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ABSTRACT:  

 

This paper presents our contribution to the development of a standardized 3D input data model for solar photovoltaic potential 

estimation. Presently, different input data and processing steps influence the calculation for estimating the potential of solar energy in 

the Netherlands. The variety in characteristics of input data and issues with temporal accuracy extracted from the national registers and 

databases makes it challenging to obtain a consistent and reliable result. To address this issue, we created a point cloud dataset that 

integrated from LiDAR point cloud and dense image matching which is complete, recent and positionally accurate. Furthermore, we 

made a 3D building model from the integrated point cloud and identified the effect of finer resolution in the photovoltaic potential 

analysis. 

 

 

1. INTRODUCTION 

Taking part in the global effort to develop an energy economy 

that is safe, reliable, and affordable, The Netherlands adopted the 

‘Energy Agreement for Sustainable Growth’ in 2013 (Ministry of 

Economic Affairs of the Netherlands, 2016). In that energy 

policy, the Dutch cabinet has defined three main targets: (1) 

prioritize CO2 reduction; (2) optimize economic opportunities of 

the energy transition; (3) include energy transition targets into 

spatial planning policy. In general, solar energy is considered to 

be one of the key renewable energy sources to achieve these 

transition targets (Paardekooper, 2015). In his study, 

Paardekooper (2015) points out that presently the potential of 

solar energy is not well utilized in the Netherlands. However, 

data available to assess the potential are often inconsistent. To 

increase the utilization of solar energy, incorporating 3D models 

in GIS analysis can be used for assessing the potential of solar 

photovoltaic (Alam, Coors, & Zlatanova, 2013). 

 

The main advantages of utilizing 3D models are (1) the ability to 

predict shadow casting, (2) visualize the vertical variations and 

(3) improve the communication process between users and the 

professionals to gain a better understanding of the presented 

information (Kurakula & Kuffer 2008). Crucial in creating 3D 

models are the properties of the input data and the processing 

steps. In The Netherlands, there is an extensive collection of 

geodata that can be used for the analysis of solar photovoltaic 

potential, e.g., BAG2, AHN33, and point clouds derived from 

dense image matching. Each input data has its characteristics, 

which making it challenging for 3D modelling purposes. 

Kadaster as a main data provider in The Netherlands 

acknowledges this situation and they were interested in more 

detailed research in 3D input data input synchronisation in 
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addition to the already developed Dutch 3D national standard. 

Inspired by the noise modelling standard (see Peters et al., 2018), 

this study develops a standardized 3D input data model to 

estimate the solar photovoltaic potential for the Netherlands. 

Moreover, the shortcomings of the current 3D input data and its 

impact on 3D analysis are also investigated. In this context, we 

explore the opportunity to combine point cloud from LiDAR and 

point cloud derived from dense image matching for 

reconstructing a precise 3D building models.  

 

2. MATERIALS AND METHODS 

2.1 Study area and data description 

The inner city of Zwolle is selected for this study (Figure 1). This 

protected area of Zwolle has to deal with the line of sight 

regulation when applying solar photovoltaic installation 

(Boschman, 2017). The inner city of Zwolle is characterized by 

mixed residential and commercial buildings with diverse 

structures. Therefore it is a suitable study area for experiments 

with 3D data. 

 

 

 

 

 (a) (b) 

Figure 1. Study area of this research: (a) city of Zwolle in 

province Overijssel, the Netherlands and (b) subset of the 

study area in the 3D building model. 
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 BAG AHN3 Dense image 

matching 

Data source PDOK PDOK Kadaster 

Date of 

release 

January 

2020 

2016 2019, winter 

image 

Format Vector-

polygon 

Point cloud Point cloud 

Table 1. Data description 

 

BAG and AHN3 are publicly available from PDOK and dense 

image matching was provided by Kadaster. AHN3 was collected 

from laser altimetry from aircraft and was captured from 2014-

2019. Specifically, for the study area, the data was captured in 

2016. The dense image matching point cloud was derived from 

aerial winter imagery with 60% forward and 30% side overlap. 

