
USING SYSTEMS OF PARALLEL AND DISTRIBUTED DATA PROCESSING TO BUILD

HYDROLOGICAL MODELS BASED ON REMOTE SENSING DATA

A. A. Kolesnikov 1 *, P.M. Kikin 2, E.A. Panidi 2, A.G. Rusina 3

1 Siberian State University of Geosystems and Technologies, Novosibirsk, Russian Federation - alexeykw@yandex.ru

2 Dept. of Geomatic Engineering, Saint Petersburg State University, St.Petersburg, Russian Federation - it-technologies@yandex.ru,

panidi@ya.ru
3 Novosibirsk State Technical University, Novosibirsk, Russian Federation - rusina@corp.nstu.ru

KEY WORDS: Distributed DBMS, Distributed Processing, Remote Sensing, Raster Data, Climatic Data.

ABSTRACT:

The article describes the possibilities and advantages of using distributed systems in the processing and analysis of remote sensing

data. The preparation and processing of various types of remote sensing data (multispectral satellite images, values of climatic

indicators, elevation data), which will then be used to build a simulation model of a hydroelectric power plant, was chosen as the

basic task for testing the chosen approach. The existing approaches with distributed processing of spatial data of various types

(vector cartographic objects, raster data, point clouds, graphs) are analyzed. The description of the developed approach is given and

the rationale for the choice of its components is made. The preprocessing operations that were performed on the used raster data are

described. An approach to the problems of raster data segmentation based on libraries for distributed machine learning is considered.

Comparison of the speed of working with data for various algorithms of machine learning and processing is given.

* Corresponding author

1. INTRODUCTION

Geospatial and remote sensing data, due to their very large

volume, variety and speed of updating, are one of the main

elements of the big data concept. Traditional approaches use

the power of computing stations to process data, but at the same

time they can only scale vertically (which is always costly and

the capabilities are severely limited by the hardware platform)

and therefore at some point physically cannot cope with the

continuous growth of the volume of processed data [7-9]. This

problem is most often solved with the help of parallel and

distributed processing technologies, which implement the

simultaneous processing of each of the parts of the entire data

set on a separate node and the combination of intermediate

results into the final one [11–13]. There are many tools for

parallel and distributed data processing and analysis, but not all

of them consider the peculiarities and have the ability to process

geospatial data.

The problems facing the authors of the article of predicting

spread of tropical diseases, building simulation models of

hydroelectric power plants, building databases of natural

resource potential require the processing of large volumes of

constantly updated remote sensing data on the territory of

individual regions and countries in general. Thus, the aim of

the study was to build a pipeline for the formation of sets of

spatio-temporal indicators for building mathematical models of

these objects and processes and predicting their behavior.

Today, it is possible to build a distributed storage and

processing system using several open-source solutions. So, to

do this, it was necessary to analyze the existing open-source

software for distributed processing of spatial data, determine

their features, advantages, disadvantages, and evaluate the

effectiveness of their application on certain datasets.

2. METHODS AND MATERIALS

Today's distributed processing models not only use mechanisms

to achieve optimal load balancing, but also provide seamless

connectivity between data sources (Panidi and Rykin, 2020).

Also, one of the key principles of the most popular distributed

processing systems is the maximum encapsulation of internal

mechanisms so that users do not need to think about the

nuances of parallel processing when developing programs

(Barik et al., 2020).

The increasing importance of spatial data leads to the fact that

the developers of many distributed computing platforms

(Hadoop, Hive, Impala, Spark) extend functionality to handle

large-scale spatial data (Venugopal, 2013). Also, at the

moment, solutions for streaming spatial data processing are

considered as a separate category (Salman et al., 2020).

Generally, analyzing the existing directions of using systems

and algorithms for distributed processing for spatial data, the

following can be distinguished:

- execution of spatial and attribute queries;

- transformation and processing of vector data;

- transformation and processing of raster data;

- conversion and processing of point clouds;

- building indexes for search;

- solving logistic problems;

- generalization for visual display;

- construction of mathematical models.

Execution of spatial and attribute queries implies both the

execution of basic queries to search for objects by criteria, as

well as a more complex analysis of the spatial relationship of

objects. These operations are computationally complex because

the search time by criteria increases exponentially with the

number of objects, especially if the spatial join operation is

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2021
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-111-2021 | © Author(s) 2021. CC BY 4.0 License.

111

present in the selection conditions, which is one of the most

computationally complex (Yu et al., 2019).

