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ABSTRACT: 

LiDAR technology allows rapid observation of high-resolution and precise 3D point clouds for diverse applications in urban and 

natural areas. However, uneven density and incomplete point clouds make LiDAR data processing more challenging for the extraction 

of semantic information on objects and their components. In this paper, we propose a knowledge based semantic reasoning solution 

for the recognition of building components (e.g. roofs) from segmentation results in the presence of uncertainties in LiDAR point 

clouds. The proposed solution uses a semantic reasoning approach as well as a similarity evaluation process for object recognition. We 

apply the proposed method to recognize buildings’ roof styles from a point cloud with uncertainty as a case study. 

 

 

1. INTRODUCTION 

LiDAR technology is increasingly used for the rapid acquisition 

of 3D high-resolution and precise data for diverse applications in 

urban and natural areas. However, in spite of the advancement of 

technology in recent years, different problems such as occlusions 

still may lead to an uneven point density or incomplete point 

clouds. This may complicate the process of segmentation and 

detection of objects from LiDAR point clouds. This is because 

the segmentation process uses geometric properties of objects to 

decompose it into more primitive features and provides 

information on their shape and their geometric and topological 

relations. Missing data on these properties in LiDAR point clouds 

may further complicate the extraction of semantic information on 

objects and their components that are fundamental to their 

modeling and identification. 

 

Uncertainty in the information extracted from a LiDAR point 

cloud may include uncertainty in geometric properties of 

segmented objects, uncertainty in geometric relations between 

object components, as well as uncertainty on the topological 

relations between object components (Parkan, 2018). 

Segmentation provides segments with richer information for 

further processing than the processing of each isolated point, such 

as identifying geometric relation and topological relation, 

detecting geometric shapes. The analysis of segmentation results 

based on the constraints and rules for defining prior knowledge 

(Che, 2019) supports the extraction of higher-level semantic 

information of objects from point clouds. Knowledge-based 

approaches (Boochs, 2011; Hmida, 2012; Pu, 2011; Pu, 2009; 

Truong, 2013; Xing, 2018) provide interesting alternative 

methods to overcome some of these problems for object detection 

and recognition. However, in the presence of uncertainty and 

incompleteness in the data, not all the knowledge-based methods 

are suitable to assess such data. Due to the presence of 

uncertainty and incompleteness in the information, we do not 

have all the necessary information for the inference process to 

obtain higher-level semantic information of objects.  

 

                                                                 
*  Corresponding author 

This paper proposes a knowledge based semantic reasoning 

solution for the recognition of building components from 

segmentation results in the presence of uncertainties in LiDAR 

point clouds. The proposed solution uses a semantic reasoning 

approach combined with a similarity evaluation process for 

object recognition. At the first stage, the knowledge of a specific 

object is formalized as semantic rules. Then the uncertain 

information extracted from point clouds is compared to the 

predefined knowledge for the recognition of the object. Then the 

similarity between geometric properties, geometric relations, and 

topological relations defined in rules and those extracted from 

point clouds is evaluated. Based on the similarity evaluation, the 

most appropriate semantic rules are chosen from the knowledge 

base to conduct semantic reasoning for object recognition 

purposes. We apply this method to recognize buildings’ roofs 

from a point cloud with uncertainty as a case study. The 

following section presents a brief literature review on the topic. 

Then the proposed methodology and examples of results from a 

case study are presented and discussed. 

 

2. RELATED WORK 

Recent developments suggest that knowledge-based solutions 

offer interesting alternative solutions to tackle object recognition 

problems and help to extract semantic information from point 

clouds. For this purpose, formalized representation of knowledge 

on complex objects of interest (e.g. buildings) is critical for the 

recognition of their components from point clouds. For this 

purpose, ontologies are commonly used to specify and formally 

describe concepts and their relations in a given domain with a 

defined level of granularity. An ontology consists of concepts, 

relations, axioms, and instances (individuals in OWL) 

(Stuckenschmidt, 2009). Several languages are developed for 

formal representation of ontologies. Web Ontology Language 

(OWL) (Peter F. Patel-Schneider, 2004) can be used to explicitly 

represent meanings of concepts and their relationships (W3C). 