For the next part, a dense image matching point cloud is referred 

to as DIM (Dense Image Matching). The overview of the 

methodology applied in the current study is shown in Figure 2. 

 

2.2 Pre-processing point cloud datasets 

The pre-processing workflow is based on the explanations of data 

quality elements (ISO, 2013). Following ISO 19157:2013 (ISO, 

2013) there are six elements for spatial data quality, 

completeness, thematic accuracy, logical consistency, temporal 

quality, positional accuracy, and usability element. The elements 

used in this research are (1) completeness; (2) temporal quality; 

and (3) positional accuracy. Each element was translated into 

several techniques and implemented for the pre-processing step. 

It consists of four components and is described in section 2.2.1 – 

2.2.4. 

 

2.2.1 Visual data check for completeness 
Derived from the explanations of completeness from (ISO, 

2013), completeness can be measured by “is there any 

unmatched data?” or “how complete the point clouds compare 

with the ground truth?”. Therefore for this element, visual 

inspection by comparing two datasets was done as a first 

screening. Afterwards, statistic calculation with a change 

detection technique was carried out as part of the point cloud 

registration process (Section 2.2.4). Additional datasets as 

ground truth used Cyclomedia and Google Maps, which consist 

of street view imagery data. 

 

2.2.2 Point density calculation 

Oude Elberink & Vosselman, (2011) argued that the starting 

point to analyse the quality of 3D models is by determining the 

quality of input data. In this study, point clouds have been used 

as input data. Therefore point density is an important property to 

decide the quality of point cloud. The point density is calculated 

with Equation 1. A higher point density means lower values for 

point spacing (Esri, (n.d.)). 

𝑝𝑜𝑖𝑛𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =  
1

(𝑝𝑜𝑖𝑛𝑡 𝑠𝑝𝑎𝑐𝑖𝑛𝑔)2
             (1) 

Equation 1. Formula to calculate point density from point 

spacing, adopted from Esri, (n.d.). 

2.2.3 Point clouds classification 
Point clouds classification is a process to assign points to 

predetermined classes. The classes applied were following the 

standard classification scheme from The American Society for 

Photogrammetry & Remote Sensing (2011). The point cloud 

datasets used are successfully classified into 4 classes: (1) 

unclassified; (2) ground; (3) building; (4) water. Because the 

main interest of this research is building, a separate dataset is 

created by subtracting the points classified as building.  

2.2.4 Point clouds registration 
This process is the second component to check the completeness 

element, the temporal quality and positional accuracy of the data. 

 

Several methods have been developed to register point clouds. 

For instance, Matching Bounding-Box Centres Registration 

(Ahmad Fuad, Yusoff, Ismail, & Majid, 2018), Coherent Point 

Drift (CPD) (Myronenko & Song, 2010) and Normal-

Distributions Transform (NDT) algorithm (Biber & Wolfgang, 

2003). One of the widely used method to register two datasets 

point clouds is Iterative Closest Point (ICP) (Gelfand, Ikemoto, 

Rusinkiewicz, & Levoy, 2003), which was firstly introduced by 

Besl & Mckay (1992). 

 

The principle of this relative positioning algorithm is to find 

corresponding points between two point cloud datasets (Figure 

3). In details, the algorithm steps are as follows: 

1. For each point in the source (dense image matching) point 

cloud, find the closest point in the reference (LiDAR) point 

cloud. 

2. Estimate the combination of rotation and translation with a 

mean squared error function that will best align each source 

point to found its match. 

3. Transform the source points using the obtained 

transformation matrix. 

4. Iterate the steps until the point clouds are aligned. 

 

 
Figure 3. Principle of the ICP algorithm. 

