
DEVELOPING APACHE SPARK BASED RIPLEY’S K FUNCTIONS FOR
ACCELERATING SPATIOTEMPORAL POINT PATTERN ANALYSIS

Z. Gui 1, *, Y. Wang 2, Z. Cui2, D. Peng 1, J. Wu 1, Z. Ma 1, S. Luo 1, H. Wu 2

1 School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China - (zhipeng.gui, pengdh,

wyw1294, zhipengma, luoshiqi)@whu.edu.cn
2 State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079,

China - (yuan.wang, zousen_cui, wuhuayi)@whu.edu.cn

Commission V, WG V/4

KEY WORDS: Point pattern analysis, Visual analytics, Spatial agglomeration, High performance computing, Spatiotemporal index,
Caching, Spatiotemporal data partitioning, Spatiotemporal object serialization

ABSTRACT:

Ripley’s K functions are powerful tools for studying the spatial arrangement or spatiotemporal distribution characteristics of geographic
phenomena and events in spatial analysis and has been used in many fields. However, the K functions are compute-intensive for point-
wise distance comparisons, edge correction and simulations for significance test. Although parallel computing technologies have been
adopted to accelerate K functions, previous works haven’t extended the optimization from space to space-time dimension. This study
presents an acceleration method for K functions upon state-of-the-art distributed computing framework Apache Spark, and four
optimization strategies are leveraged to simplify calculation procedures and accelerate distributed computing respectively, including
1) spatiotemporal indexing based on R-tree with Sort-Tile-Recursive (STR) algorithm for reducing distance comparison when
retrieving potential spatiotemporally neighbouring points; 2) Hash-Table-based caching for spatiotemporal edge correction weights
reuse and reducing repetitive computation; 3) Spatiotemporal partitioning using KDB-tree as well as cylinder intersection redundancy
strategy for decreasing ghost buffer redundancy in partitions and supporting near-balanced distributed processing; 4) Customized
serialization of spatiotemporal objects and indexes for lowering the overhead of data transmission. Experiments verify the effectiveness
and time efficiency of the proposed optimization strategies, and also evaluate the overall performance and scalability. Based on the
proposed methods, a web-based visual analytics framework has been developed and publicly shared through GitHub, and four types
of the distributed K functions are implemented, including space, space-time, local and cross K functions, which demonstrates its value
on promoting geographical and socioeconomic studies.

1. INTRODUCTION

Effective approaches for detecting and studying the spatial
arrangement or spatiotemporal distribution characteristics of
geographic points would be helpful to investigate and interpret
the spatiotemporal point process hidden behind geographic
phenomenon or events (Cui et al., 2017). Among the approaches
of point pattern analysis in spatial analysis, Ripley’s K function
(K function for short) is a multi-distance and scale-independent
point pattern analysis method, so Modifiable Areal Unit Problem
(MAUP) can be avoided (Hohl et al., 2017; Wang et al., 2020).
Meanwhile, its parameters can be derived from study area, not
like the bandwidth in kernel density estimation (KDE) that
usually relies on experience (Yuan et al., 2019). The neighbors
within the maximum distance are all considered, hence the
information behind the point pairs can be fully utilized. Many
variants of the K function have been developed for different
analysis scenarios, including space-time, local, cross and
network K functions, and there have been desktop-based
software packages that provide K functions and its extensions
(e.g., Spatstat, Splancs, Stpp in R). Therefore, K functions have
been widely applied in many fields, such as ecology (Hendricks
et al., 2017), archaeology (Winter-Livneh et al., 2010),
epidemiology (Hohl et al., 2016), criminology (Pandit et al.,
2016), sociology (Fu et al., 2017), economics (Kosfeld et al.,
2011; Tian et al., 2017; Chen et al., 2018) and, biology and
medical science (Sporring et al., 2019).

* Corresponding author

Although K function is a powerful tool in point pattern analysis,
it also incurs computational challenges on spatiotemporal big
data (Yang et al., 2015). K function is compute-intensive and
become extremely time-consuming when data volume increases
for several reasons: 1) Time complexity of pairwise distance
comparison between all points is quadratic; 2) Weight calculation
is need for point pairs to correct edge effect, which is positively
correlated to the geometric complexity of the study area
boundary; 3) A fair amount of simulations are demanded to
conduct confidence evaluation for significance level of point
pattern. The expected time cost of K function would be even
higher when extended from spatial dimension to spatiotemporal
dimension. As the result, the time efficiency of the classical
desktop-based packages is far from satisfying for large data
volume. It affects the user experience of geoprocessing
significantly (Hu et al., 2019) and impedes further application.
Hence, the acceleration of K functions is urgent to enable
efficient spatiotemporal point pattern analysis.

High Performance Computing (HPC) technologies have been
applied to tackle the compute-intensive challenges brought by
spatial analysis (Guan et al., 2011; Gui et al., 2015). Multi-CPU
(Zhang et al., 2016) and massive-GPU (Tang et al., 2015)
methods have been developed to accelerate space K function for
large point datasets. Although great achievements have been

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2020, 2020
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-545-2020 | © Authors 2020. CC BY 4.0 License.