Semantic Web Rule Language (SWRL) (W3C, 2004) offers the 

capacity for representing a high-level abstract syntax for Horn-

like rules that are a human-readable format for representing 
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knowledge. However, the limitation of the formal knowledge 

representation is that the classic binary semantic (true or false) 

cannot represent imprecise knowledge and reason new 

knowledge from uncertain information (Bobillo, 2016). 

Although fuzzy ontology (Bobillo, 2011; Bobillo, 2016) has been 

explored to represent vague concepts and properties, the 

reasoning process is designed based on the fuzzy set theory and 

the new language needs to be developed to implement fuzzy 

ontology and reasoning from fuzzy information.  

 

Several approaches were developed for dealing with 

uncertainties in different steps of LiDAR point cloud processing. 

Geometric reasoning between entities (e.g., point, line, and plane) 

is used in the 3D modeling from point clouds. Projective 

geometry (Heuel, 2004) is capable of representing geometric 

entities and reasoning geometric relations from point clouds. This 

method was explored to determine the boundaries of man-made 

structure (Loch-Dehbi, 2011).  

 

For determining topological relations from uncertain observation 

for qualitative reasoning, the morphological distance (Winter, 

1996; Winter, 2000) and the topological distance by comparing 

the intersection matrix represented by the 9-Intersection model 

(Egenhofer, 1992; Kang, 2004) were developed to compare the 

similarities between topological relations. The distance between 

qualitative topological relationships evaluated by the number of 

direct transitions was used to detect the relations of objects in 3D 

space in the case of movement and occlusion (Sabharwal, 2013). 

Topological distance can be used to evaluate the degree of 

similarities between the topological relations extracted from a 

point cloud with uncertainties and the ones which are used as 

reference topological relations defined in a knowledge base.  

 

Comparing similarities in the presence of uncertainty for the 

extraction of higher-level information has proven its potential in 

different domains.  Cosine similarity (Han, 2012) was widely 

used in data mining, recommendation systems (Kotu, 2019), and 

search ranking (Long, 2014). Hence, for dealing with 

uncertainties in our context, we propose to integrate the similarity 

evaluation of properties and relations into the reasoning step in 

the knowledge-based solution for extracting higher-level 

semantic information of objects. 

 

3. METHODOLOGY 

Our proposed knowledge based solution combines a semantic 

reasoning method and a similarity evaluation process for the 

identification and recognition of an object’s components from 

point clouds. The solution includes the following main steps:  

 

(1) Formalize geometric and topological information, and 

geometric and topological relations extracted from point 

clouds as properties and relations related to individuals that 

represent objects and their components.  

(2) Compare the similarities between properties and relations. 

The similarities between the properties and relations of 

individuals and those defined in rules representing 

knowledge of objects are estimated at the semantic level. 

(3) After estimating similarities, the similarities 

corresponding to each atom in the rules are used to construct 

a similarity vector. The cosine distance between the 

similarity vector and the reference vector that has the same 

dimension as the similarity vector is used to choose the most 

probable rule to reason the semantic information for a given 

individual. 

 

3.1 Translate Segments into Individuals  

First, a given point cloud is segmented and information such as 

geometric properties, geometric relations, and topological 

relations are extracted and formalized before adding to the 

knowledge base. For example, a building is segmented into 

geometric segments and the geometric and topological properties 

and relations between segments are identified. Then, for each 

segment, the geometric and topological information is formalized 

in the ontology. This information is considered as facts in the 

reasoning step describing a specific instance of a building and its 

components. This process is done for all the objects detected in 

the point cloud.  

 

3.1.1 Build a Knowledge Base: A knowledge base composed 

of concepts and their relations and semantic rules. It formally 

represents concepts and their properties and relations between 

concepts described in an ontology. The knowledge instances of 

the concepts (objects in reality) can be extracted and formalized 

in the knowledge base.  

 

For instance, for the concept in the knowledge base mainly 

include two groups of concepts: building-related concepts (e.g., 

building components (walls, roofs, ceilings, columns, and doors), 

and building roof styles (gable, hip, pyramid hip, and hip and 

valley roofs)), and geometry-related concepts (e.g. 

“PlanarRegion_3D” represents a planar segment in 3D space 

segmented from point clouds, Cylinder_3D and Sphere_3D 

represent the cylinder and sphere extracted from point clouds).  

