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ABSTRACT: 
 
Ripley’s K functions are powerful tools for studying the spatial arrangement or spatiotemporal distribution characteristics of geographic 
phenomena and events in spatial analysis and has been used in many fields. However, the K functions are compute-intensive for point-
wise distance comparisons, edge correction and simulations for significance test. Although parallel computing technologies have been 
adopted to accelerate K functions, previous works haven’t extended the optimization from space to space-time dimension. This study 
presents an acceleration method for K functions upon state-of-the-art distributed computing framework Apache Spark, and four 
optimization strategies are leveraged to simplify calculation procedures and accelerate distributed computing respectively, including 
1) spatiotemporal indexing based on R-tree with Sort-Tile-Recursive (STR) algorithm for reducing distance comparison when 
retrieving potential spatiotemporally neighbouring points; 2) Hash-Table-based caching for spatiotemporal edge correction weights 
reuse and reducing repetitive computation; 3) Spatiotemporal partitioning using KDB-tree as well as cylinder intersection redundancy 
strategy for decreasing ghost buffer redundancy in partitions and supporting near-balanced distributed processing; 4) Customized 
serialization of spatiotemporal objects and indexes for lowering the overhead of data transmission. Experiments verify the effectiveness 
and time efficiency of the proposed optimization strategies, and also evaluate the overall performance and scalability. Based on the 
proposed methods, a web-based visual analytics framework has been developed and publicly shared through GitHub, and four types 
of the distributed K functions are implemented, including space, space-time, local and cross K functions, which demonstrates its value 
on promoting geographical and socioeconomic studies. 
 
 

1. INTRODUCTION 

Effective approaches for detecting and studying the spatial 
arrangement or spatiotemporal distribution characteristics of 
geographic points would be helpful to investigate and interpret 
the spatiotemporal point process hidden behind geographic 
phenomenon or events (Cui et al., 2017). Among the approaches 
of point pattern analysis in spatial analysis, Ripley’s K function 
(K function for short) is a multi-distance and scale-independent 
point pattern analysis method, so Modifiable Areal Unit Problem 
(MAUP) can be avoided (Hohl et al., 2017; Wang et al., 2020). 
Meanwhile, its parameters can be derived from study area, not 
like the bandwidth in kernel density estimation (KDE) that 
usually relies on experience (Yuan et al., 2019). The neighbors 
within the maximum distance are all considered, hence the 
information behind the point pairs can be fully utilized. Many 
variants of the K function have been developed for different 
analysis scenarios, including space-time, local, cross and 
network K functions, and there have been desktop-based 
software packages that provide K functions and its extensions 
(e.g., Spatstat, Splancs, Stpp in R). Therefore, K functions have 
been widely applied in many fields, such as ecology (Hendricks 
et al., 2017), archaeology (Winter-Livneh et al., 2010), 
epidemiology (Hohl et al., 2016), criminology (Pandit et al., 
2016), sociology (Fu et al., 2017), economics (Kosfeld et al., 
2011; Tian et al., 2017; Chen et al., 2018) and, biology and 
medical science (Sporring et al., 2019). 
                                                             
*  Corresponding author 
 

 
Although K function is a powerful tool in point pattern analysis, 
it also incurs computational challenges on spatiotemporal big 
data (Yang et al., 2015). K function is compute-intensive and 
become extremely time-consuming when data volume increases 
for several reasons: 1) Time complexity of pairwise distance 
comparison between all points is quadratic; 2) Weight calculation 
is need for point pairs to correct edge effect, which is positively 
correlated to the geometric complexity of the study area 
boundary; 3) A fair amount of simulations are demanded to 
conduct confidence evaluation for significance level of point 
pattern. The expected time cost of K function would be even 
higher when extended from spatial dimension to spatiotemporal 
dimension. As the result, the time efficiency of the classical 
desktop-based packages is far from satisfying for large data 
volume. It affects the user experience of geoprocessing 
significantly (Hu et al., 2019) and impedes further application. 
Hence, the acceleration of K functions is urgent to enable 
efficient spatiotemporal point pattern analysis. 
 
