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ABSTRACT:

Civil infrastructures, such as tunnels and bridges, are directly related to the overall economic and demographic growth of countries.
The aging of these infrastructures increases the probability of catastrophic failures that results in loss of lives and high repair costs;
all over the world, these factors drive the need for advanced infrastructure monitoring systems. For these reasons, in the last years,
different types of devices and innovative infrastructure monitoring techniques have been investigated to automate the process and
overcome the main limitation of standard visual inspections that are used nowadays. This paper presents some preliminary findings
of an ongoing research project, named TACK, that combines advanced deep learning techniques and innovative photogrammetric
algorithms to develop a monitoring system. Specifically, the project focuses on the development of an automatic procedure for
crack detection and measurement using images of tunnels and bridges acquired with a mobile mapping system. In this paper, some
preliminary results are shown to investigate the potential of a deep learning algorithm in detecting cracks occurred in concrete
material. The model is a CNN (Convolutional Neural Network) based on the U-Net architecture; in this study, we tested the
transferability of the model that has been trained on a small available labeled dataset and tested on a large set of images acquired
using a customized mobile mapping system. The results have shown that it is possible to effectively detect cracks in unseen imagery
and that the primary source of errors is the false positive detection of crack-like objects (i.e., contact wires, cables and tile borders).

1. INTRODUCTION

Civil infrastructures, including tunnels, bridges, roads and
dams, are becoming older and older all over the world. For this
reason, nowadays, detailed analyses and monitoring systems
are required to determine the health and safety level of these
kinds of infrastructures. Cracks are early indicators of dam-
age; crack detection and measurement represent, indeed, key
parameters in evaluating the safety and durability of structural
components (Koch et al., 2015). Cracks should, therefore, be
detected as soon as possible and monitored over time to assess
the condition of the infrastructure and to identify the necessary
countermeasures to be taken.

Nowadays, large infrastructures are routinely visually inspec-
ted by trained workers to detect and measure cracks. How-
ever, this type of monitoring is time-consuming, labor-intensive
and prone to human errors. Furthermore, since the infrastruc-
tures must be closed during monitoring, inspections are nor-
mally carried out during the nights in a limited time interval to
minimize the impact of tunnel or bridge downtime. These con-
ditions, in combination with the length of the infrastructure sys-
tem, make it often impossible to inspect every meter of bridges,
tunnels and roads, increasing the risk that cracks are not de-
tected. Moreover, the lack of light, fresh air and traffic noise
makes these procedures unhealthy for the inspectors. To over-
come these drawbacks and preserve the safety of operators, in
recent years, inspections have also been carried out by using
a semi-automatic method where a mobile mapping equipment
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(usually mounted on a vehicle) is employed to capture the scene
and to reconstruct the 3D model of the infrastructure using a set
of geomatics sensors (i.e., visible and infrared cameras, laser
scanning, IMU). In particular, this digital representation, or the
so-called “digital twin”, of the infrastructure is subsequently
analysed manually by visual inspection for finding cracks and
mark their extent. However, due to the large amount of collec-
ted data, this approach is still time-consuming, inefficient and
affected by errors.

To overcome the limitations of standard visual inspections, dif-
ferent approaches have been widely applied. First of all, the
use of standard measurement instruments for deformation and
crack measurements such as strain gauges and Linear Variable
Differential Transducers (LVDT) has been investigated. How-
ever, when dealing with large infrastructures, the use of con-
ventional devices is limited since they can only provide local
information and they need to be attached to the surface to mon-
itor. To overcome the limitations of pointwise sensors, Struc-
tural Health Monitoring (SHM) systems have been investigated
by the scientific community to perform structural damage de-
tection and integrity assessment using multiple sensors, such as
accelerometers, fiber optic sensors, interferometric radar sys-
tems and camera-based sensors (Feng, Feng, 2018, Brownjohn,
2007). Among camera-based techniques, the non-contact Di-
gital Image Correlation (DIC) method has been widely applied
(Küntz et al., 2011, Mathieu et al., 2012, Belloni et al., 2019).
DIC can reconstruct the displacement and deformation of an
object by comparing the position of corresponding pixels in
different images acquired over time. The technique is easy to
adopt and it can provide displacement and deformation fields
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without direct contact with the surface to monitor. However,
it requires a permanent setup (i.e. a fixed camera mounted on
a tripod) which is, of course, not suitable for long-term mon-
itoring and difficult to ensure due to potential vibrations, wind
or ground instability. In general, even if SHM approaches can
provide more complete measurements than standard methods,
they can be complex to adopt since they require a large number
of sensors to install and the integration of the data coming from
distributed sources.