Operations of modifying vector spatial objects belong to the

category of quite simply parallelizable, since processing is

carried out for individual objects (even if the original vector

object is very large, it is easy to divide it into components). In

this case, the only difficulty will be the need to keep track of the

topology in relation to neighboring features (Eldawy and

Mokbel, 2015). In general, this process usually consists of

three sub-processes: partitioning the entire data set, performing

calculations on each of the clusters, combining and refining the

results. While processing spatial data, it should be considered

that the traditional implementation of the second subprocess in

distributed systems in the form of dividing data into identical

blocks (for example, into a certain number of records in a table

or words in a text) is not always suitable, since such data

context as geographic location may be lost. and spatial

relationships. For this, there are several approaches to preparing

data for optimal distributed processing: the use of polygonal

regions (Mohan et al. 2011), multilevel graph and tree

structures (Andrzejewski and Boinski, 2018; Sierra and

Stephens, 2012), regular grids (Sainju et al. , 2018). When

choosing the type of division and its parameters, they rely on

the density of distribution of objects in space, the maximum

number of division blocks, the possibility and amount of spatial

overlap (Yoo et al., 2020). From the point of view of

implementation examples, one can consider, for example, the

definition of spatial association patterns, optimization of spatial

queries based on kNN (k-Nearest Neighbor) using MapReduce

(Liu t al., 2013; Yoo et al., 2020). More complex is the

processing of spatial data presented in the form of

heterogeneous models (raster, vector, tabular, etc.), which may

also have a temporal component (Werner, 2019). In the case of

distributed processing of traditional data, there are usually no

problems with the consistency of the final results, but in the

case of spatial data, additional operations for correcting the

topological structure and semantic coordination of the created

and modified objects may be required.

Unlike operations with vector objects, processing and editing of

raster data is much easier to parallelize due to their localization

during processing. Most operations process one or more pixels

located close to each other, which makes these calculations as

easy as possible to parallelize with little or no need to solve the

problems of mutual matching of data blocks (Boudriki et al.,

2019; Sharma et al., 2017; Sharma et al., 2020).

Reducing the cost of light detection and ranging (LiDAR) data,

as well as unmanned aerial vehicle (UAV) data, allows to

quickly obtain point clouds for large areas of both open areas

and indoor areas. But as a result, the problem arises of

processing all these data sets in terms of storage and

computational complexity. Typical point cloud processing

usually involves a number of processes such as point

classification, semantic segmentation, ground planes extraction,

and feature registration that require complex spatial algorithms

(Armstrong, 2014; Venugopal and Kannan, 2013). The

organization of parallel processing of this type of spatial data is

facilitated by the fact that the most common storage formats are

initially focused on a tiled structure, but it requires

improvement in terms of creating an additional spatial index for

distributed storage (Li et al., 2017).

Existing indexes designed to speed up the processing of spatial

queries based on tree structures of various types or regular

grids. However, efficient use of these indexes in parallel

processing and storage systems is challenging given the

different architectures used in each of them, as well as when

solving problems with streaming spatial data (Eldawy and

Mokbel, 2016). For most cases, the approach is to split a

common index into a global index and multiple local indexes

distributed across clusters.

Logistic problems are usually solved by applying graph search

algorithms. The distributed approach in this case is usually

focused on dividing the entire graph into separate clusters based

on an adjacency list of edges.

Traditional methods of visualization in geographic information

systems are designed to use one computer for processing and

further visualization of data, which makes them unsuitable for

graphical representation of large volumes of spatial data.

Existing algorithms and technologies using graphic processors

can significantly speed up rendering processes, but they are still

limited by the resources of one computer (there are technologies

for parallel processing of three-dimensional images on several

video cards installed in one computer, but they are usually

limited to 2-3 instances) and cannot scale to a cluster. Existing

distributed rendering solutions fall into two categories based on

the structure of the image being created: siblings and layered

images. In sibling images, the generated raster consists of one

data block, which renders the area with a given scale. In

multidimensional images, the generated raster consists of a set

of image blocks, each of which is a separate scale level

(pyramids). Also, each scale, in turn, can be divided into blocks

(tiles), allowing users to arbitrarily change the scale and

viewpoint (Eldawy and Mokbel, 2016).

It should also be mentioned that in works related to parallel and

distributed processing of spatial data, much attention is paid to

the implementation in general and the peculiarities of using

algorithms on Graphics Processing Units (GPUs) (Andrzejewski

and Boinski, 2018; Sainju et al., 2018).

The research methodology consists in comparing the processing

speed of various remote sensing data for the same territory

using the traditional approach and distributed processing

technologies (Çatak and Balaban, 2013; Lv et al., 2010). In the

case of distributed processing, options are additionally

considered with a different number of nodes and for different

stages of data processing. Data processing stages in this case

mean the calculation of indices based on spatial channels,

terrain characteristics based on elevation data (aspect, slope,

curvature), feature engineering for satellite images using

dimensionality reduction algorithms (PCA, SVD), down- and

up sampling raster images. Additionally, the speed of building

distributed machine learning models was estimated, which are

focused on the subsequent semantic segmentation of satellite

data. The highlighted classes will be hydrographic objects,

woodlands and road network.