The output of this algorithm provides a transformation matrix and 

a roughness value. This transformation matrix is used to 

transform the source point into a reference point, AHN3. The 

roughness value (mean and standard deviation) is equal to the 

distance of the point and the best fitting plane in the neighbouring 

points (Girardeau-Montaut, n.d.; Sirmacek & Lindenbergh, 

2014). This value represents the distribution of the distances 

calculated between two point cloud datasets. According to 

Ahmad Fuad et al. (2018), this algorithm is the most suitable 

method to register point cloud datasets. Similar work for 

Figure 2. Methodology for the study. 
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integrating point clouds from LiDAR and dense image matching 

point clouds were performed in other paper (see (Kaartinen et al., 

2005; Rottensteiner et al., 2014). 

 

2.3 3D building model generation 

The utilization of a 3D model for GIS analysis is widely used for 

many applications. Besides gaining a better understanding, it also 

stimulates the involvement of stakeholder (Onyimbi, Koeva, & 

Flacke, 2018). According to Biljecki et al., (2015), determined by 

the visualization aspect, the solar irradiation analysis falls into 

non-required visualization use cases. That is a use case that is not 

essential to visualize the result of GIS analysis in 3D to achieve 

the purpose of the use case. However, it needs 3D as its main 

input data. 

 

The 3D building model was generated semi-automatic with the 

combination of integrated point clouds, rooflines, building 

polygons (BAG). The rooflines were manually digitized. 

Afterwards, the rooflines and building polygon were merged to 

segment the building polygon based on each roofline while 

maintaining the building ID. The result of this step is planar 

patches. The process was carried out using the RANSAC 

algorithm to segment the point clouds into planes. 

 

RANSAC algorithm is well known to detect primitive shapes in 

both 2D and 3D (Schnabel, Wahl, & Klein, 2007). This algorithm 

was firstly introduced by (Fischler & Bolles, 1980) and consist 

of three parameters: (1) error tolerance to determine a point is 

compatible with the fitting plane or not, (2) number of subsets to 

try, (3) the threshold. The algorithm starts with randomly 

selecting a minimal subset of n points and estimating the 

corresponding fitting shape parameters. The remaining points are 

tested with the resulting candidate shape to see how many points 

that fit the candidate shape. After a certain number of iterations, 

the shape that has the largest percentage of inliers is extracted and 

the algorithm continues to process the remaining data. 

 

Later on, the integrated point clouds were assigned to the planar 

patches. After this step, each planar patch was reconstructed. 

Afterwards, the planes were combined with the corresponded 

extruded building polygons to produce a full 3D building model. 

 

2.4 Solar photovoltaic analysis 

In general, solar photovoltaic analysis is determined from the 

areas with maximum solar irradiation on the rooftop. Solar 

irradiation is the amount of solar radiation received by the sun 

per unit area by a given surface area. Freitas et al. (2015) 

demonstrated a comparison from various approaches for solar 

photovoltaic analysis. The approach consists of three steps 

(Figure 4). 

 

First, as input data topographic and meteorological data is used. 

Topographic data such as geographic location, height 

information and urban elements are the main components. 

Secondly, a solar radiation model with GIS analysis is used. This 

stage is analysing the effect of the sun over a specific geographic 

location with a time interval range. Thirdly is the visualization of 

the output. In this stage, the influence of different potential levels 

plays a role. Depending on the type of potential and user queries 

that take place as a threshold of suitability criteria, the outcome 

will differ. 

 

Explained by Bódis, Kougias, Jäger-Waldau, Taylor, & Szabó, 

(2019); Freitas et al., (2015); Mainzer et al., (2014) there are four 

levels to determine the type of potential. The economic potential 

takes into account economic factors such as return on investment, 

payback time, and production revenue (Bódis et al., 2019; 

Mainzer et al., 2014; Paardekooper, 2015). The technical 

potential that takes into account the technical characteristics of 

the equipment, including the performance and efficiency of the 

photovoltaic modules (Bódis et al., 2019; Freitas et al., 2015; 

Mainzer et al., 2014). The third is physical potential, which is the 

maximum amount of solar energy in a geographical region 

without considering any limitations (Freitas et al., 2015). 