Nowadays, image-based techniques seem to represent the most
powerful alternative in the field of infrastructure monitoring.
For this reason, in the last two decades, a significant amount
of studies have been conducted to understand the potentialities
of these methods in detecting and measuring cracks. Among
the developed methods for crack detection, edge-detection al-
gorithms (Abdel-Qader et al., 2003), mathematical morpho-
logy (Sinha, Fieguth, 2006), high-speed percolation (Yamagu-
chi, Hashimoto, 2010), Principal Component Analysis (PCA)
(Abdel-Qader et al., 2006), Extreme Learning Machine (Zhang
et al., 2014) and Support Vector Machine (SVM) (Nashat et al.,
2014) have been adopted. Furthermore, to improve the per-
formances of image-based techniques and develop a method
able to cover unexpected real-world situations, deep learning
approaches (CNN – Convolutional Neural Network) have been
also recently investigated (Li et al., 2018, Cha et al., 2017, Go-
palakrishnan et al., 2017, Zou et al., 2018, Liu et al., 2019,
Ren et al., 2020). Indeed, CNNs represent very powerful tech-
niques for automatic feature extraction and classification prob-
lem and they have received considerable attention in the field
of infrastructure monitoring thanks also to the spread of drones
and other mobile mapping systems which can acquire a large
amount of data. Starting from a set of labeled images necessary
to train the network, CNNs can be adopted to build a classi-
fier for automatically detecting cracks in the new images. Fur-
thermore, these techniques can easily handle a large amount
of collected data. In the last years, three different deep learn-
ing approaches have been adopted to perform crack detection:
object detection (Li et al., 2018), image classification (Cha et
al., 2017) and semantic segmentation (Ren et al., 2020). The
first one aims only at detecting the location of the cracks using
bounding boxes without providing additional information such
as the width and the shape of the cracks. The second approach
performs image classification using sliding windows to scan the
images. This method can provide more detailed information
compared to the previous one but the accuracy of the detection
highly depends on the area division. The last approach provides
pixel-level classification by detecting all the pixels which be-
long to the crack. It represents, therefore, the most accurate
method for this specific task (Liu et al., 2019).

2. TACK PROJECT

TACK (TACK, 2020) is an ongoing research project carried out
by KTH - Royal Institute of Technology, Sapienza University of
Rome and WSP Sweden company under the InfraSweden2030
program funded by Vinnova. The project aims at the develop-
ment of a methodology for the automatic detection and meas-
urement of cracks on a tunnel lining or other infrastructures
combining advanced deep learning approaches and innovative
photogrammetric algorithms. The main idea is to apply deep
learning algorithms (CNNs) to detect cracks in data collected
using a mobile mapping system, as accurately as visual detec-
tion. In the project, the system is provided by the company
WSP Sweden and consists of six LiDAR scanners which can

produce a point cloud with an average density of 5000 points
per square meter and two panoramic cameras used to capture
the complete view of the infrastructure (with a particular fo-
cus on tunnels). Furthermore, nine high-resolution IR cameras
combined with LED light and IR flashes are adopted to obtain
photos of the roof and walls to be able to accurately assess the
condition of the infrastructure. Overview photos are used to de-
termine the frequency of cracks in specific areas and detailed
images are used to measure the crack width and understand the
cause of cracking. Specifically, once the cracks are detected, an
innovative and recently developed photogrammetric algorithm
is applied to the raw images of each detected crack to estim-
ate the geometric characteristics (i.e. crack length and crack
width) and the deformation of cracks over time. The algorithm,
developed thanks to the collaboration between KTH - Royal
Institute of Technology and Sapienza University of Rome, can
compute the deformation of an object using a time series of
images (as the standard DIC methods) captured with a moving
camera, overcoming the main limitation of using a fixed setup
to measure the deformation pattern (Sjölander, 2019). Finally,
to assess the associated risk with different types of cracks, nu-
merical simulations based on the finite element method can be
used. Specifically, the acquired data from monitoring can be
adopted to model existing cracks. Then, non-linear material
models that are able to describe the behaviour after failure initi-
ation are used to simulate the structural behaviour for different
load cases. As regarding tunnels built using shotcrete, the con-
dition of the shotcrete can be used as input for numerical sim-
ulations using the finite element method in which the behavior
of the rock support can be simulated for different load cases to
assess its structural response and risk of failure. Furthermore,
if possible, data from the construction such as the thickness of
the shotcrete and quality of the rock can be used to get a deeper
understanding of where and why cracks form. An overview of
the method workflow is reported in Figure 1.

Figure 1. Methodology overview flowchart

The proposed technique can automatically detect and measure
cracks from the imagery acquired using a customized mobile
mapping system which leads to highly efficient monitoring that
can increase the overall safety of infrastructures. With a com-
plete digital model of the infrastructure, all the information is
stored, and it can be easily accessed for further deep investig-
ations; the detected critical areas can be also double-checked
using other methods. Furthermore, the developed procedure
can be applied using infrastructure imagery acquired in differ-
ent epochs to monitor the evolution of the cracks over time.
The method can thus enable continuous and automatic monit-
oring of infrastructures, increasing the efficiency of the monit-
oring process and decreasing the risk that cracks are not found.
Finally, the detailed mapping of cracks and the possibility to
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measure their geometric characteristics give a highly efficient
basis to assess the need for maintenance of infrastructures. This
can improve knowledge regarding tunnel or bridge conditions
and facilitate maintenance planning which will reduce infra-
structure downtime and costs of monitoring and maintenance.
Finally, with an automatic procedure to collect and process the
data, the inspection and monitoring of infrastructures can in-
stead take place in an office during normal working hours, in-
creasing the safety of inspectors.