High Performance Computing (HPC) technologies have been 
applied to tackle the compute-intensive challenges brought by 
spatial analysis (Guan et al., 2011; Gui et al., 2015). Multi-CPU 
(Zhang et al., 2016) and massive-GPU (Tang et al., 2015) 
methods have been developed to accelerate space K function for 
large point datasets. Although great achievements have been 
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made to accelerate the computing process of K functions, existing 
studies mainly focus on spatial dimension, and temporal 
dimension is seldom involved. These implementations are 
limited in scalability and workflow optimization due to relative 
expensive programming cost of the parallel frameworks. Without 
framework-level supports and abundant third-party libraries, 
advanced spatial extensions, fault-tolerance mechanism and 
spatiotemporal-aware scheduling are hard to be achieved. 
Distributed frameworks like Apache Hadoop and Spark are 
gaining ground in big geospatial analytics [24,25]. However, 
existing parallel optimization methods of K functions couldn’t fit 
well in such a distributed data pipeline, and a systematic parallel 
method for K functions is highly desired. 
 
To address these issues, this study adopts four generic 
optimization strategies for distributed K functions proposed by 
our previous study (Wang et al., 2020). Specifically, 1) 
spatiotemporal indexing is adopted to avoid unnecessary pair-
wise comparison in point pair acquisition; 2) weight cache is 
designed to reuse spatiotemporal weights and decrease repetitive 
calculations; 3) spatiotemporal partitioning is used to balance 
workloads and communication overheads among computing 
nodes in the cluster; 4) customized serialization for 
spatiotemporal objects and indexes is developed to lower the 
overhead of data transmission between nodes. The performance 
experiments verify the efficiency of the proposed method. 
 
The paper is organized as follows: Section 2 presented the 
proposed optimization methods for K functions. Section 3 
analysed the performance and scalability of the algorithms 
through a group of experiments. Section 4 introduced the 
technical implementation of the developed web-based visual 
analytics framework. Section 5 drew conclusions. 

 
2. METHODOLOGY 

To lower the computational barrier of spatiotemporal point 
analysis for large datasets, we adopted a distributed computing 
mode of K functions over the distributed computing framework 
Apache Spark as shown in Figure 1. In this framework, multiple 
workers (i.e., computing node) conduct the divided computing 
tasks of K functions according to their local data storage, while 
the master node allocates tasks and gathers the processing result. 
When the driver program is submitted to the master, computing 
tasks will be generated and computing resources for the job will 
be allocated according to the submitted K function and Apache 
Spark parameters respectively. Apache Spark parameters include 
number of executors, CPU resources, and memory resources; 
while K function parameters include the type of the specified K 
function, JAR package of the algorithm, point dataset identifier, 
study area, spatial and temporal distance thresholds, edge 
correction method, simulation method, number of simulations 
and etc. Built-in spatiotemporal partitioner in master node 
handles data partition among workers. Customized serializer 
provides compact representation of spatiotemporal objects for 
reducing data transmission. The executors in the workers execute 
multiple threads and handle the assigned calculation tasks 
simultaneously. In each executor, an embedded spatiotemporal 
index builder indexes local data partition. Weight cache, 
spatiotemporal objects, and spatiotemporal index for local data 
are cached in partitions of the executor for accelerating 
calculation. The results will be transferred to and aggregated by 
the master when all the tasks are finished. Through the master-
slave programming model, the distributed implementation of K 
functions can be scheduled, accelerated and monitored. 
 

 
Figure 1. Master-slave mode of distributed K functions 

 
A generic calculation workflow of distributed K functions that 
adopts the four strategies is shown in Figure 2 by taking space-
time K function as an example (Wang et al., 2020). In the main 
procedure, both observed and simulated points are 
spatiotemporally partitioned before the calculation to balance 
workload and reduce IO overhead among computing nodes. 
Spatiotemporal indexes are built on each partition to boost 
neighbouring point query, and cache is utilized to reuse weights 
for spatiotemporal edge correction. In addition, customized 
serialization enables compact data transmission between nodes 
for spatiotemporal objects and indexes. 
 

