting worse with
an increasing displacement. Figure 2 illustrates these results by
presenting the variations in the average F-measure relative to
the random disturbance for each standard displacement applied.

4.5 Discussions

The experiment revealed that the geographic context measure is
a  feasible  option  when  choosing  a  similarity  measure  for
matching geospatial point data.

Besides those methods based on Euclidean distance achieved
the  best  performance (precision,  recall,  F-measure)  when
compared with the geographic context measure, these methods
were  shown  to  be  more  sensitive  to  systematic  or  random
disturbances.  On  the  other  hand,  the  geographic  context
measure  showed  off  less  influenced  by  these  kinds  of
disturbance.

If there is the possibility of large displacements between point
datasets, we recommend using the geographic context measure,
both  nearest  criterion,  threshold  equal  to  0.5,  prior  to  any
Euclidean  matching.  This  way,  it  is  possible  to  define  some
“control  points”  in  order to determine whether the Euclidean
distance could be applied.

Other possibility is to using these control points to perform a
register  between  assessed  datasets  in  order  to  get  down  the

displacement  between  datasets.  Once  the  displacement  is
reduced, some Euclidean-based method could be applied.

5. CONCLUSIONS

The integration of distinct geospatial data has the potential to
improve  datasets  by  aggregating  new  information  to  those
datasets.  The geographic  key for  this  integration requires  the
perfect alignment between the considered datasets, in a process
called geospatial data matching. In this paper we have presented
a new geographic context measure that can be used to match
point datasets.

The proposed solution is based on the shape context descriptor
proposed by Belongie et al. (2002). The results obtained in the
experiment showed the feasibility of this approach to matching
point features.

This  approach  presents  interesting  features.  The geographic
context measure proved to be less sensible to data disturbance
(systematic  or  random) than other  measures.  We believe that
this new geographic context measure can be performed as a first
phase of a matching method, in which it could be applied to an
initial  align  between  the  assessed  datasets.  Since  its  main
characteristic is taking into account the feature context, it can be
used if there are large displacements, rotations, or translations
between these datasets. This measure could also be used in other
research issues, beyond the geospatial data matching. As a basic
measure, which assess the context signature of features, it could
even be used in data quality studies.  

The proposed  solution has  some limitations:  it  is  sensible  to
parameter setting. If a small neighbour limit (a search box) is
used,  it  may  reduce  the  effectiveness  of  this  procedure  for
feature  matching,  since  many  objects possibly  cannot  be
reached.

Future  work  includes:  (1)  adapt  this  measure  for  internal
matching;  (2)  investigate  how  decrease  the  dependence  of
parameter  setting;  and  (3)  publish  an  implementation  of  this
method  as  a  plug-in  for  the  QGIS  software,  called
Matching_Box1.
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