 

It also includes geometric properties that describe the above 

concepts. The properties, such as “hasLength”, “hasWidth”, 

“hasShape”, “hasHeight”, “hasBoundary”, describe the concept 

“PlanarRegion_3D”. Other properties, such as color and texture 

can also be added to describe concepts. 

 

The geometric relations and topological relations between 

instances of concepts are crucial to describe the spatial relations 

between concepts and to compose other concepts. The geometric 

relations “isParallelTo”, “isVerticalTo” can describe relations 

between a building’s components. For instance, the geometric 

relations between walls could be vertical or parallel. The relation 

between a wall and a floor is generally vertical, and a column is 

vertical to a floor as well. The topological relations describe the 

spatial relations of geometric objects, independent of their spatial 

transformations such as translation, scaling, and rotation 

(Egenhofer, 1990). Topological relations between object’s 

components are abstracted as the topological relations between 

planar regions in 3D space. Then, these relations are formalized 

as Tp1-Tp2-Tp3-Tp4, where Tpi is a semantic description of 

topological relation (see section 3.1.3 for more details) and it 

could be one of the topological relations (e.g., disjoint, meet, 

overlap, contain, cover and equal) as defined in a 2D space. 

Based on the formalized topological relations, the possible 

topological relations between object components are formalized 

as a four-word semantic description.  

 

In addition, the knowledge base includes semantic rules. Based 

on the properties, concepts, and relations, a set of atoms (e.g., 

OWL class), properties, built-in relations, instances or data value, 

are used to construct a rule with a “Human Readable Syntax” 

form ( 𝑎1 ∧ 𝑎2 ∧ ∙∙∙ ∧ 𝑎𝑛  ⇒ 𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑡 ) when both 

antecedent and consequent are conjunctions of atoms. Here an 

atom 𝑎𝑖 may represent a geometric property, geometric relation, 

topological relation, etc. The consequent represents the 

conclusion after reasoning. For example, building roofs with 

different styles (gable, hip, and pyramid hip) can be represented 
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as rules based on the building components (planar regions) and 

their properties and the relations between them. 

 

In the following paragraphs, more details on the formalization of 

properties, geometric relations and topological relations, and 

translating the information extracted from point clouds into 

individuals are presented. 

 

3.1.2 Translate Geometric Information of Segments to 

Properties of Individuals: In the proposed knowledge base, a 

building component represented by a planar segment is regarded 

as an individual of the concept “PlanarPolygon_3D”. The 

geometric information of planar segments first needs to be 

extracted from point clouds. Point Cloud Library (Rusu, 2011) 

provides basic functions to calculate the geometric dimension of 

a planar segment from points, to identify the boundaries from 

points, and to calculate the intersection between lines and planes. 

In this paper, we directly use these functions to calculate the 

geometric information of a planar segment from points, such as 

its length, width, height, area, and boundary. These geometric 

properties are added into the properties of individuals through the 

predefined properties “hasLength”, “hasWidth”, “hasArea”, 

“hasBoundary”, “hasShape”. 

 

3.1.3 Translate Geometric Relations between Segments to 

Relations between Individuals: Geometric relations between 

segments can be determined based on the parameters of the 

geometric equations of segments detected from point clouds. A 

plane equation a𝑋 + b𝑌 + c𝑍 + d = 0  detected from point 

clouds can represent the plane that a planar segment locates. The 

numeric computation of the parameters of the equation decided 

the geometric relations between planar segments by calculating 

the relations between normal vectors of planes. A threshold is 

defined to decide the geometric relation parallel and vertical. The 

geometric relations are formalized as relations between 

individuals in the ontology, such as “isParallelTo” and 

“isVerticalTo”. 

 

3.1.4 Translate Topological Relations between Segments 

into Relations between Individuals: The topological relations 

between components are abstracted as the topological relations 

between two planar regions in 3D space. A planar region in 3D 

space is defined as a planar surface area with a non-empty, 

connected interior similar to the definition of a region in 2D space 

for identifying topological relations. A planar region in 3D space 

is determined by the plane equation in which the planar region is 

located and its boundaries together (Xing, 2016). For example, 

two planar regions can be on the same plane in 3D space, but their 

boundaries separate them as two independent regions. Therefore, 

the topological relations between two planar regions are divided 

into three cases:  

 

(1) When two planar regions share the same plane equation 

in 3D space, it is same as the case of topological relation 

defined in 2D space;  

(2) When two planar regions locate on two parallel plane 

equations in 3D space, they have relation “disjoint”;  

(3) When two planar regions locate on two intersected plane 

equations in 3D space, the cases of topological relations 

between these two planar regions are more complex than the 

cases in 2D space.  

