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ABSTRACT: 
 
Over the past decades, climate change has become among the top issues challenging cities worldwide, endangering the urban 
infrastructures and threatening the health of millions of people. Hence, climate action, both in terms of mitigation and adaptation to 
climate change, has become a priority for urban planning. This work introduces an example of the promising role that spatial analysis 
and statistical modelling, employing Geographical Information Systems (GIS) and freely available satellite and land-based data, can 
provide in supporting urban climate design and policymaking. In particular, this study puts special attention on the Urban Heat Island 
(UHI) phenomenon. Here, we first introduce a simple, but effective morphological-based approach for mapping potential ventilation 
corridors across cities of uniform built-up structure, as a common UHI mitigation measure. Then, we propose a methodology for 
assessing the relative role of these corridors in maximizing the impacts of green solutions upon lowering high temperature. Results 
show that even under very calm wind conditions, there is still an opportunity for maximizing the benefits of greening measures on the 
urban climate. Also, it has been demonstrated that green ventilation corridors are more effective during night-time when the UHI effect 
is peaked. The research findings are very promising, especially for cities where wind is a marginal potentiality. 
 
 

1. INTRODUCTION 
 
Over the past century, the earth has witnessed a significant and  
constant increase in accumulated heat (NOAA, 2018).  In cities 
and urban areas, the Urban Heat Island (UHI) effect and extreme 
heat waves are striking much greater portion of earth’s urban 
population and threatening the health of millions of people 
worldwide. Hence, mitigation and adaptation to climate change 
are on the top issues of the global agenda and of the major 
concerns of local authorities in cities and towns. For instance, 
urban greening has been widely used as a common UHI 
mitigation measure to regulate the microclimate air temperature 
and improve the quality of the urban environment (Ruefenacht 
and Acero, 2017). Vegetation (both grass-covered and tree-
covered) can extremely reduce the accumulation of the incoming 
solar radiation in urban areas due to the characteristics of its 
physical properties in terms of the high albedo and low 
admittance (Ruefenacht and Acero, 2017). It also provides 
shading (in case of trees), cleans and purifies air, regulates the 
water cycle, and enhances the overall resilience of cities. Green 
roofs and facades, green/cool pavements, tree-lined streets, urban 
farming, and green ventilation corridors are among the most 
extensively used greening measures in cities.  
 
Urban ventilation corridors are often paths realized across the 
urban street infrastructure and kept open to facilitate the flow of 
cooled and fresh air from the countryside into the dense warm 
urban environment, regulating the microclimate air temperature 
and improving air quality (Gál and Unger, 2009; Ren et al., 2018; 
Wicht et al., 2017). Vegetation arrangement and selective 
planting along ventilation corridors (referred to as green 
ventilation corridors) can be of great benefit. Studies have shown 
that near-surface air temperature at one location can be strongly 
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influenced by the intensity and vigor of vegetation in the 
surroundings in case of increased airflow (Bernard et al., 2018; 
Zhang et al., 2019; Zhao et al., 2014). However, it is noteworthy 
that vegetation by itself can significantly reduce ventilation due 
to the increased surface roughness (e.g. in case of tall or dense 
arrangement of trees), and thus it should be placed carefully in 
urban areas. Moreover, in many urban environments it is not 
feasible to widely expand urban greening, as space has become 
scarcer and the built geometry is very complex. Thus, designing 
a proper network of green ventilation corridors requires a prior 
precise and handy description and manipulation of the 
morphology of the urban environment (Samsonov et al., 2015).  
 