However, another term is used for this level of potential, such as 

theoretical (Mainzer et al., 2014) and resource (Bódis et al., 

2019), but the concept is the same. The last is geographical 

potential, which considers the restrictions of the location (Freitas 

et al., 2015; Mainzer et al., 2014). In this research, we focused on 

two potentials. First, the physical potential to calculate the solar 

irradiation for the whole study area. Secondly, we calculate the 

geographic potential to focus on finding locations where energy 

can be captured.  

 

In our study, the generated 3D building models were converted 

into raster because the main input of the tool is DSM. The DSM 

is generated with different pixel size (0.2m and 0.5m) as part of 

the experiment. The solar irradiation analysis was done for the 

whole year of 2019 with 0.5 as hour interval. The amount of solar 

irradiation is shown in pixel values in units of kWh/m2. 

 

Afterwards, the suitability factor was defined as part of solar 

geographic potential estimation. In general, there are three 

parameters for suitability analysis of solar geographic potential. 

Roof orientation, the amount of solar radiation, and slope (Figure 

5). In this study area, the line of sight regulation as an additional 

parameter for suitability analysis is added.  

Figure 4. The sequential process to assess solar photovoltaic potential, adopted from (Freitas et al., 2015). 
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Figure 5. Parameters for suitability analysis of solar geographic 

potential. 

For suitability analysis, all images were converted into binary 

raster images taking the criteria applied in Table 2. 

Criteria  

Feasible slope 37 degrees. 

Feasible solar 

irradiation 

600kWh/m2. 

Feasible orientation South facing. 

Feasible roof sight Not visible from Zwolle four 

(Peperbus, Museum de Fundatie, 

the town hall and the Sassenpoort) 

(Municipality of Zwolle, 2017). 

Table 2. Criteria applied for suitability analysis. 

3. RESULTS 

The results are explained in the following subsections. The first 

subsection shows the result of pre-processing point cloud 

datasets and in the second subsection, the result of the generated 

3D building models are shown. The third subsection shows the 

output of the experiment, which included the 3D building model 

conversion and the result of solar photovoltaic potential 

estimation. 

 

3.1 Pre-processing point cloud datasets 

The first set of questions aimed to determine the quality of the 

input data derived from data quality elements, completeness, 

temporal quality and positional accuracy. 

 

Table 3 presented the number of point cloud contains in each 

dataset before classification and removing outliers. 
 

LAS File Point 
count (pts) 

Point 
density 

Z min 
(m) 

Z max (m) 

LiDAR 15.078.247 17 pts/m2 -1.014 78.522 

DIM 19.036.479 22 pts/m2 -20.119 75.305 

Table 3. Properties of each point cloud dataset. 

 

This two dataset, later on, were classified starting with ground 

classification and followed by building classification. This 

process also removed noise from the point cloud. Class code 

values of 0 (never classified), 1 (unclassified), and 6 (building) 

will be evaluated to determine if those fit the characteristics of 

building rooftop. If they do not meet the criteria, then point 

clouds will be assigned to a class code value of 1 (Esri, n.d.). Both 

point clouds were classified into four classes: (1) unclassified; (2) 

ground; (3) building; (4) water. 

 

                                                                 
4 https://www.cyclomedia.com/en 
5 https://www.google.com/maps 

Next, each point clouds were thinned to extract code class value 

6 and to derive a consistent density to obtain a regularly spaced 

point returns. As expected, the amount of point cloud decreased 

to 6.223.009 and 4.619.911 points for dense image matching 

point cloud and LiDAR point cloud, respectively. However, after 

visual inspection, both point clouds contain false negative 

(Figure 6). The method recognizes boats as buildings. This false-

negative caused by the definition of the smallest area size of the 

building during the classification process. Therefore, those points 

were reclassified to code class 1 (unclassified). 