 

In this paper, an extended DE-9IM is used to identify the 

topological relations between planar regions for obtaining the 

topological relation between 3D object components in the third 

case (Xing, 2016).  

 

In the DE-9IM matrix, the interior, the boundary of planar 

regions, and the intersection line of two plane equations 

containing planar regions constitute a 3*3 matrix.  The dimension 

operation on the elements in the matrix is the same as in 2D space. 

The DE-9IM 3*3 matrix is defined as follows:  

dim( ) dim( ) dim( )
'( , ) dim( ) dim( ) dim( )

dim( ) dim( )

B

p B

A A

A B A B A Il
T A B A B A B A Il

Il B Il B 

   
       
   

 (1) 

Where A = the interior of the region A  

 A = the boundary of the region A  

 B = the interior of the region B 

 B = the boundary of the region B 

 Il = the intersection line of two plane equations 

containing two planar regions  

 dim()  = dimension operator 

   describes topological relations of two parts of 

intersection primitives (points and lines) made up by the 

intersecting line and two planar regions individually.  

 

Apart from the element  , the dimension operation on other 

elements of the matrix is obtained as DE-9IM cases in 2D space. 

The last element   describes the topological relations between 

intersection parts on the intersection line. The intersection parts 

created by two planar regions and the intersection line could be 

points and lines. Thus, the topological relation between the 

intersection parts could be the relations of “point-point”, “point -

line segment” and “line segment - line segment”. 

 

Based on the matrix, the topological relations between the two 

planar regions are primarily determined by the relation between 

the intersection line and two planar regions and the relations 

between intersection parts on the intersection line. The 

formalized representation of topological relations between two 

planar regions can be represented as a four-word semantic 

description: Tp1-Tp2-Tp3 -Tp4. The detail of each part is presented 

as follows: 

 Tp1 is the overall description of the topological relation 

between two planar regions, including disjoint, meet, 

intersect.  

 Tp2 is the relation between planar region A and the 

intersection line, including disjoint, meet, overlap.  

 Tp3 is the relation between planar region B and the 

intersection line, including disjoint, meet, overlap.  

 Tp4 is the topological relation of intersection parts on the 

intersection line (Xing, 2016). The possible relations 

between two points on the intersection line are disjoint or 

equal. The topological relations between a line segment and 

a point are disjoint, meet, and contain. Similarly, the 

topological relations between two line segments are disjoint, 

meet, overlap, cover, coveredBy, contain, containedBy, and 

equal. 

 

The proposed formalized representation of topological relations 

is used to describe the relations between individuals in the 

ontology. The topological relations are also used to define 

semantic rules to formalize the knowledge defined through the 

relations between object components.  

 

3.2 Evaluation of the Similarities of Properties and 

Relations at the Semantic Representation Level  

To reason with semantic information with uncertainty, a 

similarity evaluation approach for comparing formalized 

representations of properties and relations is required to evaluate 

how similar are the properties defined in the rule and those in the 
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individuals translated from point cloud segments. The 

similarities between geometric relations and topological relations 

need to be compared as well. 

 

3.2.1 Evaluation of the Similarities between Properties: 

For quantitative properties (e.g., height, length, area, width), the 

similarity can be evaluated by: 

 

 𝑠 = {
1 −

|𝑣𝑎𝑙−𝑇ℎ|

𝑇ℎ
,      𝑣𝑎𝑙 < Th

1                    ,      𝑣𝑎𝑙 ≥ Th
  (2) 

 

where 𝑣𝑎𝑙 is the given value extracted from point clouds. 𝑇ℎ is 

the defined threshold for properties in the rules. 