Over the last two decades, the advances in Geographical 
Information Systems (GIS) together with the availability of 
freely available meteorological data and remote sensing imagery 
have been extensively applied to urban analysis, design, and 
planning; and contributed effectively in modelling the urban 
climate phenomena (Burian et al., 2002; Gál et al., 2009; Kropf, 
1996; Samsonov et al., 2015). In particular, concerning the 
mapping of potential urban ventilation corridors, one can 
distinguish between two main approaches. On one hand, wind 
tunnel and  Computational Fluid Dynamics (CFD) models are 
used to make accurate simulations of wind flows in complex 
urban environments (Ren et al., 2018). However, although they 
can provide reliable simulations and better understandings of 
urban ventilation conditions, they are cost intensive and time 
consuming. Moreover, they are not applicable to large areas or 
whole cities (Hsieh and Huang, 2016; Wong et al., 2010). On the 
other hand, GIS and remote sensing techniques are alternatively 
used to approximately model wind conditions based on surface 
roughness. In fact, the latter, is a major determinant of airflow 
patterns and can be estimated using either micrometeorological 
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or morphometric methods (Gál and Unger, 2009; Oke et al., 
2017; Wicht et al., 2017). Roughness length (𝑧𝑧𝑑𝑑), zero plane 
displacement height (𝑧𝑧0), and Frontal Area Index (FAI) are 
among the most used morphometric indicators to estimate 
surface roughness (Burian et al., 2002; Counihan, 1975; 
Grimmond and Oke, 1999; Lettau, 1969; Oke et al., 2017; Wong 
et al., 2010). For instance, Gál and Unger (2009) and Wong et al. 
(2010) developed GIS-based methods and employed a building 
database to calculate FAI and identify ventilation corridors 
across Szeged (Hungary) and Hong Kong city, respectively. 
Suder and Szymanowski (2014) and Wicht et al. (2017) 
alternatively combined remotely sensed data and GIS techniques 
to calculate roughness length (𝑧𝑧𝑑𝑑) and zero plane displacement 
height (𝑧𝑧0); and subsequently map potential ventilation corridors 
in Wroclaw and Warsaw (Poland), respectively. Other 
researchers have combined both CFD models and GIS techniques 
for better delineating and evaluating potential ventilation 
corridors (Chang et al., 2018; Chen et al., 2017; Hsieh and 
Huang, 2016). Even so, other urban geometric properties can 
alternatively offer promising opportunities for mapping potential 
ventilation corridors. For example, different patterns and 
velocities of airflow can be modelled based on street canyon 
orientations with respect to the airflow direction, e.g. helical 
flow, staked flow, and channeling (Belcher, 2005; Oke et al., 
2017; Voogt and Oke, 1997).  
 
Furthermore, assessing the cooling effect of different greening 
measures is a very important step before making decisions on 
vegetation implementation in urban areas. Although this can be 
accurately assessed using CFD simulations and detailed 
vegetation modelling, regression models (e.g. linear, multiple, 
Geographically Weighted Regression [GWR]) have proven to be 
effective and powerful tools in modelling the urban climate 
phenomena (Colaninno and Morello, 2019; Fabrizi et al., 2010; 
Ninyerola et al., 2000; Xu et al., 2012; Yan et al., 2009). For 
instance, the Normalized Difference Vegetation Index (NDVI) 
(Rouse et al., 1974) was proven to have a negative correlation 
with land surface and near-surface air temperature in many 
studies (Colaninno and Morello, 2019; Rasul et al., 2017; Weng 
et al., 2004). More specifically, GWR models, which account for 
spatial non-stationarity, have demonstrated to have a better 
goodness-of-fit and predictive performance when compared to 
global models in explaining the relationship between NDVI and 
surface or near-surface air temperature (Colaninno and Morello, 
2019; Zhao et al., 2018). 
 
Here, our goal is twofold. Firstly, we propose an alternative 
approach to using surface roughness indicators for mapping 
potential urban ventilation corridors, especially for cities or 
contexts where building heights information is not available. It 
relies on employing street canyon orientations or azimuthal 
directions to model airflow patterns. Secondly, we aim at 
assessing the effectiveness of relatively high potential ventilation 
corridors in maximizing the impact of greening measures upon 
lowering high temperatures in cities.  
 

2.  STUDY AREA AND DATA 
 
The study area is the city of Milan, which covers a surface area 
of about 181.7 km² and has a population of around 1.37 million 
inhabitants. Being in the center of the Pianura Padana (Po 
Valley), Milan is characterized by a flat topography, hot humid 
summers, and cold damp winters, in addition to an annual 
average low wind speed of about 4 m/s. Furthermore, the city has 
a significant UHI intensity that was estimated in 2017 to be 1.1 
°C and 2.1 °C of screen-height temperature difference between 

urban and rural areas for daytime and night-time, respectively 
(Colaninno and Morello, 2019).  
 