                      (a)                                                (b) 

Figure 6. False-negative from thinning result from (a) DIM and 

(b) AHN, boat detected as building. 

Afterwards, both datasets were registered using the ICP method 

as explained in section 2.2.4. After both datasets were registered, 

differences were analysed by determining the point to point 

distances for x, y, and z component focusing on the z value. This 

was done since the LiDAR point cloud has irregular points and 

the DIM point cloud have a regular point, so it is incomparable 

in x and y component. In Figure 7 and Table 4 we presented the 

mean distance (µ) and standard deviation (σ) from point to point 

distance with colour codes in the meters. The source point is DIM 

and the reference point is LiDAR. The red and blue colour 

represents source points that have a higher distance to the 

reference point. White colour represents the source point that is 

close to or overlaps. 

 
Component With unmatched area Unmatched area removed 

µ σ µ σ 

x 0.059 2.800 -0.017 1.137 
y 0.047 2.430 -0.079 1.041 

z 0.082 1.914 -0.046 0.788 

Table 4. Mean distance (µ) and standard deviation (σ) of point 

to point distance calculation of two dataset. 

 

Recognized by a large number of standard deviation in the z 

component, we noticed there is a difference between the two 

datasets. It can be assumed this is caused by unmatched areas. 

These unmatched areas furthermore were checked using image 

sources from Cyclomedia4 and Google Maps5. From those 

resources, we noticed there are four unmatched areas because the 

building shape has been changed. As a result of this process, we 

can conclude that the difference is due to different time 

acquisitions. 

 

To create the most current dataset and achieve the aim of the 

temporal quality element, during the registration of both point 

clouds we discard the LiDAR point cloud in the unmatched areas 

and used the DIM point cloud in those areas. 

 

3.2 3D building model generation 

The 3D building model generation successfully generated 

different primitive roof types, such as gabled, hipped and 

mansard as shown in Figure 8. The sequence of each process 

carried out with this technique is presented in Figure 9. 
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The first image Figure 9 (a), is the building polygon (BAG). The 

rooflines consist of ridge lines (white) and height jumps (yellow) 

They were assigned and merged to segment the building polygon 

which resulted in planar patches Figure 9 (b). The point clouds 

were continuously iterated with RANSAC algorithm to fit the 

candidate shape and the confidence parameter until they reach the 

consensus Figure 9 (c). Afterwards, the building polygons were 

merged again with the segmented roof from Figure 9 (c), to 

generate a full 3D building model in Figure 9 (d). 

 
Figure 8. The final result of the generated 3D building model. 

  
                       (a)                                                  (b) 

  
                       (c)                                                 (d)    

Figure 9. The sequence of 3D model generation.  

3.3 Experiment 

To assess the effect of finer resolution for solar radiation analysis, 

we converted the 3D building model into two different pixel 

sizes, 0.2m and 0.5m. Also to identify whether the 3D building 

model is useful for this analysis we generated DSM from the 

integrated point clouds. This process generated four datasets, 

converted 3D building model in 0.2m and 0.5m pixel size and 

DSM in 0.2m and 0.5m pixel size. These four datasets were used 

as the input data for physical potential calculation. 

 

In this subsection, the converted 3D building model and the result 

of the physical potential calculation are displayed. Figure 10 

shows the result of the converted 3D building model and DSM. 

Figure 11 shows the result of the physical potential calculation 

for one year. The color range from blue to red represents the 

amount of minimum to maximum solar irradiation on the roof in 

pixel values in units of kWh/m2. The area receives annual 

maximum irradiation in the range of 1032,79 – 1033,32 kWh/m2 

according to the calculation depends on the pixel size.  

 

The final output presented in Figure 12 is the result after 

suitability analysis parameters in Table 2 are applied. 