 

3.2.2 Evaluation of the Similarities between Formalized 

Geometric Relations: Formalized geometric relations evaluated 

by numeric computation (e.g., parallel, vertical) are represented 

as “isParallelTo” and “isVerticalTo”. The similarities between 

geometric relations are compared by the angle between plane 

normal vectors.  We define the equations to calculate the 

similarities of the geometric relations ( 𝑆∥ for the similarity of the 

parallel relation and 𝑆⊥ for the similarity of the vertical relation). 

 

 

1 0 90
90

180
1 90 180

90

S








   


 

     


  (3) 

 

 
90

S 1 0 180
90





        (4) 

 

Following the above definitions, when the normal vectors of two 

planes have an angle 0 degree, the similarity of their relationship 

compared to the parallel relation is 1. Similarly, the similarity 

compared to the vertical relation is 0. Thus, the proposed 

definition is capable of comparing the similarities of geometric 

relations with the help of a numeric computation of the angle 

between normal vectors.  

 

3.2.3 Evaluation of the Similarity between Formalized 

Topological Relations: For the formalized topological relations 

(Tp1 -Tp2 -Tp3 -Tp4) between object components identified from 

point clouds (Xing, 2018), the similarity is obtained by 

calculating the distance between semantic descriptions of 

topological relations. In this paper, the distance between 

formalized topological relations (e.g., Tpi) is defined as the steps 

of the topological transition (Randell, 1992). As shown in Figure 

1, the topological transition step is 1 when the topological 

relation between a region A and a line is changed from “disjoint” 

to “meet”. Similarly, the topological transition step is 1 from 

“meet” to “overlap” and the topological transition step is 2 from 

“disjoint” to “Overlap”.  

 

A A A

Disjoint Meet Overlap

1 1

 

Figure 1 The definition of the step of topological transitions 

 

Based on the definition of the topological transition step, the 

distance between formalized topological relations 𝑇𝑝1
1 − 𝑇𝑝2

1 −

𝑇𝑝3
1 − 𝑇𝑝4

1   and 𝑇𝑝1
2 − 𝑇𝑝2

2 − 𝑇𝑝3
2 − 𝑇𝑝4

2  is defined as: 

 

 𝑑𝑡 = 𝑑1 + 𝑑2 + 𝑑3   (5) 

 

Where 𝑑1 = 𝑑(𝑇𝑝2
1 , 𝑇𝑝2

2 ), 𝑑2 = 𝑑(𝑇𝑝3
1 , 𝑇𝑝3

2 ), 𝑑3 = 𝑑(𝑇𝑝4
1 , 𝑇𝑝4

2 ). 

 

For calculating the distance 𝑑1 and 𝑑2, the topological transition 

steps are presented in Table 1. 

  

 Disjoint Meet Overlap 

Disjoint 0 1 2 

Meet 1 0 1 

Overlap 2 1 0 

Table 1 The matrix for indexing topological transition step for 

calculating 𝑑1 and 𝑑2 

 

For calculating the distance 𝑑3, the topological relations between 

intersection parts on the intersection line could be disjoint, meet, 

overlap, cover, contain, and equal. The topological relations are 

grouped by the step of topological relations into five sets: 

(disjoint), (meet), (overlap), (cover, equal, coveredBy), and 

(contain, containedBy). The same way is used to calculate 𝑑3 as 

the definition of the step of the topological transitions. Every two 

adjacent sets have one step and their distance is 1. Consequently, 

the distance between “disjoint” and “contain” is 4. Following this 

way, all the possible distances of 𝑑3 can be known. 

 

After calculating 𝑑𝑡 , the similarity of topological relations is 

defined based on the distance between formalized topological 

relations as follows. 

 

 𝑆𝑡 =  1 −
𝑑𝑡−𝑑𝑚𝑖𝑛

𝑑𝑚𝑎𝑥−𝑑𝑚𝑖𝑛
   (6) 

 

Where 𝑑𝑚𝑖𝑛 indicate the minimum of 𝑑𝑡 and its value is 0. 𝑑𝑚𝑎𝑥 

is 8 because the maximum values of 𝑑1 and 𝑑2 all are 2 and the 

maximum value of 𝑑3  is 4. Finally, the similarity between 

topological relation ranges from 0 to 1. The smaller similarities 

demonstrate the topological relations are closer.  