545

made to accelerate the computing process of K functions, existing
studies mainly focus on spatial dimension, and temporal
dimension is seldom involved. These implementations are
limited in scalability and workflow optimization due to relative
expensive programming cost of the parallel frameworks. Without
framework-level supports and abundant third-party libraries,
advanced spatial extensions, fault-tolerance mechanism and
spatiotemporal-aware scheduling are hard to be achieved.
Distributed frameworks like Apache Hadoop and Spark are
gaining ground in big geospatial analytics [24,25]. However,
existing parallel optimization methods of K functions couldn’t fit
well in such a distributed data pipeline, and a systematic parallel
method for K functions is highly desired.

To address these issues, this study adopts four generic
optimization strategies for distributed K functions proposed by
our previous study (Wang et al., 2020). Specifically, 1)
spatiotemporal indexing is adopted to avoid unnecessary pair-
wise comparison in point pair acquisition; 2) weight cache is
designed to reuse spatiotemporal weights and decrease repetitive
calculations; 3) spatiotemporal partitioning is used to balance
workloads and communication overheads among computing
nodes in the cluster; 4) customized serialization for
spatiotemporal objects and indexes is developed to lower the
overhead of data transmission between nodes. The performance
experiments verify the efficiency of the proposed method.

The paper is organized as follows: Section 2 presented the
proposed optimization methods for K functions. Section 3
analysed the performance and scalability of the algorithms
through a group of experiments. Section 4 introduced the
technical implementation of the developed web-based visual
analytics framework. Section 5 drew conclusions.

2. METHODOLOGY

To lower the computational barrier of spatiotemporal point
analysis for large datasets, we adopted a distributed computing
mode of K functions over the distributed computing framework
Apache Spark as shown in Figure 1. In this framework, multiple
workers (i.e., computing node) conduct the divided computing
tasks of K functions according to their local data storage, while
the master node allocates tasks and gathers the processing result.
When the driver program is submitted to the master, computing
tasks will be generated and computing resources for the job will
be allocated according to the submitted K function and Apache
Spark parameters respectively. Apache Spark parameters include
number of executors, CPU resources, and memory resources;
while K function parameters include the type of the specified K
function, JAR package of the algorithm, point dataset identifier,
study area, spatial and temporal distance thresholds, edge
correction method, simulation method, number of simulations
and etc. Built-in spatiotemporal partitioner in master node
handles data partition among workers. Customized serializer
provides compact representation of spatiotemporal objects for
reducing data transmission. The executors in the workers execute
multiple threads and handle the assigned calculation tasks
simultaneously. In each executor, an embedded spatiotemporal
index builder indexes local data partition. Weight cache,
spatiotemporal objects, and spatiotemporal index for local data
are cached in partitions of the executor for accelerating
calculation. The results will be transferred to and aggregated by
the master when all the tasks are finished. Through the master-
slave programming model, the distributed implementation of K
functions can be scheduled, accelerated and monitored.

Figure 1. Master-slave mode of distributed K functions

A generic calculation workflow of distributed K functions that
adopts the four strategies is shown in Figure 2 by taking space-
time K function as an example (Wang et al., 2020). In the main
procedure, both observed and simulated points are
spatiotemporally partitioned before the calculation to balance
workload and reduce IO overhead among computing nodes.
Spatiotemporal indexes are built on each partition to boost
neighbouring point query, and cache is utilized to reuse weights
for spatiotemporal edge correction. In addition, customized
serialization enables compact data transmission between nodes
for spatiotemporal objects and indexes.

Figure 2. Optimized distributed calculation workflow by taking

space-time K function as an example

2.1 R-tree-based Spatiotemporal Indexing

The calculation of K functions requires nested traversals on the
points. The outer traversals cover every point, while the inner
traversals only need to find the neighboring points that lie within
the spatiotemporal thresholds ideally. To avoid unnecessary
traversals, the point pair acquisition can be regarded as a query
task, and spatiotemporal index might quickly narrow the query
scope and decreases the comparison times of inner traversals. As
the performance of range query the key in point pair acquisition,
R-tree with Sort-Tile-Recursive (STR) algorithm [51] is adopted.
As shown in Figure 3, points are bulk loaded into the tree and
overlaps between the spatiotemporal MBR of nodes are avoided.

Partition ...

2-tier Cache

Local Index

Spatiotemporal
Objects

Partition 2

2-tier Cache

Local Index

Spatiotemporal
Objects

Partition 1

Weights Cache

Local Index

Spatiotemporal
Objects

Spatiotemporal
Index Builder

Customized
Serializer

Executor

Point data blocks

Worker

Partition ...

2-tier Cache

Local Index

Spatiotemporal
Objects

Partition 8

2-tier Cache

Local Index

Spatiotemporal
Objects

Partition 7

Weights Cache

Local Index

Spatiotemporal
Objects

Spatiotemporal
Index Builder

Customized
Serializer

Executor

Point data blocks

Worker

Cluster Manager
YARN/Mesos/Spark standalone

Master

Spatiotemporal
data exchange

Control flow
communication

...

Spatiotemporal
Partitioner

Customized
Serializer

Driver
Parameters of

Ripley’s K functions
Parameters of
Apache Spark

START

Read observed
spatiotemporal points

Have simulations
been finished m times?

Calculate K(s, t) on
partitioned observed points

Calculate K(s, t) on
partitioned simulated points

Generate points using the
specified simulation

method

No

Obtain upper and lower
simulation envelops

END

Yes

Output result of
estimation and

simulations

Input data

Generate circles centered at
input points with max spatial

and temporal thresholds

Calculate spatial weight wij
and temporal weight vij

Update K value K(s, t) at
p spatial thresholds

and q temporal thresholds

Output result

Spatiotemporally
partition observed points

Spatiotemporally
partition simulated points

Main procedure Calculation of
Distributed K(s, t)

Build spatiotemporal index
for each partition of point

Spatiotemporally join
points and circles using
index on each partition

Generate qualified point
pairs from the join results

Get spatial weight wij
and temporal weight vij
from distributed cache

Next qualified point pair <i, j>?