 

Figure 7. Point to point distance calculation in x (a and b), y (c and d) and z (e and f) component. 
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                          (a)                                             (b)  

  
                           (c)                                             (d) 

Figure 10. The input data to calculate physical potential 

calculation with different pixel size left row is 0.2m and right row 

is 0.5m. Image (a) and (b) is the converted 3D building model 

and image (c) and (d) is the integrated point cloud converted into 

raster.  

 

 

 

 

 

 

 

 

 

 

                       (a)                                              (b) 

 

 

 

 

 

 

 

 

 

 

 

                          (c)                                            (d) 

Figure 11. The result of the physical potential calculation with 

the converted 3D building model at the first row and the DSM at 

the second row. Pixel size 0.2m and 0.5m for picture (a), (c) and 

(b), (d) respectively. 

 

 

 

 

 

 

 

 

 

 

                        (a)                                           (b) 

 

  

 

 

 

 

 

 

 

 

 

                       (c)                                                (d) 

Figure 12. The final result after applying the suitability analysis 

parameters explained in Table 2. 

4. DISCUSSION 

 

The present study aimed to create a standardized 3D input data 

model to estimate the solar photovoltaic potential for the 

Netherlands. We explored the opportunity to combine point 

clouds derived from LiDAR and dense image matching. The 

integration of these point clouds is to achieve input data that is 

complete, recent and positionally accurate in alignment to ISO 

19157:2013 of spatial data quality (ISO, 2013). The integrated 

point clouds are used as input data for semi-automatic 3D 

building modelling, including the building polygons and 

rooflines. This method is applicable to generate different roof 

types. Further work is currently done to develop a fully automatic 

method for generating a 3D building model. Challenges that need 

be better addressed in the future are related to the deviation 

position between the building polygons and the rooflines. 

Presently, it is difficult to decide which input data needs to be 

followed. In this case, we set the building polygon as a 

benchmark. 

 

It can be seen from the experiment, that the result of solar 

radiation analysis carried with a 3D building model done 

following our methodology produces a much smoother result 

compare with the previously applied methods in Kadaster using 

only DSM derived from the point cloud. However, roof details 

such as dormers to quantify available surface area were hard to 

be obtained using this 3D model technique. Therefore for future 

work, image recognition technology could be utilized to detect 

objects on top of the roofs. This technology has already been 

applied to detect damages on the roads (Angulo, Vega-

Fernández, Aguilar-Lobo, Natraj, & Ochoa-Ruiz, 2019) and 

rooftop segmentation (Collier et al., 2019). 

 

The result of our experiment in Figure 10 (c) shows that using 

DSM with 0.2 m resolution generated directly from the integrated 

point clouds can detect and visualize roof details. Results show 

that solar radiation analysis is affected by resolution, which is in 

line with the result obtained from (Peronato, Rey, & Andersen, 

2018). When analysing the results for the four datasets, we 

noticed that they are relatively constant. However, the choice of 

utilizing the 3D building model for solar photovoltaic analysis 

can be motivated by the fact that it could avoid data gaps and 

noise that likely happened if using DSM. For this aspect, it is 

interesting to introduce the user perceptions and requirements to 

qualify if the quality meets their needs. 

 

5. CONCLUSION 

This study contributes to the investigation of standard 3D input 

data for solar photovoltaic in the Netherlands. Furthermore, this 

study successfully explored the opportunity to produce a 

complete, recent, and positionally accurate point cloud dataset by 

integrating dense image matching point cloud and LiDAR.  
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The presented method allows constructing semi-automatic 3D 

building models from the integrated point clouds, building 

polygons and rooflines. The 3D building model supports the 

assessment of the solar photovoltaic potential. The further 

automatization of the 3D building model generation, which will 

be valuable to scale up the method, is presently under progress. 

 

From the experiment conducted in Zwolle, the Netherlands, 

comparing two datasets with two different pixel size to see the 

effect of the finer resolution, the results showed that the finer 

pixel resolution has influence on the solar photovoltaic potential 

analysis. The current study provides an improved methodology 

to support the Kadaster in the Netherlands for estimating the solar 

photovoltaic potential.  
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