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ABSTRACT: 

 

The article describes the possibilities and advantages of using distributed systems in the processing and analysis of remote sensing 

data. The preparation and processing of various types of remote sensing data (multispectral satellite images, values of climatic 

indicators, elevation data), which will then be used to build a simulation model of a hydroelectric power plant, was chosen as the 

basic task for testing the chosen approach. The existing approaches with distributed processing of spatial data of various types 

(vector cartographic objects, raster data, point clouds, graphs) are analyzed. The description of the developed approach is given and 

the rationale for the choice of its components is made. The preprocessing operations that were performed on the used raster data are 

described. An approach to the problems of raster data segmentation based on libraries for distributed machine learning is considered. 

Comparison of the speed of working with data for various algorithms of machine learning and processing is given. 
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1. INTRODUCTION 

Geospatial and remote sensing data, due to their very large 

volume, variety and speed of updating, are one of the main 

elements of the big data concept.  Traditional approaches use 

the power of computing stations to process data, but at the same 

time they can only scale vertically (which is always costly and 

the capabilities are severely limited by the hardware platform) 

and therefore at some point physically cannot cope with the 

continuous growth of the volume of processed data [7-9].  This 

problem is most often solved with the help of parallel and 

distributed processing technologies, which implement the 

simultaneous processing of each of the parts of the entire data 

set on a separate node and the combination of intermediate 

results into the final one [11–13]. There are many tools for 

parallel and distributed data processing and analysis, but not all 

of them consider the peculiarities and have the ability to process 

geospatial data. 

 

The problems facing the authors of the article of predicting 

spread of tropical diseases, building simulation models of 

hydroelectric power plants, building databases of natural 

resource potential require the processing of large volumes of 

constantly updated remote sensing data on the territory of 

individual regions and countries in general.  Thus, the aim of 

the study was to build a pipeline for the formation of sets of 

spatio-temporal indicators for building mathematical models of 

these objects and processes and predicting their behavior.  

Today, it is possible to build a distributed storage and 

processing system using several open-source solutions. So, to 

do this, it was necessary to analyze the existing open-source 

software for distributed processing of spatial data, determine 

their features, advantages, disadvantages, and evaluate the 

effectiveness of their application on certain datasets.  

 

2. METHODS AND MATERIALS 

 

Today's distributed processing models not only use mechanisms 

to achieve optimal load balancing, but also provide seamless 

connectivity between data sources (Panidi and Rykin, 2020). 

Also, one of the key principles of the most popular distributed 

processing systems is the maximum encapsulation of internal 

mechanisms so that users do not need to think about the 

nuances of parallel processing when developing programs 

(Barik et al., 2020). 

 

The increasing importance of spatial data leads to the fact that 

the developers of many distributed computing platforms 

(Hadoop, Hive, Impala, Spark) extend functionality to handle 

large-scale spatial data (Venugopal, 2013).  Also, at the 

moment, solutions for streaming spatial data processing are 

considered as a separate category (Salman et al., 2020). 

Generally, analyzing the existing directions of using systems 

and algorithms for distributed processing for spatial data, the 

following can be distinguished: 

- execution of spatial and attribute queries; 

- transformation and processing of vector data; 

- transformation and processing of raster data; 

- conversion and processing of point clouds; 

- building indexes for search; 

- solving logistic problems; 

- generalization for visual display; 

- construction of mathematical models. 

 

Execution of spatial and attribute queries implies both the 

execution of basic queries to search for objects by criteria, as 

well as a more complex analysis of the spatial relationship of 

objects. These operations are computationally complex because 

the search time by criteria increases exponentially with the 

number of objects, especially if the spatial join operation is 
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present in the selection conditions, which is one of the most 

computationally complex (Yu et al., 2019). 