 
Figure 2. Optimized distributed calculation workflow by taking 

space-time K function as an example 
 
2.1 R-tree-based Spatiotemporal Indexing 

The calculation of K functions requires nested traversals on the 
points. The outer traversals cover every point, while the inner 
traversals only need to find the neighboring points that lie within 
the spatiotemporal thresholds ideally. To avoid unnecessary 
traversals, the point pair acquisition can be regarded as a query 
task, and spatiotemporal index might quickly narrow the query 
scope and decreases the comparison times of inner traversals. As 
the performance of range query the key in point pair acquisition, 
R-tree with Sort-Tile-Recursive (STR) algorithm [51] is adopted. 
As shown in Figure 3, points are bulk loaded into the tree and 
overlaps between the spatiotemporal MBR of nodes are avoided. 
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Figure 3. R-tree with Sort-Tile-Recursive (STR) algorithm for 

spatiotemporal point pair queries 
 
In query stage, a series of cylinders centred at the spatiotemporal 
points (red point in Figure 3(a)) with spatial threshold as the 
radius and double temporal threshold as the height are 
constructed as query scope. Then the query scope will be 
compared with spatiotemporal cubes of the tree nodes. If they 
intersect with each other (light blue nodes in Figure 3(b)), same 
comparison operation will be performed on the child tree nodes, 
until the leaf nodes are reached. The points in leaf nodes will be 
directly compared with the query scope, and matched points 
(yellow points in Figure 3(a)) will be added to the result. 
Therefore, comparisons are made only for the nodes potentially 
matched the respective query. 
 
2.2 Spatiotemporal Weight Caching 

Edge correction weight calculation among the spatiotemporal 
point pairs is time-consuming, especially when the boundary of 
the study area becomes more complex. The repetition of 
calculation can be eliminated if there are multiple neighboring 
points having the same spatial distance and temporal distance 
from the same center point coordinate under the given spatial 
coordinate tolerance and spatial distance tolerance, or when 
conducing simulations using random permutation. 
 

 
Figure 4. Cache for spatial and temporal weight reuse 

 
To avoid repetitive calculation, spatial and temporal weights can 
be cached into two hash tables separately for reusing as illustrated 
in Figure 4. Spatial weight cache and temporal weight cache are 
filled with < 𝑝#,< 𝑑,𝜔 >>  and < 𝑝(,< 𝑢, 𝜐 >>  entries 
respectively, where 𝑝#  and 𝑝(  are coordinate and timestamp of 
the center point, 𝑑 and 𝑢 are the spatial distance and temporal 
distance, and 𝜔 and 𝜐 are the spatial weight and time weight. The 
key in the first-tier hash table is the hash value of 𝑝#  and 𝑝( 

respectively, and the corresponding value is the second-tier table 
for 𝑝# and 𝑝(. While, the key of the second-tier hash table is the 
hash values of 𝑑 and 𝑢 respectively, and the corresponding value 
is the spatial and temporal weight. 
 
2.3 KDB-tree-based Spatiotemporal Partitioning 

Moderate data redundancy among data partitions is essential for 
alleviating unnecessary IO cost on data transmission between 
computing nodes, and eventually accelerating the computation. 
Partitioning using sample points can furtherly lower the 
computing cost for processing dataset with big data volume. 
According to relevant research, 1% of the samples are sufficient 
to obtain high quality partitions (Eldawy et al., 2015). Therefore, 
spatiotemporal partitioning is accomplished by building KDB-
tree-based index using sample data to accelerate spatiotemporal 
scopes generation, as shown in Figure 5. 1) After loading the 
spatiotemporal points from storage system, the points are 
randomly sampled and sent to the master; 2) a KDB-tree-based 
spatiotemporal index is built on the sample points by the master. 
The number of partitions is decided by the indexing through 
construction parameters for the tree, such as maximum number 
of child nodes, maximum number of items; 3) Once the index is 
delivered to the workers, the workers query the leaf node to 
which each point belongs and build key-value pair < 𝑖𝑑, 𝑝 >, 
where 𝑖𝑑 is the unique identifier for spatiotemporal envelop of 
the leaf node, and 𝑝  denotes the spatiotemporal point; 4) 
distributed points is repartitioned according to the key of pair, 
and key-value pairs with the same key is divided into the same 
partition. Eventually, spatiotemporally partitioned points can be 
derived from the value of pairs. 
 