Based on this goal, the general pipeline was divided into

elements responsible for receiving, preprocessing, performing

the necessary calculations, generating results based on machine

learning models and visualizing them in the form of maps and

diagrams.

The territories for which datasets were formed from remote

sensing data and vector cartographic base to the territory of

Asian Russia (parts of Novosibirsk, Irkutsk, Tomsk,

Khabarovsk regions) with a total area of approximately

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2021
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-111-2021 | © Author(s) 2021. CC BY 4.0 License.

112

1,700,000 square kilometers. Also, to compare the results of

processing satellite images with the constructed machine

learning models, data were taken on the territory of the

Republic of the Philippines, Republic of Tajikistan with a total

area of about 200,000 square kilometers. These regions were

selected because further research on geospatial modeling of

natural processes is expected there (all data collection regions

are shown in Figure 1).

Figure 1. Data collection regions.

The initial data for processing were raster data sets from the

Landsat-8, Sentinel-2 and MODIS satellites, the values of

meteorological indicators (precipitation intensity, surface

temperature) of the World Meteorological Organization,

elevation data Alos Palsar, parameters of the Copernicus snow

cover (spatial resolution and categories of data sources are

presented in Table 1). It is worth noting the variety of source

data formats in the form of TIFF, Network Common DataForm

(NetCDF), Hierarchical Data Format (HDF5), ESRI Shape,

BUFR files. For the study, data were taken from 2014 to 2020.

Category Source
Resolution

(meters)

Multispectral satellite

data

LandSat-8

Sentinel-2

30

20

Snow cover area MODIS

MOD10A1

500

Snow-water equivalent Copernicus

Snow Water

Equivalent

5000

Rain intensity GPM DPR 5000

Elevation data Alos Palsar

Sentinel-1

12.5

20

Table 1. Data sources.

If we talk about the data processing algorithm in general, then

in this work it is implemented according to the ETL principle.

ETL (extract, transform, load) includes extracting data from the

described sources, the necessary transformation operations, and

finally loading into the file system or HDFS. HDFS (Hadoop

Distributed File System) was used because it is an integral part

of Hadoop and the foundation of big data infrastructure. This

method is expedient in this case because the initial data are

heterogeneous, and it is necessary to apply a lot of

transformations to them in order to obtain a single geospace.

Data acquisition and processing was implemented based on the

combination of Apache Airflow and Apache NiFi functions.

The first software is open-source and initially focused on

distributed data processing and allows to develop, plan and

monitor ETL / ELT processes. The second software is also

open-source and is used for routing and transforming data

streams, not in terms of scheduling jobs, but to collect data from

multiple sources and perform separate steps to process that data.

It should also be noted that all parallel processing was

performed for small blocks of source images. The base block

size was 250 by 250 pixels of the most accurate satellite source

(in this case, it was Sentinel-2). This size was taken since

pretrained neural networks (in particular U-Net and

DeepLabv3) were supposed to be used as one of the semantic

segmentation methods, where often the size of the input batch is

just a 250 by 250 elements matrix.

Apache Spark software was used to perform calculations on the

generated blocks. It is a computing system for parallel data

processing on clusters of computers (Hegeman et al., 2018).

Unlike the classic Apache Hadoop kernel engine with a two-tier

MapReduce concept based on disk storage, Spark uses

specialized primitives for recurrent in-memory processing. This

makes many computational tasks much faster using Spark. At

the moment, Spark is considered the most actively developed

open-source tool for solving such problems. Spark supports

libraries for tasks ranging from SQL to streaming to machine

learning (Spark ML was used in this work).

In addition to directly obtaining all of the above data, it was

also required to perform preprocessing operations. Most of

these operations related to raster algebra – NDVI and MNDWI

indices, terrain characteristics in the form of aspect, slope,

curvature and converting raster data blocks to a single

resolution. NDVI (Normalized Difference Vegetation Index) - a

simple quantitative indicator of the amount of

photosynthetically active biomass, calculated from the values in

the red and infrared spectrum. MNDWI (Modified Normalized

Difference Water Index) using 3 and 6 channels of Landsat 8

and is currently the most common index for identifying surface

water objects in satellite imagery.

Thus, the resulting dataset for each pixel of the raster consists of

the initial values for spectral channels, additional climatic

parameters, previously described indices, values of surface

heights and their characteristics. This set of raster values has

been expanded to include calculated values using the PCA

dimensionality reduction algorithm. PCA (Principal

Components Analysis) calculates principal components based

on eigenvectors and the values of the covariance matrix of the

original data or the singular value decomposition of the data

matrix.

After preliminary processing, individual areas of the territories

were marked (types of land use, number of cases of infection,

water surface area, etc.) to form machine learning models. The

generated models were further used to process the entire data

set.