 

Operations of modifying vector spatial objects belong to the 

category of quite simply parallelizable, since processing is 

carried out for individual objects (even if the original vector 

object is very large, it is easy to divide it into components). In 

this case, the only difficulty will be the need to keep track of the 

topology in relation to neighboring features (Eldawy and 

Mokbel, 2015).  In general, this process usually consists of 

three sub-processes: partitioning the entire data set, performing 

calculations on each of the clusters, combining and refining the 

results. While processing spatial data, it should be considered 

that the traditional implementation of the second subprocess in 

distributed systems in the form of dividing data into identical 

blocks (for example, into a certain number of records in a table 

or words in a text) is not always suitable, since such data 

context as geographic location may be lost. and spatial 

relationships. For this, there are several approaches to preparing 

data for optimal distributed processing: the use of polygonal 

regions (Mohan et al. 2011), multilevel graph and tree 

structures (Andrzejewski and Boinski, 2018; Sierra and 

Stephens, 2012), regular grids (Sainju et al. , 2018). When 

choosing the type of division and its parameters, they rely on 

the density of distribution of objects in space, the maximum 

number of division blocks, the possibility and amount of spatial 

overlap (Yoo et al., 2020). From the point of view of 

implementation examples, one can consider, for example, the 

definition of spatial association patterns, optimization of spatial 

queries based on kNN (k-Nearest Neighbor) using MapReduce 

(Liu t al., 2013; Yoo et al., 2020).  More complex is the 

processing of spatial data presented in the form of 

heterogeneous models (raster, vector, tabular, etc.), which may 

also have a temporal component (Werner, 2019). In the case of 

distributed processing of traditional data, there are usually no 

problems with the consistency of the final results, but in the 

case of spatial data, additional operations for correcting the 

topological structure and semantic coordination of the created 

and modified objects may be required. 

 

Unlike operations with vector objects, processing and editing of 

raster data is much easier to parallelize due to their localization 

during processing. Most operations process one or more pixels 

located close to each other, which makes these calculations as 

easy as possible to parallelize with little or no need to solve the 

problems of mutual matching of data blocks (Boudriki et al., 

2019; Sharma et al., 2017; Sharma et al., 2020). 

 

Reducing the cost of light detection and ranging (LiDAR) data, 

as well as unmanned aerial vehicle (UAV) data, allows to 

quickly obtain point clouds for large areas of both open areas 

and indoor areas. But as a result, the problem arises of 

processing all these data sets in terms of storage and 

computational complexity. Typical point cloud processing 

usually involves a number of processes such as point 

classification, semantic segmentation, ground planes extraction, 

and feature registration that require complex spatial algorithms 

(Armstrong, 2014; Venugopal and Kannan, 2013). The 

organization of parallel processing of this type of spatial data is 

facilitated by the fact that the most common storage formats are 

initially focused on a tiled structure, but it requires 

improvement in terms of creating an additional spatial index for 

distributed storage (Li et al., 2017). 

 

Existing indexes designed to speed up the processing of spatial 

queries based on tree structures of various types or regular 

grids. However, efficient use of these indexes in parallel 

processing and storage systems is challenging given the 

different architectures used in each of them, as well as when 

solving problems with streaming spatial data (Eldawy and 

Mokbel, 2016). For most cases, the approach is to split a 

common index into a global index and multiple local indexes 

distributed across clusters. 

 

Logistic problems are usually solved by applying graph search 

algorithms. The distributed approach in this case is usually 

focused on dividing the entire graph into separate clusters based 

on an adjacency list of edges. 

 

Traditional methods of visualization in geographic information 

systems are designed to use one computer for processing and 

further visualization of data, which makes them unsuitable for 

graphical representation of large volumes of spatial data.  

Existing algorithms and technologies using graphic processors 

can significantly speed up rendering processes, but they are still 

limited by the resources of one computer (there are technologies 

for parallel processing of three-dimensional images on several 

video cards installed in one computer, but they are usually 

limited to 2-3 instances) and cannot scale to a cluster.  Existing 

distributed rendering solutions fall into two categories based on 

the structure of the image being created: siblings and layered 

images. In sibling images, the generated raster consists of one 

data block, which renders the area with a given scale. In 

multidimensional images, the generated raster consists of a set 

of image blocks, each of which is a separate scale level 

(pyramids). Also, each scale, in turn, can be divided into blocks 

(tiles), allowing users to arbitrarily change the scale and 

viewpoint (Eldawy and Mokbel, 2016). 