 

3.3 Selection of Semantic Rules Based on the Similarities 

The knowledge of the object is formalized as semantic rules 

based on the OWL class, relations, and individuals. The rules are 

represented as “Human Readable Syntax” form (𝑎1 ∧  𝑎2 ∧ ∙∙∙ ∧
 𝑎𝑛  ⇒ 𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑡 ). When an antecedent composed of the 

conjunctions of atoms hold, the consequent hold during the 

reasoning step. In the knowledge base, the individuals translated 

from the segments identified from point clouds are considered as 

facts for reasoning purposes. In our proposed solution, when an 

individual corresponding to a building component is given, all its 

related properties or relations are compared with the antecedent 

defined in the rules. The similarity between properties and 

relations related to an individual and those contained in the 

semantic rules are calculated. The similarities corresponding to 

properties and relations constitute a similarity vector. This 

similarity vector is produced referring to a selected rule. Then, 

the cosine distance between the similarity vector S = (𝑠1, 𝑠2 , … , 

𝑠𝑛 ) and the reference vector ref = (1, 1, … , 1) whose dimension 

is n is used to decide which rule is the most probable one for 

reasoning building features for a given individual. The rule 

corresponding to the minimum cosine distance is selected as the 

most probable one. Finally, the consequent in the selected rule is 
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considered as the approximated conclusion of the given 

individual. 

 

4. CASE STUDY AND RESULTS 

The proposed method was applied to a point cloud with 

uncertainty obtained from a building. Here we aim at the 

recognition of the roof component with a specific style. For this 

purpose, we used an airborne LiDAR point cloud of buildings 

with uncertainties. We have defined a few semantic rules based 

on the qualitative information on buildings and their roofs with 

different styles (e.g. gable roof, hip roof). We then applied the 

segmentation process to extract geometric properties and 

relations as well as topological relations from the uncertain 

dataset.  

 

According to the common knowledge of buildings, a roof is a 

structure of the upper covering of a building, and a wall is any 

opaque part of the external envelope of a building that is at an 

angle of 70° or more to the horizontal (DesigningBuildings, 

2020). In the experiment, two basic types of building roof styles 

are chosen and the rules defined for recognizing building roof 

styles are presented in Table 2. First, we define rules to 

distinguish roof components from planar segments extracted 

from point clouds. According to the definition of a wall, the 

planar segments have an angle of less than 70° compared to the 

horizon are defined as a roof. Then, based on the segmented roof 

components, the rules for defining a hip roof and a gable roof are 

formalized based on the topological relations between roof 

components. The definitions of rules refer to the knowledge of 

building and formalized semantic rules presented in (Xing, 2018).  

 

Following the step of the proposed solution, first, the input point 

cloud is segmented into planar segments as shown in the 

segmentation results of point clouds in Table 3. Then, the planar 

segments are translated as individuals of the concept 

“PlanarRegion_3D”. The geometric information of planar 

segments and the topological relations between planar segments 

are formalized as properties and relations of individuals in the 

knowledge base. As shown in Table 3, the intersection lines 

between adjacent planar segments are extracted. The topological 

relations between each planar segment and the intersection line 

is translated as the Tp2 and  Tp3 in the formalized topological 

relations. The identification of topological relations between 

planar segments is conducted and formalized as a four-word 

semantic description after identifying the topological relations 

between intersection parts on the intersection line (Tp4). 

 

 Hip roof Gable roof 

Roof styles 

that are served 

to define 

semantic rules 

for reasoning 

purpose 

 
(https://www.roofcostestimator.com/top-15-roof-

types-and-their-pros-cons/roof-types-diagram/) 

 

The hip roof is a roof that slopes upward from all four 

sides of a building (Goodier, 2006). 

 
(https://www.roofcostestimator.com/top-15-roof-

types-and-their-pros-cons/roof-types-diagram/) 

 

Gable roof is a roof having two sides of continuous 

slope meeting at a ridge point (Goodier, 2006). 