3. DATASETS

Two different datasets were used in this study. The first one,
provided by Ren et al. (Ren et al., 2020), includes a total of 409
RGB images of cracks (4032 × 3016 pixels) acquired in a tun-
nel under different light conditions and then cropped into 919
small images (512× 512 pixels). The small images are divided
into a training set and a test set at a ratio of 4 : 1. Specific-
ally, 735 images are adopted for the training and 184 images
to test the network. For this specific dataset, crack annotations
of all the images are available in binary format. The second
dataset includes images and LiDAR data of three tunnels ac-
quired in Sweden using a mobile mapping system developed
by WSP. Specifically, one of them, the City Tunnel, was con-
sidered to investigate the reliability of the proposed approach.
The City Tunnel dataset is composed of more than 34000 im-
ages (2448 × 2048 pixels) acquired using nine high-resolution
IR cameras and more than 2000 overview images (8000×4000
pixels) captured with the two panoramic cameras. For each im-
age, the mobile mapping system collects position and attitude
of the cameras to know exactly where the images were taken
along the infrastructure. Furthermore, LiDAR data are avail-
able to reconstruct the 3D model of the tunnel and to produce a
digital twin of the infrastructure.

4. PRELIMINARY RESULTS ON CRACK
SEGMENTATION

To investigate the potentialities of CNN approaches, a U-Net
(Ronneberger et al., 2015) based semantic segmentation archi-
tecture was considered for a first test. The idea of this prelim-
inary study is to investigate the generalization capability of a
U-Net based segmentation model trained using a small labeled
dataset and tested on a large set of unseen imagery depict-
ing cracks in concrete materials. Specifically, the deep fully
CNN, named CrackSegNet (Ren et al., 2020), was adopted to
perform a pixel-level classification of cracks. CrackSegNet is
an end-to-end crack detection architecture that combines back-
bone network, dilated convolution, spatial pyramid pooling and
skip connection modules to detect cracks. In this study, the
model proposed by Ren et al. was trained using 80% of the
imagery available in the small labeled dataset. Specifically, the
model was trained for 30 epochs using a combination of dice
and focal loss functions and the Adam optimizer. The remain-
ing 20% of the imagery was used as the test set to assess the
model performances. During testing, a fixed threshold of 0.5
was set to obtain binarized segmentation images from the com-
puted CrackSegNet probability maps. Then, the standard binary
classification metrics were computed according to the following
formulas:

Accuracy =
TP + TN

TP + FP + FN + TN

Intersection over Union (IoU) =
TP

TP + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 =
2PR

P +R

where:

• TP is the pixel number of true positives;

• TN is the pixel number of true negatives;

• FP is the pixel number of false positives;

• FN is the pixel number of false negatives;

• P is the Precision;

• R is the Recall.

The trained model achieved IoU of 51%, Precision of 67%, Re-
call of 71%, F1 of 68% and Accuracy of 99% on the test set.
The obtained results are shown in Figure 2.

Figure 2. Computed metrics on the test set

The transferability of the model provided by Ren et al. was
investigated in this study; the trained model was used to detect
cracks using the unseen tunnel imagery acquired with the WSP
mobile mapping system. Some examples of the images and
the detected cracks using the CrackSegNet model are shown in
Figure 3.

The results, although preliminary, demonstrate the capability
to detect cracks in unseen images using a U-Net based model
trained with a completely different dataset, highlighting the
model good transferability. However, it is worth noticing that,
even if real cracks are correctly detected, other objects with a
similar shape can be erroneously classified as cracks comprom-
ising the overall reliability of the model. It is, therefore, ne-
cessary to investigate the problem related to similarly-looking
objects such as tile borders, signaling cables, contact wires and
joints that can be normally found in images acquired in tunnels.
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Figure 3. Crack segmentation results for the tunnel dataset
provided by WSP

5. CONCLUSIONS AND FUTURE PROSPECTS

TACK is an ongoing research project carried out by KTH -
Royal Institute of Technology, Sapienza University of Rome
and WSP Sweden company. The aim of this project is to in-
vestigate and develop a new methodology for the automatic
detection and measurement of cracks using an integrated ap-
proach based on deep learning and photogrammetry. Specific-
ally, cracks are automatically detected and measured from the
imagery acquired using customized mobile mapping systems,
leading to higher efficiency and accuracy of the overall monit-
oring process and providing detailed information regarding the
conditions of the whole infrastructure under analysis. Prelim-
inary results demonstrate the potentialities of deep learning al-
gorithms to detect cracks in imagery acquired in a tunnel using
a mobile mapping system. However, the tested architecture can
erroneously segment pixels belonging to cables, wires and tile
borders as cracks. For this reason, other kinds of architectures
will be investigated in order to increase segmentation perform-
ances.
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