Distributed cache contains the key?

Compute key through
point i, spatial radius and

temporal duration

Yes No

Yes

No

Update distributed cache

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2020, 2020
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-545-2020 | © Authors 2020. CC BY 4.0 License.

546

Figure 3. R-tree with Sort-Tile-Recursive (STR) algorithm for

spatiotemporal point pair queries

In query stage, a series of cylinders centred at the spatiotemporal
points (red point in Figure 3(a)) with spatial threshold as the
radius and double temporal threshold as the height are
constructed as query scope. Then the query scope will be
compared with spatiotemporal cubes of the tree nodes. If they
intersect with each other (light blue nodes in Figure 3(b)), same
comparison operation will be performed on the child tree nodes,
until the leaf nodes are reached. The points in leaf nodes will be
directly compared with the query scope, and matched points
(yellow points in Figure 3(a)) will be added to the result.
Therefore, comparisons are made only for the nodes potentially
matched the respective query.

2.2 Spatiotemporal Weight Caching

Edge correction weight calculation among the spatiotemporal
point pairs is time-consuming, especially when the boundary of
the study area becomes more complex. The repetition of
calculation can be eliminated if there are multiple neighboring
points having the same spatial distance and temporal distance
from the same center point coordinate under the given spatial
coordinate tolerance and spatial distance tolerance, or when
conducing simulations using random permutation.

Figure 4. Cache for spatial and temporal weight reuse

To avoid repetitive calculation, spatial and temporal weights can
be cached into two hash tables separately for reusing as illustrated
in Figure 4. Spatial weight cache and temporal weight cache are
filled with < 𝑝#,< 𝑑,𝜔 >> and < 𝑝(,< 𝑢, 𝜐 >> entries
respectively, where 𝑝# and 𝑝(are coordinate and timestamp of
the center point, 𝑑 and 𝑢 are the spatial distance and temporal
distance, and 𝜔 and 𝜐 are the spatial weight and time weight. The
key in the first-tier hash table is the hash value of 𝑝# and 𝑝(

respectively, and the corresponding value is the second-tier table
for 𝑝# and 𝑝(. While, the key of the second-tier hash table is the
hash values of 𝑑 and 𝑢 respectively, and the corresponding value
is the spatial and temporal weight.

2.3 KDB-tree-based Spatiotemporal Partitioning

Moderate data redundancy among data partitions is essential for
alleviating unnecessary IO cost on data transmission between
computing nodes, and eventually accelerating the computation.
Partitioning using sample points can furtherly lower the
computing cost for processing dataset with big data volume.
According to relevant research, 1% of the samples are sufficient
to obtain high quality partitions (Eldawy et al., 2015). Therefore,
spatiotemporal partitioning is accomplished by building KDB-
tree-based index using sample data to accelerate spatiotemporal
scopes generation, as shown in Figure 5. 1) After loading the
spatiotemporal points from storage system, the points are
randomly sampled and sent to the master; 2) a KDB-tree-based
spatiotemporal index is built on the sample points by the master.
The number of partitions is decided by the indexing through
construction parameters for the tree, such as maximum number
of child nodes, maximum number of items; 3) Once the index is
delivered to the workers, the workers query the leaf node to
which each point belongs and build key-value pair < 𝑖𝑑, 𝑝 >,
where 𝑖𝑑 is the unique identifier for spatiotemporal envelop of
the leaf node, and 𝑝 denotes the spatiotemporal point; 4)
distributed points is repartitioned according to the key of pair,
and key-value pairs with the same key is divided into the same
partition. Eventually, spatiotemporally partitioned points can be
derived from the value of pairs.

Figure 5. Process of spatiotemporal partitioning

2.4 Customized Serialization for Data Transmission

Big data processing frameworks, such as Spark, provide
serializers with sufficient capabilities to handle simple objects,
but for spatiotemporal objects, a compact representation is
missing, which causes more bytes generated and transferred in
the cluster. To solve this problem, customized serializations are
developed for spatiotemporal objects including points, cylinders,
envelopes and indexes. Here we take spatiotemporal cylinder as
an example to compare the representation of default and
customized serialization methods for the length limit, which
shows a significant reducing in bytes in Figure 6.

T

X

Y

Root

R1 R2

A B C D E F

(a) spatiotemporal scope of nodes in R-Tree (b) structure of R-Tree

R1

R2

A

B

C

D

E
F

Root

st

Tree Node Traversed NodeMatched pointCenter pointIndexed point

Keytier2 Valuetier2

hash(𝑢12) 𝜐12

hash(𝑢13) 𝜐13

hash(𝑢14) 𝜐14

… …

hash(𝑢1𝑛) 𝜐1𝑛

Estimated
Point Coordinate Timestamp

P1 (x1, y1) t1

P2 (x2, y2) t2

P3 (x3, y3) t3

… … …

Pn (xn, yn) tn

Simulated
Point Coordinate Timestamp

P1 (x1, y1) t3

P2 (x2, y2) t1

P3 (x3, y3) tn

… … …

Pn (xn, yn) t2

Keytier1 Valuetier1

hash(x1, y1)

hash(x2, y2)

hash(x3, y3)