 
Figure 5. Process of spatiotemporal partitioning 

 
2.4 Customized Serialization for Data Transmission 

Big data processing frameworks, such as Spark, provide 
serializers with sufficient capabilities to handle simple objects, 
but for spatiotemporal objects, a compact representation is 
missing, which causes more bytes generated and transferred in 
the cluster. To solve this problem, customized serializations are 
developed for spatiotemporal objects including points, cylinders, 
envelopes and indexes. Here we take spatiotemporal cylinder as 
an example to compare the representation of default and 
customized serialization methods for the length limit, which 
shows a significant reducing in bytes in Figure 6. 
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Figure 6. Representations of default and customized 

serializations for spatiotemporal cylinder 
 

3. EXPERIMENTS 

To prove effectiveness and adoptability of the developed method, 
we analyse the performance improvement of different distribute 
K functions. For experiments in Section 3.1 to 3.5, cross K 
function was used, while for Section 3.6 and 3.7, space K 
function and space-time function were selected. Experiments 
were conducted on a private cloud supported by Apache 
CloudStack built upon 6 physical nodes. Each physical node that 
works as the agent of this private cloud has 24 CPU cores of 2.4 
GHz and 64GB memory. They are connected by local network 
with 1 Gbps. 9 VMs with 8 virtual CPU cores of 2 GHz and 16GB 
memory running CentOS 7.2 were created on the private cloud. 
1 VM served as master, and the other 8 VMs served as workers 
were evenly hosted on 4 physical nodes. The versions of Spark 
and Hadoop are v2.3 and v2.7 respectively. The experiment 
datasets were resampled from the enterprises registration data in 
Chongqing, China (2,119,419 points in total) from year 1949 to 
year 2018 recorded by the bureaus of Administration for Industry 
and Commerce (AIC) of China after imputation (Li et at., 2018). 
For more performance analysis on space-time K function, please 
refer to our previous research (Wang et al., 2020). 
 
In order to evaluate the performance of distributed K functions, 
speedup factor (SF) and acceleration factor (AF) are used to 
measure how much speedup of optimization strategies achieved 
and how much acceleration of the distributed system achieved 
respectively, as shown in formula 1. 
 

                                  𝑆𝐹 = 𝑇01232456/𝑇08(292:;< (1)                                  𝐴𝐹 = 𝑇#(54<5604;/𝑇<2#(12>?(;< 
 
where 𝑇01232456  and 𝑇08(292:;<  are the execution time of the 
original and optimized K function respectively, while 
𝑇#(54<5604;  and 𝑇<2#(21>?(;<  are the execution time of the K 
function performed on standalone machine and distributed 
cluster respectively. All the execution time mentioned above 
excluded time spent on data input and output. 
 
3.1 Performance of Spatiotemporal Indexing 

Since spatial cross K function studies the spatial correlation 
between two group of points, two resampled subsets with equal 
number of points (n=50,000) of the experiment point data were 
used as the input point dataset pair in this experiment to compare 
the execution time of cross K function with spatiotemporal index 
and without index. The degree to which the times of inner 
traversals could be reduced depends on the maximum spatial 
distance 𝑠𝑚𝑎𝑥. Therefore, the proportion of spatial query scope to 
study area is set from 1/256 to 1/16 exponentially. In practice, the 
index building times are less than 0.1s, and almost has no 
influence on total execution time. 

 
Figure 7. Performance comparison of cross K function with and 

without spatiotemporal index under increasing query scopes 
 
The results in Figure 7 indicate that spatiotemporal index would 
increase the performance of estimation and simulations at 
relatively short spatial distance, while as the spatial distance 
increases the performance for indexing querying become less 
effective and even worse than the solution without indexing. The 
speedup factor was higher than 1 when 𝑠𝑚𝑎𝑥 was less than 1/16 
of smaller side length of spatial boundary. It could be explained 
that the query scopes at higher 𝑠𝑚𝑎𝑥 were not partial enough, then 
most of the tree nodes would be traversed and the index would 
lose its effect. While, at lower 𝑠𝑚𝑎𝑥 , the speedup factor for 
estimation and simulation could reach 2.75 and 2.06 respectively, 
because the query scope would only interest with a small amount 
of tree nodes in the index. Meanwhile, point distribution has huge 
impact on the effectiveness of index. When the dataset is 
extremely skewed that most of points concentrated in certain 
peak areas, the spatiotemporal query scope will overlap with 
large proportion of R-tree nodes in index, and hence weaken the 
filtering capability of the index seriously. 
 