In this work, we used a 1-m Digital Elevation Model (DEM), 
retrieved from a high quality digital topographic database of 
building footprints, provided by Lombardy Region at regional 
level. In addition, we employed raster data for NDVI and near-
surface air temperature (both daytime and night-time) at 30-m 
spatial resolution, for an extreme event, which was the 4th of 
August, 2017, as suggested by Colaninno and Morello (2019). 
More specifically, the NDVI is Landsat-based, which has a 30-m 
spatial resolution and is calculated as follows: 
 

 NDVI =
(NIR −  Red)
(NIR +  Red) (1) 

 
where NIR = Near-infrared band 
  Red = Visible red band 
 
The average wind speed for August 4, 2017 was 1.5 m/s and the 
average wind direction was Southwest (SW), which is in 
agreement with the prevailing wind direction during the summer 
season in the city of Milan. 
 

3. METHODOLOGY 
 
3.1. Mapping urban ventilation corridors  

Three main steps were required for mapping potential urban 
ventilation corridors across the city of Milan, based on the 
canyon orientations or azimuthal directions. Firstly, canyon 
azimuthal directions were calculated using a raster-based 
approach. Then, patterns of increased airflow were modelled. 
Lastly, potential urban ventilation corridors were mapped using 
a Least Cost Path (LCP) analysis. 
 
3.1.1. Calculating canyon orientations. Urban or street 
canyon orientation is usually defined by the cardinal direction in 
which the street runs, e.g. North-South (N-S), East-West (E-W), 
Northeast-Southwest (NE-SW), and Southeast-Northwest (SE-
NW). In order to define canyon orientations, we applied 
Euclidean geometry to calculate the direction, in degrees, of the 
perpendicular line between the two boards of the canyon 
(building facades), measured clockwise from north, where, for 
example, a N-S-oriented canyon can have an azimuth angle equal 
to 90° or 270° and a NE-SW-oriented canyon has an angle equal 
to 135° or 315° (Figure 1).  

 

 
Figure 1. The calculation of canyon azimuthal directions. A NE-

SW-oriented canyon (left) and a N-S-oriented canyon (right) 
 

Firstly, the DEM was pre-processed to set all the ground pixels 
to NoData. Then, the Euclidean Direction tool in ArcMap 10.5 
was used to calculate the direction that each ground pixel center 
(NoData), in the DEM, is from the closest pixel with a valid value 
(i.e. facade pixel) as shown in Figure 2.  
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Figure 2. Euclidean direction calculation in ArcMap 10.5. 

Reprinted from “ArcMap 10.5”, by Esri Inc. (2016)  
 
Finally, the output raster image at 1-m spatial resolution (Figure 
3), was resampled (using bilinear interpolation) at 30 m in line 
with the spatial resolution of the NDVI and temperature raster 
data so that it can be used for subsequent statistical analysis. 
 

 
Figure 3. Example of canyon azimuthal directions in central 

Milan at 1-m spatial resolution, calculated using the Euclidean 
Direction tool in ArcMap 10.5 

 
3.1.2. Modelling patterns of increased airflow. Modelling 
wind acceleration probability, or mapping canyons where wind 
speed is maximized was first introduced by Samsonov et al. 
(2015), based on the hypothesis that wind accelerates when 
moving parallel to street canyon direction, a phenomenon which 
is known as the channelization effect (Spirn, 1987). Hence, 
firstly, we have identified the prevailing wind direction during 
the summer season in the city of Milan to be SW, as measured by 
a peripheral weather station in the municipality of Corsico 
(45.43° N, 9.11° E). Then, the output canyon azimuthal 
directions raster map, retrieved from the previous step, was 
processed to calculate the angle 𝜶𝜶 at which the wind approaches 
each canyon (Samsonov et al., 2015, p. 130), where: 
 

 𝛼𝛼 = |𝛽𝛽 −  𝜃𝜃| (2) 
 

and  𝛽𝛽 = the prevailing wind direction 
  𝜃𝜃 = the canyon azimuthal direction 
  
Next, 𝛼𝛼 values were classified into eight classes using equal 
intervals of 11.25 degrees, consistent with the angular range of 
cardinal points, and finally scored to represent the degree of 
airflow obstruction in the SW-NE direction (Table 1). Scores are 
based on an equal-interval scale and range between 12.5 (lowest) 
to 100 (highest). Figure 4 illustrates how 𝛼𝛼 values close to 90° 
indicate high potential of wind acceleration, while values near 
zero imply higher obstruction possibility for airflow.  