…

hash(xn, yn)

Keytier2 Valuetier2

hash(𝑑12) 𝜔12

hash(𝑑13) 𝜔13

hash(𝑑14) 𝜔14

… …

hash(𝑑1𝑛) 𝜔1𝑛

Keytier2 Valuetier2

hash(𝑑31) 𝜔31

hash(𝑑32) 𝜔32

hash(𝑑34) 𝜔34

… …

hash(𝑑3𝑛) 𝜔3𝑛

Spatial Weight 2-tier CacheCenter Point Neighbor Point

Matched K-V Pair
for Estimation

Matched K-V Pair
for Simulation

Temporal Weight 2-tier Cache

Keytier2 Valuetier2

hash(𝑢𝑛1) 𝜐𝑛1

hash(𝑢𝑛2) 𝜐𝑛2

hash(𝑢𝑛3) 𝜐𝑛3

… …

hash(𝑢𝑛,𝑛−1) 𝜐𝑛,𝑛−1

Keytier1 Valuetier1

hash(t1)

hash(t2)

hash(t3)

…

hash(tn)

Center Point
(x, y)

T

X

Y

d

Neighbor Point
(x´, y´)

u

(1, P1), (1, P3),
(1, P9), ...

(2, P5), (2, P8),
(2, P18), ...

...

(1) Read spatiotemporal points
from distributed storage system

(2) Sample spatiotemporal points (3) Build spatiotemporal index
based on the sample

(4) Distribute the leaf envelopes
of the index to workers

(5) Assign the ID of leaf envelope
to the point

(6) Repartition the points by the
assigned ID

1

2 3

4

5
6

7

8
Worker Worker

(1, P1), (7, P2),
(1, P3)

(7, P4), (2, P5),
(6, P6)

...

P1, P2, P3

P4, P5, P6

...

…

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2020, 2020
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-545-2020 | © Authors 2020. CC BY 4.0 License.

547

Figure 6. Representations of default and customized

serializations for spatiotemporal cylinder

3. EXPERIMENTS

To prove effectiveness and adoptability of the developed method,
we analyse the performance improvement of different distribute
K functions. For experiments in Section 3.1 to 3.5, cross K
function was used, while for Section 3.6 and 3.7, space K
function and space-time function were selected. Experiments
were conducted on a private cloud supported by Apache
CloudStack built upon 6 physical nodes. Each physical node that
works as the agent of this private cloud has 24 CPU cores of 2.4
GHz and 64GB memory. They are connected by local network
with 1 Gbps. 9 VMs with 8 virtual CPU cores of 2 GHz and 16GB
memory running CentOS 7.2 were created on the private cloud.
1 VM served as master, and the other 8 VMs served as workers
were evenly hosted on 4 physical nodes. The versions of Spark
and Hadoop are v2.3 and v2.7 respectively. The experiment
datasets were resampled from the enterprises registration data in
Chongqing, China (2,119,419 points in total) from year 1949 to
year 2018 recorded by the bureaus of Administration for Industry
and Commerce (AIC) of China after imputation (Li et at., 2018).
For more performance analysis on space-time K function, please
refer to our previous research (Wang et al., 2020).

In order to evaluate the performance of distributed K functions,
speedup factor (SF) and acceleration factor (AF) are used to
measure how much speedup of optimization strategies achieved
and how much acceleration of the distributed system achieved
respectively, as shown in formula 1.

 𝑆𝐹 = 𝑇01232456/𝑇08(292:;< (1) 𝐴𝐹 = 𝑇#(54<5604;/𝑇<2#(12>?(;<

where 𝑇01232456 and 𝑇08(292:;< are the execution time of the
original and optimized K function respectively, while
𝑇#(54<5604; and 𝑇<2#(21>?(;< are the execution time of the K
function performed on standalone machine and distributed
cluster respectively. All the execution time mentioned above
excluded time spent on data input and output.

3.1 Performance of Spatiotemporal Indexing

Since spatial cross K function studies the spatial correlation
between two group of points, two resampled subsets with equal
number of points (n=50,000) of the experiment point data were
used as the input point dataset pair in this experiment to compare
the execution time of cross K function with spatiotemporal index
and without index. The degree to which the times of inner
traversals could be reduced depends on the maximum spatial
distance 𝑠𝑚𝑎𝑥. Therefore, the proportion of spatial query scope to
study area is set from 1/256 to 1/16 exponentially. In practice, the
index building times are less than 0.1s, and almost has no
influence on total execution time.

Figure 7. Performance comparison of cross K function with and

without spatiotemporal index under increasing query scopes

The results in Figure 7 indicate that spatiotemporal index would
increase the performance of estimation and simulations at
relatively short spatial distance, while as the spatial distance
increases the performance for indexing querying become less
effective and even worse than the solution without indexing. The
speedup factor was higher than 1 when 𝑠𝑚𝑎𝑥 was less than 1/16
of smaller side length of spatial boundary. It could be explained
that the query scopes at higher 𝑠𝑚𝑎𝑥 were not partial enough, then
most of the tree nodes would be traversed and the index would
lose its effect. While, at lower 𝑠𝑚𝑎𝑥 , the speedup factor for
estimation and simulation could reach 2.75 and 2.06 respectively,
because the query scope would only interest with a small amount
of tree nodes in the index. Meanwhile, point distribution has huge
impact on the effectiveness of index. When the dataset is
extremely skewed that most of points concentrated in certain
peak areas, the spatiotemporal query scope will overlap with
large proportion of R-tree nodes in index, and hence weaken the
filtering capability of the index seriously.