3.2 Performance of Weight Caching 

As the time complexity of spatiotemporal isotropic correction 
method is linear correlated to the complexity of boundary, this 
experiment was performed on two resampled subsets with equal 
number of points (n=50,000) at the same maximum spatial 
distance but with boundaries composed of different number of 
vertexes. The execution time of cross K function with cache was 
compared to that without cache. 
 

 
Figure 8. Performance comparison of cross K function with and 
without weight cache under increasing complexity of boundary 
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Figure 8 shows that the cache can eliminate the influence brought 
by the complexity of boundary. Execution times of estimations 
and simulations are independent with the boundary when using 
the cache, while the execution times of the counterpart solution 
without cache do increase linearly with the number of vertexes of 
the boundary. However, when the boundary is extremely simple, 
the calculation of weights could be quickly finished, while the 
overhead of cache caused by resizing and hash collision will 
offset the benefits of cache. Meanwhile, due to the difference in 
cache utilization, the speedup factor for simulation is higher than 
that of estimation. 
 
3.3 Performance of Spatiotemporal Partitioning 

This experiment was conducted on two resampled subsets with 
equal number of points (n=50,000) at the same maximum spatial 
distance with the same boundary using varying number of 
partitions. The execution time of cross K function with 
spatiotemporal partitioning was compared to that with hash 
partitioning, the default method in Apache Spark, to investigate 
the effect of spatiotemporal partitioning. 
 

 
Figure 9. Performance comparison of cross K function with and 

without partitioning under increasing number of partitions 
 
Figure 9 illustrates that spatiotemporal partitioning could avoid 
unnecessary data redundancy and accelerate calculation. Few 
partitions lead to less data redundancy but bring longer average 
execution time, while more partitions result in fine-grained task 
scheduling but also introduce more data transmission. Therefore, 
optimized partitioning needs to leverage execution time and 
transmission time by carefully adjusting the number of partitions. 
 
3.4 Performance of Customized Serialization  

The volume of data transmission in distributed systems is mainly 
related to the size of point data. Therefore, this experiment was 
conducted on datasets with different number of points under the 
same spatial distances with the same boundary. The execution 
time of cross K function with default serialization was compared 
to that with customized serializer to investigate the effect of 
customized serializer (Figure 10). 
 

 
Figure 10. Performance comparison of cross K function with 

default and customized serializer under increasing point number 
 
As is shown in Figure 10, customized serialization could reduce 
overhead of data transmission and improve performance of cross 
K function. The speedup factor was consistently higher than 1 
and grew up with the increasing number of points since more 
points would generate more spatiotemporal objects. Customized 
serialization can archive more than 20 times of compression ratio, 
in turn archive more than 10 times and 40 times of speedup ratio 
for serialization and deserialization. 
 
3.5 Performance of Integrated Four Optimization Strategies 

The overall effectiveness of the four optimization strategies was 
evaluated by comparing execution time of cross K function with 
and without any procedure optimizations. The original algorithm 
and optimized algorithm are both Spark-based and tested on the 
same clustering computing environment with 8 worker nodes. 
The experiment was carried out on different size of point 
datasets. The maximum spatial distance threshold was 100km, 
which is 1/5 to the smaller side length of study area. 
 

 
Figure 11. performance comparison with and without 
distributed optimization under increasing data volume 

 
Figure 11 demonstrates that the speedup factor achieved by four 
optimization strategies increases as data size increases. Although 
the setting of the maximum spatial distance threshold and 
extremely skewed point distribution in this experiment make the 
spatiotemporal index almost noneffective on time efficiency 
improvement as discussed in section 3.1, the estimation still 
achieved about 2.0 times and 3.1 times speedup at data size 
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80,000 and 160,000 respectively. Meanwhile, the speedup for 
simulation was higher than that for estimation on large data sizes 
because of less calculation for spatiotemporal weight. 
 