Semantic 

rules 

PlanarRegion_3D(?Pr1), hasArea(?Pr1,?area_i), greaterThan(?area_i, 2), Ground(?ground), 

hasDirection(?ground,(0,0,1)), hasSlopeAngle(?Pr1,?ang_i), lessThan(?ang _i,70), 

hasHeightAttribute(?Pr1,?upperMost) -> ComponentsofRoof(?Pr1) 

(1) 

Set(?B), Ground(?g), Trapezoid(?Trap), Triangle(?Tri), isInSet(?Pr1,?B), ComponentsofRoof(?Pr1), 

isInSet(?Pr2,?B), ComponentsofRoof(?Pr2), isInSet(?Pr3,?B), ComponentsofRoof(?Pr3), 

isInSet(?Pr4,?B), ComponentsofRoof(?Pr4),  

hasShape(?Pr1,?Tri), hasShape(?Pr2,?Trap), hasShape(?Pr3,?Tri), hasShape(?Pr4,?Trap), 

Meet_Meet_Meet_Equal(?Pr1,?Pr4), Meet_Meet_Meet_Equal(?Pr1,?Pr2), 

Meet_Meet_Meet_Equal(?Pr3,?Pr4), Meet_Meet_Meet_Equal(?Pr3,?Pr2), 

Meet_Meet_Meet_Equal(?Pr2,?Pr3), Meet_Meet_Meet_Equal(?Pr2,?Pr1), 

Meet_Meet_Meet_Equal(?Pr2,?Pr4), Meet_Meet_Meet_Equal(?Pr4,?Pr3), 

Meet_Meet_Meet_Equal(?Pr4,?Pr1), Meet_Meet_Meet_Equal(?Pr4,?Pr2), isSlopeTo(?Pr1,?g), 

isSlopeTo(?Pr2,?g), isSlopeTo(?Pr3,?g), isSlopeTo(?Pr4,?g) -> HipRoof(?B) 

(2) 

Set(?A), Rectangle(?Rect), isInSet(?Pr1,?A), isInSet(?Pr2,?A), ComponentsofRoof(?Pr1), 

ComponentsofRoof(?Pr2), hasShape(?Pr1,?Rect), Meet_Meet_Meet_Equal(?Pr1,?Pr2), 

hasShape(?Pr2,?Rect), Line(?line_intersect), Ground(?ground), hasDirection(?ground,?v_g), 

isParallelTo(?line_intersect,?ground), higherThan(?line_intersect,? Pr1), higherThan(?line_intersect,? 

Pr2) -> GableRoof(?B) 

(3) 

Table 2 Building roof styles and the defined rules for recognizing building roof styles from point clouds 

 

For example, in the hip roof example, the intersection line 

between Pr2 and Pr4 detected from point clouds is presented in 

Figure 2. The intersection parts between the intersection line and 

planar segments are shown in Figure 3. The endpoints 

representing the line segments are detected from points as shown 

in the bottom of the figure and the large size points represent the 

detected endpoints and the endpoints with the same color 

constitute a line segment. After identifying the topological 

relations between two line segments, the topological relation 

between Pr2 and Pr4 is formalized as “Meet-Meet-Meet-

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-89-2020 | © Authors 2020. CC BY 4.0 License.

 
93

https://www.roofcostestimator.com/top-15-roof-types-and-their-pros-cons/roof-types-diagram/
https://www.roofcostestimator.com/top-15-roof-types-and-their-pros-cons/roof-types-diagram/
https://www.roofcostestimator.com/top-15-roof-types-and-their-pros-cons/roof-types-diagram/
https://www.roofcostestimator.com/top-15-roof-types-and-their-pros-cons/roof-types-diagram/


 

Overlap”. Similarly, the topological relations among all planar 

segments are identified and formalized as shown in Table 3.  

 

Example Hip roof example Gable roof example 

Input Point 

cloud 

  

Segmentation 

results for  

building roof 

components in 

the presence 

of 

uncertainties 

  

Identification 

of topological 

relations from 

point clouds 

Pr4

Pr3

Pr2

Pr1

 

Pr4
Pr3

Pr2

Pr1

 

Formalized 
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relations 

Pr4

Pr3

Pr2

Pr1

M
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t-
M
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t-
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ap
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t-
M
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Pr2

Pr4Pr3

Pr1

M
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verlap
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verlap
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M
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verlap

-D
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Meet-Meet-Meet-Overlap

Meet-Meet-Meet-Overlap
 

Uncertainties  
Uncertainties in the identification of topological 

relations  

Uncertainties in the identification of topological 

relations 

Table 3 Experiment on the recognition of building roof styles from point clouds with uncertainties 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-89-2020 | © Authors 2020. CC BY 4.0 License.