3.2 Performance of Weight Caching

As the time complexity of spatiotemporal isotropic correction
method is linear correlated to the complexity of boundary, this
experiment was performed on two resampled subsets with equal
number of points (n=50,000) at the same maximum spatial
distance but with boundaries composed of different number of
vertexes. The execution time of cross K function with cache was
compared to that without cache.

Figure 8. Performance comparison of cross K function with and
without weight cache under increasing complexity of boundary

Byte array of spatiotemporal cylinder (Customized)

(1 Byte) Type ID for Spatiotemporal Cylinder
SpatiotemporalCylinder

-center: SpatiotemporalPoint
-spatialRadius: double
-temporalRadius: long
-temporalUnit: TemporalUnit

Byte array of spatiotemporal cylinder (Default)

(2 Byte) Stream Magic Number (2 Byte) Stream Version (1 Byte) Type ID for an Object

(1 Byte) Type ID for an Class Description (2 Byte) Length of the Class Description (denoted α)

(α Byte) Full Path Name of SpatiotemporalCylinder Class (8 Byte) Serial Version UID

(1 Byte) Number of Member Variables (Variable Byte) Center Spatiotemporal Point Object

(8 Byte) Spatial Radius (8 Byte) Temporal Radius

(Variable Byte) Temporal Unit

Removed Bytes

Condensed BytesAdded Bytes

Unchanged Bytes

T

X

Y
Spatial Radius

Temporal Radius

Center

Start Time

End Time

(Variable Byte) Condensed Center
Spatiotemporal Point

(8 Byte) Spatial Radius

(8 Byte) Temporal Radius(Variable Byte) Temporal Unit

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2020, 2020
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-545-2020 | © Authors 2020. CC BY 4.0 License.

548

Figure 8 shows that the cache can eliminate the influence brought
by the complexity of boundary. Execution times of estimations
and simulations are independent with the boundary when using
the cache, while the execution times of the counterpart solution
without cache do increase linearly with the number of vertexes of
the boundary. However, when the boundary is extremely simple,
the calculation of weights could be quickly finished, while the
overhead of cache caused by resizing and hash collision will
offset the benefits of cache. Meanwhile, due to the difference in
cache utilization, the speedup factor for simulation is higher than
that of estimation.

3.3 Performance of Spatiotemporal Partitioning

This experiment was conducted on two resampled subsets with
equal number of points (n=50,000) at the same maximum spatial
distance with the same boundary using varying number of
partitions. The execution time of cross K function with
spatiotemporal partitioning was compared to that with hash
partitioning, the default method in Apache Spark, to investigate
the effect of spatiotemporal partitioning.

Figure 9. Performance comparison of cross K function with and

without partitioning under increasing number of partitions

Figure 9 illustrates that spatiotemporal partitioning could avoid
unnecessary data redundancy and accelerate calculation. Few
partitions lead to less data redundancy but bring longer average
execution time, while more partitions result in fine-grained task
scheduling but also introduce more data transmission. Therefore,
optimized partitioning needs to leverage execution time and
transmission time by carefully adjusting the number of partitions.

3.4 Performance of Customized Serialization

The volume of data transmission in distributed systems is mainly
related to the size of point data. Therefore, this experiment was
conducted on datasets with different number of points under the
same spatial distances with the same boundary. The execution
time of cross K function with default serialization was compared
to that with customized serializer to investigate the effect of
customized serializer (Figure 10).

Figure 10. Performance comparison of cross K function with

default and customized serializer under increasing point number

As is shown in Figure 10, customized serialization could reduce
overhead of data transmission and improve performance of cross
K function. The speedup factor was consistently higher than 1
and grew up with the increasing number of points since more
points would generate more spatiotemporal objects. Customized
serialization can archive more than 20 times of compression ratio,
in turn archive more than 10 times and 40 times of speedup ratio
for serialization and deserialization.

3.5 Performance of Integrated Four Optimization Strategies

The overall effectiveness of the four optimization strategies was
evaluated by comparing execution time of cross K function with
and without any procedure optimizations. The original algorithm
and optimized algorithm are both Spark-based and tested on the
same clustering computing environment with 8 worker nodes.
The experiment was carried out on different size of point
datasets. The maximum spatial distance threshold was 100km,
which is 1/5 to the smaller side length of study area.

Figure 11. performance comparison with and without
distributed optimization under increasing data volume

Figure 11 demonstrates that the speedup factor achieved by four
optimization strategies increases as data size increases. Although
the setting of the maximum spatial distance threshold and
extremely skewed point distribution in this experiment make the
spatiotemporal index almost noneffective on time efficiency
improvement as discussed in section 3.1, the estimation still
achieved about 2.0 times and 3.1 times speedup at data size

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2020, 2020
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-545-2020 | © Authors 2020. CC BY 4.0 License.

549

80,000 and 160,000 respectively. Meanwhile, the speedup for
simulation was higher than that for estimation on large data sizes
because of less calculation for spatiotemporal weight.

3.6 Scalability Analysis

The scalability of distributed K functions was evaluated by
comparing performance of estimations and simulations on
different number of nodes in the cluster. In this experiment, we
take the space K function and space-time K function as examples.
The experiment was performed on a resampled point dataset
(n=200,000) at spatial distance from 0 to 20km and temporal
distance from 0 to 20 months with 1 km as spatial step and 1
month as temporal step.