3.6 Scalability Analysis 

The scalability of distributed K functions was evaluated by 
comparing performance of estimations and simulations on 
different number of nodes in the cluster. In this experiment, we 
take the space K function and space-time K function as examples. 
The experiment was performed on a resampled point dataset 
(n=200,000) at spatial distance from 0 to 20km and temporal 
distance from 0 to 20 months with 1 km as spatial step and 1 
month as temporal step. 
 

 
Figure 12. Performance analysis of space K function (denote as 

SK) and space-time K function (denote as STK) under 
increasing number of nodes in cluster 

 
As shown in Figure 12, with the increasing of the computing 
nodes, the execution times of space K function and space-time K 
function are reduced and the acceleration factors increase in 
general. The execution time of space K function is shorter than 
that of space-time K function at all node scales (i.e., number of 
computing nodes), but the AF trend of space K function is similar 
to that of space-time K function. As the node increases, the AF 
values of both space K function & space-time K function tends 
to be converged. The reason is that the performance improvement 
brought by the increase of computing resources is gradually 
offset by the increasing cost of network communication. With the 
increase of the computing node, the impact of computing 
resources on execution time is gradually reduced, which cannot 
improve execution efficiency anymore eventually. Further 
optimization would be made by improving the utilization rate of 

computing resources and reducing the network overheads 
introduced by small partition size. 
 
3.7 Overall Speedup Analysis 

This experiment analyses the overall performance of the 
distributed K functions that integrate four optimization strategies 
and benefit from powerful computer resources provided by the 
cluster. Here, we select space K function as a case study. Since 
the datasets used in the experiments of Section 3.1 to 3.5 are 
relatively small and can’t demonstrate the power of the 
distributed K functions, this experiment was performed on a 
group of resampled point datasets with increasing number of 
points from 10,000 to 300,000.  Same to the scalability analysis, 
the spatial distance increases from 0 to 20km with 1 km as spatial 
step. The optimal number of partitions were inferred and 
specified from partitioning experiments. The execution time of 
the K function on 8 nodes with optimization strategies were 
compared to that on standalone computer with and without 
adopting optimization strategies bothly to investigate the overall 
speedup. 
 
Table 1 shows overall speedup by adopting the proposed 
optimization strategies and Apache Spark clusters comparing 
with the original algorithm ran on single VM with Spark local 
mode. We can find that the overall speedup increases as the data 
size increases significantly, which can achieve 76.23 times and 
92.4 times for estimation and simulation at data size 300,000 
respectively. The execution times of the optimized algorithm ran 
on 8 worker nodes grown slowly as the increase of data size and 
didn’t show the exponential increase as that of the original non-
optimized algorithm on single VM because of the adoption of 
four optimization strategies and clustering computing.  
 
Extremely skewed spatiotemporal distribution of the dataset also 
has huge impact on acceleration effect. To demonstrate the 
extreme performance of our algorithm, an experiment for space-
time K function was also performed on a point dataset generated 
by ArcGIS in our previous study (Wang et al., 2020).  In that 
dataset, the points are random distributed in United States and a 
simplified administration boundary of United States with 85 
points is used as the boundary of the study area. The overall 
acceleration factor under the same experiment environments as 
here with 8 computing nodes can even achieve more than 1000 
times for estimation and simulation at data size 400,000. That is 
because, the adjacent point pair grows linearly under random 
spatiotemporal data distribution, as the result the index and 
partitioning can work effectively, and eventually gained 
significant speedup ratios.  
 

 
Number 

of 
Points 

Execution time (s) 
Overall acceleration factor 

Original on 1-node Optimized on 1-node Optimized on 8-nodes 
Estimation Simulation Estimation Simulation Estimation Simulation Estimation  Simulation  

10,000 145.918 86.556 152.338 58.224 28.454 12.053 5.13 7.18 
20,000 303.028 160.409 259.941 101.899 38.038 14.738 7.97 10.88 
50,000 922.567 487.231 629.254 239.067 48.146 20.127 19.16 24.21 
100,000 2118.678 1158.916 903.555 402.863 59.765 27.056 35.45 42.83 
200,000 5175.611 3745.507 1551.980 962.850 99.295 58.926 52.12 63.56 
300,000 8942.642 6910.022 1840.657 1262.219 117.314 74.776 76.23 92.40 