𝜶𝜶 (degree) Score Degree of Wind 
Obstruction 

Canyon 
Orientation 

[0–11.25] 100 Very high SE-NW 
(11.25–22.50] 87.5 

High ESE-WNW/ 
SSE-NNW (22.50–33.75] 75 

(33.75–45] 62.5 
Medium E-W/ N-S 

(45–56.25] 50 
(56.25–67.50] 37.5 Low ENE-WSW/ 

NNE-SSW (67.50–78.75] 25 
(78.75–90] 12.5 Very low NE-SW 

Table 1. Allocated wind obstruction score based on the angle 𝛼𝛼 
and the canyon orientations for the SW wind direction 

 

 
Figure 4. Patterns of wind obstruction based on the angle 𝛼𝛼. (a) 
Maximum obstruction (α = 0°); (b) High obstruction (α ≈ 23°); 

(c) Medium obstruction (α ≈ 45°); (d) Channeling (α = 90°) 
 

3.1.3. LCP analysis for mapping potential ventilation 
corridors. In 2010,  Wong et al. introduced an original approach 
to map high potential ventilation corridors across Hong Kong, 
based on the hypothesis that wind moves across the city 
following the path of lowest friction (Wong et al., 2010). In this 
approach, paths along which wind is least obstructed were 
identified using a surface roughness indicator and a LCP 
analysis. The LCP analysis is widely used in transportation 
planning to determine the most cost-effective path between two 
locations based on a cost distance determinant. While Wong et 
al. (2010) used FAI (at 100-m spatial resolution) as the cost 
determinant factor, we employed the allocated wind obstruction 
score raster map, based on canyon orientations (at 30-m spatial 
resolution), as the main cost distance determinant across the 
urban surface. Firstly, 73 starting and 71 ending points were 
created, where possible far from built structures, along equal 
distances (250 m) in the SW and NE boundaries of the study area, 
respectively. Then, a LCP from each of the 73 starting points to 
each of the 71 ending points was created using the Cost Distance 
and Cost Path tools in ArcMap 10.5, sequentially. The Cost 
Distance tool calculates at each pixel the least accumulative cost 
to the destination and identifies the backlink (i.e. the next pixel 
along the LCP), while the Cost Path tool draws the LCP. Finally, 
we have counted the number of times each pixel was passed by a 
LCP. This provides a measure of the frequency of occurrence of 
ventilation paths (Wong et al., 2010, p. 1882) in SW-NE 
direction. A GIS subroutine was designed using the visual 
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programming language in ArcMap 10.5 for the automation of the 
entire procedure (see Appendix A).  
 
3.1.4. In-situ measurements for method validation. In order 
to validate the significance of the methodology for retrieving 
potential ventilation corridors across the city of Milan, a similar 
field observation to that conducted by Wong et al. (2010), was 
carried out to measure the maximum wind speed ū (m/s) along a 
path of relatively high ventilation. Field measurements were 
taken on July 30, 2018, when the average wind direction was 
forecasted to be in SW, according to the different weather 
stations close along the chosen path. During the site walk, 42 
measurements were taken, where possible, along and off the path 
(i.e. in segments normal to the path) for the peak wind speed over 
a 2-minute time interval, using a digital portable anemometer that 
has a range of 0.50 to 30 m/s, 0.10 m/s resolution, and ±5% error 
accuracy. The filed measurements and the estimated frequency 
of occurrence at each pixel were averaged for each path segment 
in order to make direct comparisons. 
 
3.2. Estimating the relative impact of ventilation corridors 

on maximizing the benefits of greening measures 
 
The analysis in this section is based on the hypothesis that the 
cooling effect of urban green spaces can be improved if 
implemented along corridors of high ventilation. To test this 
assumption, different statistical tests have been employed. 
Firstly, a GWR model is used to model the spatial variation in the 
relationship between NDVI and near-surface air temperature. A 
GWR model is ideal for non-stationary spatial data (e.g. climate 
data), where for each location a local Ordinary Least Squares 
(OLS) regression equation is derived using all the observations 
falling within a certain bandwidth. Also, observations are 
weighted based on their distance from the regression point 
(Fotheringham et al., 1998). A GWR is written as: 
 

 𝑦𝑦𝑖𝑖 =  𝛽𝛽0(𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑖𝑖) + �𝛽𝛽𝑘𝑘  (𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑖𝑖)𝑥𝑥𝑖𝑖𝑘𝑘 +  𝜀𝜀𝑖𝑖  ,
𝑘𝑘