 

It should also be mentioned that in works related to parallel and 

distributed processing of spatial data, much attention is paid to 

the implementation in general and the peculiarities of using 

algorithms on Graphics Processing Units (GPUs) (Andrzejewski 

and Boinski, 2018; Sainju et al., 2018).   

 

The research methodology consists in comparing the processing 

speed of various remote sensing data for the same territory 

using the traditional approach and distributed processing 

technologies (Çatak and Balaban, 2013; Lv et al., 2010).  In the 

case of distributed processing, options are additionally 

considered with a different number of nodes and for different 

stages of data processing. Data processing stages in this case 

mean the calculation of indices based on spatial channels, 

terrain characteristics based on elevation data (aspect, slope, 

curvature), feature engineering for satellite images using 

dimensionality reduction algorithms (PCA, SVD), down- and 

up sampling raster images. Additionally, the speed of building 

distributed machine learning models was estimated, which are 

focused on the subsequent semantic segmentation of satellite 

data. The highlighted classes will be hydrographic objects, 

woodlands and road network. 

 

Based on this goal, the general pipeline was divided into 

elements responsible for receiving, preprocessing, performing 

the necessary calculations, generating results based on machine 

learning models and visualizing them in the form of maps and 

diagrams. 

 

The territories for which datasets were formed from remote 

sensing data and vector cartographic base to the territory of 

Asian Russia (parts of Novosibirsk, Irkutsk, Tomsk, 

Khabarovsk regions) with a total area of approximately 
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1,700,000 square kilometers. Also, to compare the results of 

processing satellite images with the constructed machine 

learning models, data were taken on the territory of the 

Republic of the Philippines, Republic of Tajikistan with a total 

area of about 200,000 square kilometers.  These regions were 

selected because further research on geospatial modeling of 

natural processes is expected there (all data collection regions 

are shown in Figure 1). 

 

 
 

Figure 1. Data collection regions. 

 

The initial data for processing were raster data sets from the 

Landsat-8, Sentinel-2 and MODIS satellites, the values of 

meteorological indicators (precipitation intensity, surface 

temperature) of the World Meteorological Organization, 

elevation data Alos Palsar, parameters of the Copernicus snow 

cover (spatial resolution and categories of data sources are 

presented in Table 1). It is worth noting the variety of source 

data formats in the form of TIFF, Network Common DataForm 

(NetCDF), Hierarchical Data Format (HDF5), ESRI Shape, 

BUFR files. For the study, data were taken from 2014 to 2020. 

 

Category Source 
Resolution 

(meters) 

Multispectral satellite 

data 

LandSat-8 

Sentinel-2 

30 

20 

Snow cover area MODIS 

MOD10A1 

500 

Snow-water equivalent Copernicus 

Snow Water 

Equivalent 

5000 

Rain intensity GPM DPR 5000 

Elevation data Alos Palsar 

Sentinel-1 

12.5 

20 

Table 1. Data sources. 

 

If we talk about the data processing algorithm in general, then 

in this work it is implemented according to the ETL principle. 

ETL (extract, transform, load) includes extracting data from the 

described sources, the necessary transformation operations, and 

finally loading into the file system or HDFS. HDFS (Hadoop 

Distributed File System) was used because it is an integral part 

of Hadoop and the foundation of big data infrastructure. This 

method is expedient in this case because the initial data are 

heterogeneous, and it is necessary to apply a lot of 

transformations to them in order to obtain a single geospace. 

Data acquisition and processing was implemented based on the 

combination of Apache Airflow and Apache NiFi functions. 