Table 1. Overall speedup of space K function by adopting optimization strategies and clustering computing 
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4. WEB-BASED VISUAL ANALYTICS FRAMEWORK 

To promote the applications of the distributed K functions, a 
multi-tier web-based visual analytics framework was designed 
and implemented as shown in Figure 13. Four types of distributed 
K functions were implemented and integrated, including space K 
function, space-time K function, local K function and cross K 
function. The data storage tier comprises HDFS distributed file 
system for data management. The data processing tier is built 
upon Spark RDD API, spatial object API of JTS and GeoTools 
to support object representations and spatial operations. 
Spatiotemporal objects and Spatiotemporal RDD are defined to 
represent distributed spatiotemporal objects. Besides, the index 
builder, hash-table-based cache, partitioner and customized 
serializer are integrated. On the top of data processing tier, web 
service tier and data visualization tier are built to facility the 
invocation of distributed K functions and visual analytics through 
a loosely-coupled and web-based approach. The web service tier 
uses Jersey to provide RESTful services. In data visualization 
tier, the map interface is implemented upon Leaflet.js, Deck.GL, 
while the base map is from OpenStreetMap, and the thematic 
chart is supported by D3.js and Apache Echarts. 
 

 
Figure 13. Web-based visual analytics framework for 

distributed Ripley’s K functions 
 
Through this framework, users can conduct efficient and flexible 
point pattern analysis by using distributed computing resources 
without knowing the underlying implementation details. The 
framework provides multi-dimensional and multi-granular 
filtering functions, including spatial filter (province, city, street), 
temporal filter (year, month, day), and customized categorical 
filter by using Nanocubes. As shown in Figure 14, the user can 
select the spatiotemporal points for analysis, specify the type of 
K functions, and configure both the K function parameters and 
the Spark cluster parameters. For K function parameters, the user 
can specify study area through either MBR or the identifier of the 
administrative boundary, simulation method, spatiotemporal 
distance thresholds and step sizes, which may vary in the type of 
K functions. For Spark parameters, besides the default 
configurations, the total number of executors, CPU cores and 
memory for each executor can be customized. When a user 
specifies and submits above parameters through parameter panels 
on the web pages, the job will be executed by the cluster and the 

running status can be checked through the status panel. When the 
calculation is finished, the respective results will be transferred 
back to the client and shown on the 2D/3D maps and plots for 
interaction (Figure 14). The calculation results can also be 
downloaded in tabular form through download button. The 
source code of the framework can be found on our GitHub 
repository (https://github.com/ZPGuiGroupWhu/Spark-based-
Ripley-K-Functions).  
 

 
Figure 14. Graphical user interfaces (GUIs) of the Web-based 

visual analytics framework 
 
 

5. CONCLUSION 

This paper utilized four acceleration strategies of distributed K 
functions for better supporting point pattern analysis, including 
spatiotemporal-index-based point pair acquisition, cache weight 
reuse, spatiotemporal partitioning and customized serialization 
for spatiotemporal objects. Based on that, we developed web-
based visual analytics framework upon Apache Spark, and four 
types of K functions were implemented for point pattern analysis. 
Experiments verified that the proposed method can reduce the 
time complexity of K functions for large datasets. Performance 
evaluations revealed that the first two optimization strategies 
upon calculation procedure could speed up the calculation with 
appropriated query scope setting even in a stand-alone execution 
environment; while the last two strategies accelerate the 
calculation furtherly by balancing workloads and decreasing data 
transmission overheads. This study may provide insight on how 
to lower the computing barrier of other spatial analysis methods 
and promote their broader applications for large datasets. 
 
Future work would focus on supporting more K function variants 
and extending the proposed method from univariate 
homogeneous isotropic point analysis to bivariate, 
inhomogeneous and anisotropic point pattern analysis (Møller 
and Toftaker, 2014). Meanwhile, the developed web-based visual 
analytics framework will be furtherly enhanced by providing 
more visualization and interaction functions to better support 
human-computer interactive geovisual analytics in various 
spatial analysis applications. 
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