 (3) 

 
where at location 𝑖𝑖 defined by x-y coordinates (𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑖𝑖), 𝑦𝑦𝑖𝑖 is the 
dependent variable, 𝑥𝑥𝑖𝑖𝑘𝑘 are the independent variables, 𝛽𝛽𝑘𝑘  (𝑢𝑢𝑖𝑖 ,𝑣𝑣𝑖𝑖) 
are the regression coefficients, 𝛽𝛽0(𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑖𝑖) is the intercept, and 𝜀𝜀𝑖𝑖 
is the random error. In particular, we have defined two models 
for both daytime and night-time conditions using the GWR tool 
in ArcMap 10.5, where NDVI is the predictor and near-surface 
air temperature is the dependent variable. An optimal bandwidth 
was determined using the Akaike Information Criterion (AICc). 
 
As a next step, we have simulated the impact of equally 
increasing the NDVI values at each pixel along the retrieved 
paths on lowering the near-surface air temperature, using the 
local OLS regression equations. In particular, considering that 
the current maximum NDVI value identified is .78, we have 
increased NDVI values at each pixel by .22 (-1 ≤ NDVI ≤ 1).  
Afterwards, single ventilation corridors were defined as groups 
of adjacent pixels in a row that have similar occurrence 
frequency. The impact on lowering temperatures after increasing 
the NDVI values was estimated for each corridor for both 
daytime and night-time conditions.  
 
However, since testing our hypothesis requires relying on 
accurate and precise predictions of temperature, based on 
simulated NDVI values (post intervention), and false negative 
results (i.e. temperature gains rather than losses) may affect the 
analysis, the local coefficient of determination (R2) here is of 
great importance. Low R2 values indicate that the model has more 

error, while high values refer to better predictive performance. 
However, although, the overall adjusted R2 for the GWR 
estimation can be very high, local R2 values may vary across the 
area. Moreover, deciding what is a good R2 value is controversial 
and widely varies depending on the discipline and the study 
(Chin, 1998; Cohen, 1988; D. N. Moriasi et al., 2007; Hair, J. F., 
Hult, G. T. M., Ringle, C. M., & Sarstedt, 2013; Henseler et al., 
2009). Nonetheless, in studies that examine the relationship 
between surface or near-surface air temperature and NDVI, local 
R2 values higher than .50 are very common during the growing 
season (Colaninno and Morello, 2019; Ferrelli et al., 2018; Guha 
et al., 2018); this depends on the vegetation type, the month, and 
the spatial resolution of the data. Hence, corridors with local R2 

values lower than .50 may deem unsatisfactory for the purpose of 
this study and are excluded for the subsequent statistical analysis. 
 
Finally, in order to analyze the difference between the ventilation 
corridors in terms of their mean loss of temperature after the 
intervention (i.e. after increasing NDVI values), a hypothesis 
testing is used. Firstly, ventilation corridors were classified into 
three classes based on their average occurrence frequency, using 
the quantile method. This classification method is ideal for an 
ordinal classification of the ventilation corridors, where the total 
number of corridors in each class is approximately the same. 
Then, a one-way analysis of variance (ANOVA) was performed 
for both daytime and night-time. In particular, ANOVA 
compares the variance between three groups or more with the 
variance within groups to determine whether a significant 
difference exists between group means. 
 

4. RESULTS AND ASSESSMENT 
 
4.1. Spatial distribution of urban ventilation corridors 

A total of 5183 LCPs were created across the city of Milan, which 
together resulted in around 445 single ventilation corridors. The 
spatial distribution of the ventilation corridors (Figure 5) shows 
that high potential ventilation areas are mostly located in the 
central and northern parts of the city compared to the southern 
parts which have relatively less ventilation. In particular, five 
major paths were recognized to have the highest potential of 
ventilation in the northern part of the city and which connect the 
major regional outer parks; these are (ABCDEFG), (CHIJE), 
(KLMNOP), (STL), and (OQR).  
 