The first software is open-source and initially focused on 

distributed data processing and allows to develop, plan and 

monitor ETL / ELT processes. The second software is also 

open-source and is used for routing and transforming data 

streams, not in terms of scheduling jobs, but to collect data from 

multiple sources and perform separate steps to process that data.  

It should also be noted that all parallel processing was 

performed for small blocks of source images. The base block 

size was 250 by 250 pixels of the most accurate satellite source 

(in this case, it was Sentinel-2). This size was taken since 

pretrained neural networks (in particular U-Net and 

DeepLabv3) were supposed to be used as one of the semantic 

segmentation methods, where often the size of the input batch is 

just a 250 by 250 elements matrix. 

 

Apache Spark software was used to perform calculations on the 

generated blocks. It is a computing system for parallel data 

processing on clusters of computers (Hegeman et al., 2018). 

Unlike the classic Apache Hadoop kernel engine with a two-tier 

MapReduce concept based on disk storage, Spark uses 

specialized primitives for recurrent in-memory processing. This 

makes many computational tasks much faster using Spark.  At 

the moment, Spark is considered the most actively developed 

open-source tool for solving such problems. Spark supports 

libraries for tasks ranging from SQL to streaming to machine 

learning (Spark ML was used in this work). 

 

In addition to directly obtaining all of the above data, it was 

also required to perform preprocessing operations. Most of 

these operations related to raster algebra – NDVI and MNDWI 

indices, terrain characteristics in the form of aspect, slope, 

curvature and converting raster data blocks to a single 

resolution. NDVI (Normalized Difference Vegetation Index) - a 

simple quantitative indicator of the amount of 

photosynthetically active biomass, calculated from the values in 

the red and infrared spectrum. MNDWI (Modified Normalized 

Difference Water Index) using 3 and 6 channels of Landsat 8 

and is currently the most common index for identifying surface 

water objects in satellite imagery.  

 

Thus, the resulting dataset for each pixel of the raster consists of 

the initial values for spectral channels, additional climatic 

parameters, previously described indices, values of surface 

heights and their characteristics. This set of raster values has 

been expanded to include calculated values using the PCA 

dimensionality reduction algorithm. PCA (Principal 

Components Analysis) calculates principal components based 

on eigenvectors and the values of the covariance matrix of the 

original data or the singular value decomposition of the data 

matrix. 

 

After preliminary processing, individual areas of the territories 

were marked (types of land use, number of cases of infection, 

water surface area, etc.) to form machine learning models. The 

generated models were further used to process the entire data 

set.  

 

When choosing software, we focused on the ability to work 

based on distributed storage and computing technologies, the 

map-reduce paradigm, etc. 
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When choosing machine learning algorithms for semantic 

segmentation of the obtained datasets, the authors focused on 

those implementations that support distributed learning. In 

general, distributed machine learning is divided into two 

groups: distributed models and distributed data. In the first case, 

a complex model is distributed among the cluster nodes in order 

to perform calculations on new data in parallel.  For example, in 

the case of a neural network, layers can be stored separately by 

nodes in order to quickly train the layer's neurons on a specific 

node and transmit further, and in the case of a random forest, 

each tree will be trained and perform predictions on a separate 

node, in parallel with other trees. In the second case, a separate 

orchestrator server is allocated in the system architecture, which 

manages the learning process. Based on the specified 

parameters, it determines the initial model and delegates to each 

of the cluster nodes. Each node operates on only one of the 

blocks of the entire data array, on which it trains the given 

model. Upon completion of the training process, the nodes send 

the results to the orchestrator server, which aggregates the 

weights of all received models. This process can be performed 

iteratively with an indication of stopping in case of exhaustion 

of the specified number of training repetitions, or upon reaching 

the specified accuracy. For the experiments, we took Naïve 

Bayes, Decision Tree, Random Forest from the Spark ML 

extension. This library is focused on making it easier to create 

and use scalable machine learning models and implements a 

distributed data learning option. Since the authors have 

experience using PyTorch for processing satellite images, the 

Deep Speed module was used for scaling. Spark ML also 

supports distributed model of deep learning, but virtually all are 

focused on the implementation of Tensorflow. 