Figure 12. Performance analysis of space K function (denote as

SK) and space-time K function (denote as STK) under
increasing number of nodes in cluster

As shown in Figure 12, with the increasing of the computing
nodes, the execution times of space K function and space-time K
function are reduced and the acceleration factors increase in
general. The execution time of space K function is shorter than
that of space-time K function at all node scales (i.e., number of
computing nodes), but the AF trend of space K function is similar
to that of space-time K function. As the node increases, the AF
values of both space K function & space-time K function tends
to be converged. The reason is that the performance improvement
brought by the increase of computing resources is gradually
offset by the increasing cost of network communication. With the
increase of the computing node, the impact of computing
resources on execution time is gradually reduced, which cannot
improve execution efficiency anymore eventually. Further
optimization would be made by improving the utilization rate of

computing resources and reducing the network overheads
introduced by small partition size.

3.7 Overall Speedup Analysis

This experiment analyses the overall performance of the
distributed K functions that integrate four optimization strategies
and benefit from powerful computer resources provided by the
cluster. Here, we select space K function as a case study. Since
the datasets used in the experiments of Section 3.1 to 3.5 are
relatively small and can’t demonstrate the power of the
distributed K functions, this experiment was performed on a
group of resampled point datasets with increasing number of
points from 10,000 to 300,000. Same to the scalability analysis,
the spatial distance increases from 0 to 20km with 1 km as spatial
step. The optimal number of partitions were inferred and
specified from partitioning experiments. The execution time of
the K function on 8 nodes with optimization strategies were
compared to that on standalone computer with and without
adopting optimization strategies bothly to investigate the overall
speedup.

Table 1 shows overall speedup by adopting the proposed
optimization strategies and Apache Spark clusters comparing
with the original algorithm ran on single VM with Spark local
mode. We can find that the overall speedup increases as the data
size increases significantly, which can achieve 76.23 times and
92.4 times for estimation and simulation at data size 300,000
respectively. The execution times of the optimized algorithm ran
on 8 worker nodes grown slowly as the increase of data size and
didn’t show the exponential increase as that of the original non-
optimized algorithm on single VM because of the adoption of
four optimization strategies and clustering computing.

Extremely skewed spatiotemporal distribution of the dataset also
has huge impact on acceleration effect. To demonstrate the
extreme performance of our algorithm, an experiment for space-
time K function was also performed on a point dataset generated
by ArcGIS in our previous study (Wang et al., 2020). In that
dataset, the points are random distributed in United States and a
simplified administration boundary of United States with 85
points is used as the boundary of the study area. The overall
acceleration factor under the same experiment environments as
here with 8 computing nodes can even achieve more than 1000
times for estimation and simulation at data size 400,000. That is
because, the adjacent point pair grows linearly under random
spatiotemporal data distribution, as the result the index and
partitioning can work effectively, and eventually gained
significant speedup ratios.

Number

of
Points

Execution time (s)
Overall acceleration factor

Original on 1-node Optimized on 1-node Optimized on 8-nodes
Estimation Simulation Estimation Simulation Estimation Simulation Estimation Simulation

10,000 145.918 86.556 152.338 58.224 28.454 12.053 5.13 7.18
20,000 303.028 160.409 259.941 101.899 38.038 14.738 7.97 10.88
50,000 922.567 487.231 629.254 239.067 48.146 20.127 19.16 24.21
100,000 2118.678 1158.916 903.555 402.863 59.765 27.056 35.45 42.83
200,000 5175.611 3745.507 1551.980 962.850 99.295 58.926 52.12 63.56
300,000 8942.642 6910.022 1840.657 1262.219 117.314 74.776 76.23 92.40

Table 1. Overall speedup of space K function by adopting optimization strategies and clustering computing

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2020, 2020
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-545-2020 | © Authors 2020. CC BY 4.0 License.

550

4. WEB-BASED VISUAL ANALYTICS FRAMEWORK

To promote the applications of the distributed K functions, a
multi-tier web-based visual analytics framework was designed
and implemented as shown in Figure 13. Four types of distributed
K functions were implemented and integrated, including space K
function, space-time K function, local K function and cross K
function. The data storage tier comprises HDFS distributed file
system for data management. The data processing tier is built
upon Spark RDD API, spatial object API of JTS and GeoTools
to support object representations and spatial operations.
Spatiotemporal objects and Spatiotemporal RDD are defined to
represent distributed spatiotemporal objects. Besides, the index
builder, hash-table-based cache, partitioner and customized
serializer are integrated. On the top of data processing tier, web
service tier and data visualization tier are built to facility the
invocation of distributed K functions and visual analytics through
a loosely-coupled and web-based approach. The web service tier
uses Jersey to provide RESTful services. In data visualization
tier, the map interface is implemented upon Leaflet.js, Deck.GL,
while the base map is from OpenStreetMap, and the thematic
chart is supported by D3.js and Apache Echarts.