The in-situ measurements along path (ABCDEFG) showed that, 
in general, the mean maximum wind speeds recorded off the path 
segments are much lower than the mean maximum wind speeds 
along the same segments. For instance, mean maximum wind 
speeds of 2.50 m/s and 0.60 m/s were recorded along and off 
segment EF, respectively. The same was observed for segments 
CD (2.27 m/s vs. 1.60 m/s) and DE (2.20 m/s vs. 0.65 m/s). Also, 
relatively higher wind speeds were observed to be along 
segments of higher occurrence frequency. For example, a mean 
maximum wind speed of 2.50 m/s was recorded along segment 
EF with the highest modelled average occurrence frequency of 
1155, while for segments CD and DE, along which average 
occurrence frequencies are 782 and 569, maximum wind speeds 
are 2.27 m/s and 2.18 m/s, respectively. This slight decrease in 
the measured wind speeds from segment EF to CD and from 
segment CD to DE is congruent with the differences in their 
average occurrence frequencies. Despite the measurement 
uncertainty, due to the relatively low accuracy of the anemometer 
used (±5%), the differences found between the measurements 
along and off the path can still justify the relevance of the 
proposed method to identify potential ventilation corridors at 
large scale.
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Figure 5. Retrieved ventilation corridors in SW-NE direction and occurrence frequency, using canyon orientations and LCP analysis 

  
4.2. Impact of ventilation corridors on the cooling effect of 

greening solutions 
 
4.2.1. GWR model diagnostics and temperature 
simulations. Statistical summary of the GWR models is given in 
Table 2. The adjusted R2 was estimated to be .970 and .955 for 
daytime and night-time conditions, respectively. 
 

GWR Parameters Daytime 
(10:30 AM) 

Night-time 
(09:30 PM) 

Observations (N) 8788 8788 
Bandwidth (m) 289.637647 289.637647 
Sigma 0.114432 0.265130 
R2 .973531 .960272 
R2 adj. .970210 .955287 
Table 2. GWR model parameters for both daytime and night-

time, where Sigma is the square root of the normalized residual 
sum of squares. R2 is the coefficient of determination, and R2 

adj. is the adjusted coefficient of determination 
 

Furthermore, Table 3 shows the ordinal classification of the 
ventilation corridors after excluding corridors with relatively low 
local R2 (< .50) as outlined in section 3.2.  

In particular, from a total of 445 corridors, 44 and 64 were 
excluded for daytime and night-time, respectively. Also, the 
mean difference in near-surface air temperature (∆ 𝑇𝑇) after 
increasing NDVI values, is reported for each class in Table 3. As 
expected, an increase in NDVI values has generally reduced the 
average near-surface air temperature. Locally, the impact of 
vegetation on lowering temperature is more significant, 
especially at night-time.  Figure 6 shows an example of current 
and simulated values for NDVI and near-surface air temperature 
along segment EF.  
 
Daytime (10:30 AM) 

Class Occurrence Frequency n ∆ 𝑇𝑇 (°C)   
A 1569–307 High 132 0.657061705 
B 306–115 Medium 136 0.679894279 
C 114–4 Low 133 0.656986594 

Night-time (09:30 PM) 
Class Occurrence Frequency n ∆ 𝑇𝑇 (°C)   

A 1569–272 High 127 1.086904685 
B 271–104 Medium 127 1.087278969 
C 103–4 Low 127 0.967112126 

Table 3. Ordinal classification of the ventilation corridors and 
the mean loss in temperature (°C) by class 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-665-2020 | © Authors 2020. CC BY 4.0 License.

 
669



 

 
Figure 6. Current and simulated NDVI and near-surface air 

temperature along segment EF for daytime (top) and night-time 
(bottom) 

 
4.2.2. Differences among ventilation corridors in lowering 
near-surface air temperature. Regarding the ∆ 𝑇𝑇 variation 
among green corridors with different degree of ventilation, the 
results from the one-way ANOVA are presented in Table 4. 
  
Daytime (10:30 AM) 

 SS Df MS F p 
Between Groups 0.047 2 0.024 1.199 .303 
Within Groups 7.802 398 0.020   
Total 7.849 400    

Night-time (09:30 PM) 
 SS Df MS F p 

Between Groups 1.219 2 0.609 5.244 .006 
Within Groups 43.927 378 0.116   
Total 45.146 380    
Table 4. ANOVA summary for daytime and night-time, where 
SS is the sum of squares, df is the degree of freedom, MS is the 
mean square, F is the F-statistics, and p is the probability value 

 
In particular, results show that at night, we can reject the null 
hypothesis, and that the three classes of ventilation corridors 

differ significantly in their mean loss of temperature (p < .05). 
However, during daytime, there is not any significant difference 
between classes (p > .05). This indicates that urban green 
ventilation corridors are more effective during night-time when 
the UHI effect is peaked. This can be explained as green spaces 
have generally low heat capacity and thus cool off faster at night.  
 