 

As a measure of the complexity and comparison of the 

described implementations, both in data processing and in the 

construction of machine learning models, the execution time of 

computations for the same data block was evaluated. For 

computations using Docker, virtual nodes were formed with 

configurations in the form of 2G RAM, 20GB external memory, 

2GHz computing processor. To assess the influence of the 

number of elements on the processing speed, clusters were 

formed, consisting of 1, 3, 6, 8 nodes. 

 

To evaluate the results of segmentation of the used raster data, 

the standard metric Dice (F1-Measure) was chosen, which 

implements asymmetric measures of similarity, reflecting the 

degree of proximity of one object to another. 

 

The results were additionally visualized to assess the quality 

and interpretation of the models. 

 

3. RESULTS AND DISCUSSIONS 

Among the open-source platforms for distributed storage, there 

is practically no alternative to Apache Hadoop, which has been 

used. Apache AirFlow was used to build pipelines for loading 

the initial data. The preprocessing operations (raster algebra) 

were implemented through RasterFrames and its SuperSet 

extension, using Apache Spark mechanisms.  

 

After studying existing solutions and performing trial 

processing experiments, the final pipeline was formed (Figure 

2). 

 

 
Figure 2. Processing Pipeline. 

 

Figure 3 shows examples of the results of processing the initial 

data when calculating indices and the characteristics of the 

relief. The lower right image shows an example of semantic data 

segmentation for vegetation classes, hydrography, road network 

based on a model created using the Random Forest algorithm. 

 

   
Natural color NDVI MNDWI 

   
Aspect Slope Land use (random 

forest model) 

Figure 3. Ground-truth and forecasting water surface 

boundaries. 

 

Machine learning models were generated in Apache Airflow 

using an ensemble of the results of the Spark ML and PyTorch 

algorithms. As part of the study, the HadoopViz and SuperSet 

software packages were used to visualize the intermediate and 

final results. From the point of view of hydrological modeling, 

after segmenting the remote sensing data, a stand-alone model 

was built that predicts the water surface area based on time 

intervals for the entire time period under consideration. The 

result of the model's operation is the area of the water surface 

and its geometry in a separate section (Figure 4 shows a 

comparison of the real contours of the river section at different 

points in time and the constructed forecast). 
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Figure 4. Ground-truth and forecasting water surface 

boundaries 

 

All the selected tools showed performance gains in the 

processing of remote sensing data and semantic segmentation of 

objects on satellite images using machine learning methods. 

These initial data will later be used in the construction of spatio-

temporal models of hydrological objects. Figure 5 shows a 

relative comparison of the execution time of individual 

processes in single and parallel versions on the same dataset. 

The time of processing (or training) at only one node was taken 

as a unit. 

 

 
 

Figure 5. Diagram of relative comparison of the speed of 

execution of operations for the entire array of information 

 

Analyzing the results, we can say that the existing tools for 

parallel and distributed data processing allow you to build a full 

cycle of processing heterogeneous spatial data, including for 

spatial analysis and machine learning. But it takes a significant 

amount of time to coordinate all the components and select the 

processing parameters (affecting the accuracy of the obtained 

forecast results). It should also be noted that there are 

practically no (or are outdated) tools for integration with the 

most popular open-source desktop geographic information 

systems.  

 

During the experiments, it was noted that the computational 

performance of the system increases with an increase in the 

number of processing nodes, but at the same time, an increase in 

the number of nodes led to an increase in the time spent on data 

transfer, so it is important to maintain a balance between 

computing performance and the number of nodes. 

 

It should also be noted that many algorithms for distributed 

spatial computing do not always have a reliable and multisystem 

implementation, which makes it difficult to reliably compare 

different approaches from a practical point of view. 
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