 
94



 

 

 

 
Figure 2 Extracted intersection line between Pr2 and Pr4, and the 

intersection parts of planar segments and the intersection 

line 

 

 

 
Figure 3 Details of identifying the topological relations between 

intersection parts 

 

In the step of semantic reasoning, the individuals of Pr1, Pr2, Pr3, 

and Pr4 meet completely the conditions of the rule (1) defined in 

Table 2. They are reasoned as the roof components. However, the 

set containing Pr1, Pr2, Pr3, and Pr4 cannot be reasoned as a hip 

roof because the topological relations between them do not 

conform to the conditions related to topological relations in the 

defined rule (2). 

 

Following the step of evaluating the similarities of properties, 

relations related to a given individual and those defined in the 

rules, the similarities vector compared to the rule (2) is calculated 

as S = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.875, 0.875, 

0.875, 0.875, 0.875, 0.875, 0.875, 0.875, 0.875, 0.875, 1, 1, 1, 1). 

The cosine similarities between S and the reference vector is 

calculated as 0.989. We also select several subsets of the planar 

segments to calculate the similarity compared to the rule (3). 

Finally, the subset composed of Pr2 and Pr4 has the highest 

similarity value 0.93 compared to the rule (3). In conclusion, the 

roof composed of planar segments Pr1, Pr2, Pr3, and Pr4 has a 

hip roof style with a similarity value of 0.989. 

 

For the gable roof example, the subset containing Pr1 and Pr2 has 

higher similarity than other subsets, such as Pr1 and Pr3, and Pr1 

and Pr4. The similarity value between the subset composed of 

Pr1 and Pr2 compared to the rule (3) is calculated as 1 because 

the similarity between the identified topological relation “Meet-

Meet-Meet-Cover” and “Meet-Meet-Meet-Equal” defined in the 

rule is 1. In the same way, the subset containing Pr3 and Pr4 has 

a similarity value of 0.999 compared to the rule (3). In conclusion, 

the roof composed of planar segments Pr1 and Pr2 belongs to a 

gable roof with similarity value 1. The roof composed of Pr3 and 

Pr4 also has a gable roof with a similarity value of 0.999.  

 

It is important to note that according to the definitions provided 

in Table 2, roof styles are defined by the connection of roof 

components without being constrained by their dimension. 

Hence, topological relations between roof components play a 

vital role in identifying roof style from point clouds. For example, 

in the case of a hip roof with several hip-and-valley forms, we 

can construct several sets to identify the hip structures using the 

rule for reasoning a standard hip roof. In the experiment, the point 

density has an impact on identifying topological relations and 

estimating the similarities as well. In practice, a high-density 

point cloud provides more details on the intersection line between 

roof components. This will also result in higher similarity value 

for identifying a roof style from point clouds compared to a rule 

defining a specific roof style. 

 

In summary, the information extracted from point clouds could 

be uncertain in the steps of segmentation, the identification of 

topological relations and geometric relations as well as properties.  

Based on the formalized knowledge of a building, the similarities 

evaluation for properties and relations build the connection 

between individuals translated from segments and the predefined 

rules. After comparing the similarities, the cosine distance 

between vectors helps to select the most probable rule for 

reasoning the semantic information of a given individual. From 

the above two examples in the experiment, it showed that the 

proposed solution is effective to reason most likely building roof 

styles from point clouds with uncertainties based on the similarity 

evaluation of properties and relations. 

 

5. CONCLUSION AND PERSPECTIVE 

In this paper, we have proposed a method that leverages from 

both geometric and semantic information for the extraction of 

knowledge from LiDAR point clouds. The method deals with 

different types of uncertainties in data including uncertainties in 

the geometric and topological relations. This information is 

combined with complementary knowledge to extract semantic 

information on building components. The solution is effective in 

extracting semantic information of buildings, for example, roof 

styles, and it has potential for the recognition of other 

components such as walls, windows, and doors from point clouds 

as well. Integrating deep learning methods to make semantic 

reasoning robust in the recognition of varying objects will be 

interesting to explore in the future. 
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