However, an ANOVA can tell us whether there is a significant 
difference between classes or not, but it does not tell where these 
differences exactly happen. Hence, we used a Post-Hoc analysis 
after an ANOVA to compare each pair of the class means for the 
night-time condition. In particular, we used the Tukey’s Honest 
Significant Difference test (Tukey HSD) followed by Cohen’s d 
to calculate the effect size for the differences in pairwise (Figure 
7 and Table 5). Cohen’s d is a measure of effect size which 
quantifies the magnitude of the difference between groups. It is 
calculated by dividing the mean difference of two groups by their 
pooled standard deviation (Cohen, 1988). While there was no 
significant difference between class A and class B (p > .05), both 
yielded significantly lower results when compared to class C (p 
< .05). Cohen’s d effect size indicates that the two statistically 
significant pairs, i.e. A-C and B-C have effect sizes of 0.35 and 
0.37, respectively, which are considered of small-to-medium 
magnitude (Cohen, 1988). This can be returned to the average 
low wind speed recorded for the day of the analysis (≈ 1.5 m/s). 
However, this demonstrates that even under very calm wind 
conditions, there is still an opportunity for increasing, even if just 
a little bit, the benefits of greening measures in terms of lowering 
high temperatures in cities.   
 

 
Figure 7. The mean loss in night-time temperature (°C) for each 
class of ventilation corridors. Bars represent standard deviation 
and asterisks indicate significant differences between classes

* The mean difference is significant at the .05 level 
Table 5. Tukey's multiple comparisons test and Cohen’s d effect size 

 
5. DISCUSSION AND CONCLUSION 

 
In this paper, we have discussed the development of a complete 
methodology for identifying potential urban ventilation corridors 
and subsequently assessing their relative impact on maximizing 
the benefits of urban green solutions, as some of the most used 
UHI mitigation measures in cities.  
 
In the first part, canyon orientations were calculated using 
Euclidean geometry. Then, around 445 corridors were delineated 
in SW-NE direction across the city of Milan, using a LCP 

analysis. The relative difference in ventilation between the 
identified corridors was found to be relevant when compared 
against in-situ measurements of maximum wind speeds. 
However, this approach is suitable for the normal case, i.e. for 
cities of uniform urban structure in terms of average building 
heights, intermediate aspect ratios, and elongated canyons; 
otherwise, other parameters should be included to better model 
airflow patterns in cities (e.g. height-to-width ratio of street 
canyons, building roofs geometry; Oke et al., 2017). In general, 
in order to accurately model ventilation across cities, a 3D 
approach should be considered, whereby 2D and 3D roughness 

Tukey HSD test Mean Diff. 95.00% CI of diff. Significant? Summary Adjusted P value Cohen’s d 
Class A vs. Class B -0.0003743 -0.1010 to 0.1003 No ns > .9999 0.001041 
Class A vs. Class C 0.1198 0.01913 to 0.2205 Yes * .0148 0.351752 
Class B vs. Class C 0.1202 0.01951 to 0.2208 Yes * .0144 0.373272 
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attributes are employed. Higher quality elevation models (e.g. 
LIDAR-derived digital surface models) can be utilized for this 
purpose.  
 
In the second part, we have assessed whether the impact of green 
solutions upon lowering temperature can be maximized if 
incremented along corridors of relatively high ventilation. For 
this purpose, firstly, a GWR model, where NDVI is the predictor 
and near-surface air temperature is the dependent variable, was 
defined for both daytime and night-time conditions, to simulate 
the impact on lowering temperature after equally increasing 
green intensity. Then, ventilation corridors were assessed for 
statistical significance of difference in near-surface air 
temperature before and after the intervention. Results from the 
one-way analysis of variance (ANOVA) showed that the effect 
of green ventilation corridors is more significant at night, which 
is adequate for mitigating the UHI effect that is most developed 
at this time. Also, it has been demonstrated that even under very 
calm wind conditions, there is still an opportunity for maximizing 
the benefits of greening measures in terms of lowering high 
temperature. This research finding is very promising, especially 
for cities where wind is a marginal potentiality like Milan.  
 
This work highlights only an example of the promising role of 
urban computation, employing digital mapping, spatial analysis, 
and statistical modelling, in supporting urban climate design and 
planning for combating climate change.  
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Appendix A. Model workflow to elaborate Least Cost Paths 

(LCPs) from starting points, ending points, and a cost surface in 
ArcMap 10.5
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