Figure 13. Web-based visual analytics framework for

distributed Ripley’s K functions

Through this framework, users can conduct efficient and flexible
point pattern analysis by using distributed computing resources
without knowing the underlying implementation details. The
framework provides multi-dimensional and multi-granular
filtering functions, including spatial filter (province, city, street),
temporal filter (year, month, day), and customized categorical
filter by using Nanocubes. As shown in Figure 14, the user can
select the spatiotemporal points for analysis, specify the type of
K functions, and configure both the K function parameters and
the Spark cluster parameters. For K function parameters, the user
can specify study area through either MBR or the identifier of the
administrative boundary, simulation method, spatiotemporal
distance thresholds and step sizes, which may vary in the type of
K functions. For Spark parameters, besides the default
configurations, the total number of executors, CPU cores and
memory for each executor can be customized. When a user
specifies and submits above parameters through parameter panels
on the web pages, the job will be executed by the cluster and the

running status can be checked through the status panel. When the
calculation is finished, the respective results will be transferred
back to the client and shown on the 2D/3D maps and plots for
interaction (Figure 14). The calculation results can also be
downloaded in tabular form through download button. The
source code of the framework can be found on our GitHub
repository (https://github.com/ZPGuiGroupWhu/Spark-based-
Ripley-K-Functions).

Figure 14. Graphical user interfaces (GUIs) of the Web-based

visual analytics framework

5. CONCLUSION

This paper utilized four acceleration strategies of distributed K
functions for better supporting point pattern analysis, including
spatiotemporal-index-based point pair acquisition, cache weight
reuse, spatiotemporal partitioning and customized serialization
for spatiotemporal objects. Based on that, we developed web-
based visual analytics framework upon Apache Spark, and four
types of K functions were implemented for point pattern analysis.
Experiments verified that the proposed method can reduce the
time complexity of K functions for large datasets. Performance
evaluations revealed that the first two optimization strategies
upon calculation procedure could speed up the calculation with
appropriated query scope setting even in a stand-alone execution
environment; while the last two strategies accelerate the
calculation furtherly by balancing workloads and decreasing data
transmission overheads. This study may provide insight on how
to lower the computing barrier of other spatial analysis methods
and promote their broader applications for large datasets.

Future work would focus on supporting more K function variants
and extending the proposed method from univariate
homogeneous isotropic point analysis to bivariate,
inhomogeneous and anisotropic point pattern analysis (Møller
and Toftaker, 2014). Meanwhile, the developed web-based visual
analytics framework will be furtherly enhanced by providing
more visualization and interaction functions to better support
human-computer interactive geovisual analytics in various
spatial analysis applications.

ACKNOWLEDGEMENTS

This study is supported by National Key R&D Program of China
(No. 2017YFB0503704 and No. 2018YFC0809806) and
National Natural Science Foundation of China (No. 41971349,
No. 41501434 and No. 41371372).

Server

Client

Storage
 Tier

Processing
 TierObjects and RDD

Web Service
Tier

Visualization
 Tier

NameNode Secondary
NameNode

DataNode

Point data blocks

DataNode

Point data blocks

Index

Cylinder Point

Spatiotemporal
Partitioner

 Weights
Cache

Spatiotemporal
Index

Customized
Serializer

Distributed Ripley’s K
functions Service

Multi-dimensional
Query Service

Jersey

MVVM
Framework UI library POI

distribution
Visualization

library

...

...

...

Encoder-decoder Component

Envelope

Spark Framework

Communication
TierEncoder-decoder Component RESTful Client API

... ...

Distributed Ripley’s K Functions
Space K
function

Space-time K
function

Local K
function

Cross K
function

(a) Panels of parameter configuration and result visualization for space-time Ripley's K function

(b) Panels of parameter configuration and result visualization for cross Ripley's K function

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2020, 2020
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-545-2020 | © Authors 2020. CC BY 4.0 License.

551

REFERENCES

Chen, Y., Qin, K., Gui, Z., Wu, H., 2018. Exploring spatial
agglomeration of China’s secondary industry based on
registration data of industrial and commercial enterprises, J.
Liaoning Tech. Univ. (Natural Sci.), 37, 602-610.

Cui, Z., Xie, G., Gui, Z., and Wu, H., 2017. Analyzing the
Spatiotemporal Distribution of Different Industries in Wuhan
City Using Enterprise Registration Data. Int. Arch. Photogramm.
Remote Sens. Spatial Inf. Sci., XLII-2/W7, 5-10.
doi.org/10.5194/isprs-archives-XLII-2-W7-5-2017.

Eldawy, A., Alarabi, L., Mokbel, M.F., 2015. Spatial partitioning
techniques in SpatialHadoop. Proc. VLDB Endow., 8, 1602-
1605. doi.org/10.14778/2824032.2824057.

Fu, J.Y., Jing, C.F., Du, M.Y., Fu, Y.L., Dai, P.P., 2017. Study
on adaptive parameter determination of cluster analysis in urban
management cases. Int. Arch. Photogramm. Remote Sens. Spat.
Inf. Sci., XLII-2/W7, 1143-1150. doi.org/10.5194/isprs-archives-
XLII-2-W7-1143-2017.

Guan, Q., Kyriakidis, P.C., Goodchild, M.F., 2011. A parallel
computing approach to fast geostatistical areal interpolation. Int.
J. Geogr. Inf. Sci., 25(8), 1241-1267.

Gui, Z., Yu, M., Yang, C., Jiang, Y., Chen, S., Xia, J., Huang, Q.,
Liu, K., Li, Z., Hassan, M.A., Jin, B., 2016. Developing
subdomain allocation algorithms based on spatial and
communicational constraints to accelerate dust storm simulation.
PLoS One, 11, e0152250. doi.org/10.1371/journal.pone.0152250.

Hendricks, K.E., Christman, M., Roberts, P.D., 2017. Spatial and
Temporal Patterns of Commercial Citrus Trees Affected by
Phyllosticta citricarpa in Florida. Scientific Report, 7, 1641.
doi.org/10.1038/s41598-017-01901-2.

Hohl, A., Delmelle, E., Tang, W., Casas, I., 2016. Accelerating
the discovery of space-time patterns of infectious diseases using
parallel computing. Spat. Spatiotemporal. Epidemiol., 19, 10-20.
doi.org/10.1016/j.sste.2016.05.002.

Hohl, A., Zheng, M., Tang, W., Delmelle, E., Casas, I., 2017,
Spatiotemporal point pattern analysis using Ripley’s K function.
Geospatial Data Sci. Tech. Appl., 155-175. doi:10.1201/b22052.

Hu, K., Gui, Z., Cheng, X., Wu, H., McClure, S., 2019. The
Concept and Technologies of Quality of Geographic Information
Service: Improving User Experience of GIServices in a
Distributed Computing Environment. ISPRS Int. J. Geo-
Information, 8, 118. doi.org/10.3390/ijgi8030118.

Kosfeld, R., Eckey, H.F., Lauridsen, J., 2011. Spatial point
pattern analysis and industry concentration. Ann. Reg. Sci. 47,
311-328. doi.org/10.1007/s00168-010-0385-5.

Leutenegger, S.T., Lopez, M.A., Edgington, J., 1997. STR: A
simple and efficient algorithm for R-tree packing. in: Proc. 13th
Int. Conf. Data Eng. IEEE, 497-506.

Li, F., Gui, Z., Wu, H., Gong, J., Wang, Y., Tian, S., Zhang, J.,
2018. Big enterprise registration data imputation: Supporting
spatiotemporal analysis of industries in China. Computers,
Environment and Urban Systems, 2018, 70, 9-23.
doi.org/10.1016/j.compenvurbsys.2018.01.010

Møller, J., Toftaker, H., 2014. Geometric Anisotropic Spatial
Point Pattern Analysis and Cox Processes. Scand. J. Stat., 41,
414-435. doi.org/10.1111/sjos.12041.

Pandit, K., Bevilacqua, E., Mountrakis, G., Malmsheimer, R.W.,
2016, Spatial Analysis of Forest Crimes in Mark Twain National
Forest, Missouri. J. Geospatial Appl. Nat. Resour., 1(1), 39-53.

Song, Y., Gui, Z., Wu, H., and Wei, Y., 2017. A Web-Based
Framework for Visualizing Industrial Spatiotemporal
Distribution Using Standard Deviational Ellipse and Shifting
Routes of Gravity Centers. Int. Arch. Photogramm. Remote Sens.
Spatial Inf. Sci., XLII-2/W7, 129-135. doi.org/10.5194/isprs-
archives-XLII-2-W7-129-2017.

Sporring, J., Waagepetersen, R., Sommer, S., 2019.
Generalizations of Ripley’s K-function with Application to
Space Curves. Int. Conf. Inf. Process. Med. Imaging, 731-742.
doi.org/10.1007/978-3-030-20351-1.

Tang, W., Feng, W., Jia, M., 2015. Massively parallel spatial
point pattern analysis: Ripley’s K function accelerated using
graphics processing units. Int. J. Geogr. Inf. Sci., 29(3), 412-439.

Tian, S., Wang, J., Gui, Z., Wu, H., and Wang, Y., 2017. A Case
Study: Exploring Industrial Agglomeration of Manufacturing
Industries in Shanghai Using Duranton and Overman’s K-
Density Function. Int. Arch. Photogramm. Remote Sens. Spatial
Inf. Sci., XLII-2/W7, 149-154, doi.org/10.5194/isprs-archives-
XLII-2-W7-149-2017.

Wang, Y., Gui, Z., Wu, H., Peng, D., Wu, J., Cui, Z., 2020.
Optimizing and Accelerating Space-Time Ripley’s K Function
based on Apache Spark for Distributed Spatiotemporal Point
Pattern Analysis. Future Generation Computer Systems, 105, 96-
118. doi.org/10.1016/j.future.2019.11.036.

Winter-Livneh, R., Svoray, T., Gilead, I., 2010. Settlement
patterns, social complexity and agricultural strategies during the
Chalcolithic period in the Northern Negev, Israel. J. Archaeol.
Sci., 37, 284-294. doi.org/10.1016/j.jas.2009.09.039.

Yang, C., Sun, M., Liu, K., Huang, Q., Li, Z., Gui, Z., Jiang, Y.,
Xia, J., Yu, M., Xu, C., Lostritto, P., Zhou, N., 2015.
Contemporary computing technologies for processing big
spatiotemporal data. in: Space-Time Integr. Geogr. GIScience,
327-351. doi.org/10.1007/978-94-017-9205-9.

Yuan, K., Cheng, X., Gui Z., Li, F., Wu, H., 2019. A Quad-tree-
based Fast and Adaptive Kernel Density Estimation Algorithm
for Heat-map Generation. Int. J. Geogr. Inf. Sci., 33(12), 2455-
2476. doi.org/10.1080/13658816.2018.1555831.

Zhang, G., Huang, Q., Zhu, A.X., Keel, J.H., 2016. Enabling
point pattern analysis on spatial big data using cloud computing:
optimizing and accelerating Ripley’s K function. Int. J. Geogr.
Inf. Sci., 30(11), 2230-2252.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2020, 2020
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-545-2020 | © Authors 2020. CC BY 4.0 License.

552