When choosing software, we focused on the ability to work

based on distributed storage and computing technologies, the

map-reduce paradigm, etc.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2021
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-111-2021 | © Author(s) 2021. CC BY 4.0 License.

113

When choosing machine learning algorithms for semantic

segmentation of the obtained datasets, the authors focused on

those implementations that support distributed learning. In

general, distributed machine learning is divided into two

groups: distributed models and distributed data. In the first case,

a complex model is distributed among the cluster nodes in order

to perform calculations on new data in parallel. For example, in

the case of a neural network, layers can be stored separately by

nodes in order to quickly train the layer's neurons on a specific

node and transmit further, and in the case of a random forest,

each tree will be trained and perform predictions on a separate

node, in parallel with other trees. In the second case, a separate

orchestrator server is allocated in the system architecture, which

manages the learning process. Based on the specified

parameters, it determines the initial model and delegates to each

of the cluster nodes. Each node operates on only one of the

blocks of the entire data array, on which it trains the given

model. Upon completion of the training process, the nodes send

the results to the orchestrator server, which aggregates the

weights of all received models. This process can be performed

iteratively with an indication of stopping in case of exhaustion

of the specified number of training repetitions, or upon reaching

the specified accuracy. For the experiments, we took Naïve

Bayes, Decision Tree, Random Forest from the Spark ML

extension. This library is focused on making it easier to create

and use scalable machine learning models and implements a

distributed data learning option. Since the authors have

experience using PyTorch for processing satellite images, the

Deep Speed module was used for scaling. Spark ML also

supports distributed model of deep learning, but virtually all are

focused on the implementation of Tensorflow.

As a measure of the complexity and comparison of the

described implementations, both in data processing and in the

construction of machine learning models, the execution time of

computations for the same data block was evaluated. For

computations using Docker, virtual nodes were formed with

configurations in the form of 2G RAM, 20GB external memory,

2GHz computing processor. To assess the influence of the

number of elements on the processing speed, clusters were

formed, consisting of 1, 3, 6, 8 nodes.

To evaluate the results of segmentation of the used raster data,

the standard metric Dice (F1-Measure) was chosen, which

implements asymmetric measures of similarity, reflecting the

degree of proximity of one object to another.

The results were additionally visualized to assess the quality

and interpretation of the models.

3. RESULTS AND DISCUSSIONS

Among the open-source platforms for distributed storage, there

is practically no alternative to Apache Hadoop, which has been

used. Apache AirFlow was used to build pipelines for loading

the initial data. The preprocessing operations (raster algebra)

were implemented through RasterFrames and its SuperSet

extension, using Apache Spark mechanisms.

After studying existing solutions and performing trial

processing experiments, the final pipeline was formed (Figure

2).

Figure 2. Processing Pipeline.

Figure 3 shows examples of the results of processing the initial

data when calculating indices and the characteristics of the

relief. The lower right image shows an example of semantic data

segmentation for vegetation classes, hydrography, road network

based on a model created using the Random Forest algorithm.

Natural color NDVI MNDWI

Aspect Slope Land use (random

forest model)

Figure 3. Ground-truth and forecasting water surface

boundaries.

Machine learning models were generated in Apache Airflow

using an ensemble of the results of the Spark ML and PyTorch

algorithms. As part of the study, the HadoopViz and SuperSet

software packages were used to visualize the intermediate and

final results. From the point of view of hydrological modeling,

after segmenting the remote sensing data, a stand-alone model

was built that predicts the water surface area based on time

intervals for the entire time period under consideration. The

result of the model's operation is the area of the water surface

and its geometry in a separate section (Figure 4 shows a

comparison of the real contours of the river section at different

points in time and the constructed forecast).

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2021
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-111-2021 | © Author(s) 2021. CC BY 4.0 License.

114

Figure 4. Ground-truth and forecasting water surface

boundaries

All the selected tools showed performance gains in the

processing of remote sensing data and semantic segmentation of

objects on satellite images using machine learning methods.

These initial data will later be used in the construction of spatio-

temporal models of hydrological objects. Figure 5 shows a

relative comparison of the execution time of individual

processes in single and parallel versions on the same dataset.

The time of processing (or training) at only one node was taken

as a unit.

Figure 5. Diagram of relative comparison of the speed of

execution of operations for the entire array of information

Analyzing the results, we can say that the existing tools for

parallel and distributed data processing allow you to build a full

cycle of processing heterogeneous spatial data, including for

spatial analysis and machine learning. But it takes a significant

amount of time to coordinate all the components and select the

processing parameters (affecting the accuracy of the obtained

forecast results). It should also be noted that there are

practically no (or are outdated) tools for integration with the

most popular open-source desktop geographic information

systems.

During the experiments, it was noted that the computational

performance of the system increases with an increase in the

number of processing nodes, but at the same time, an increase in

the number of nodes led to an increase in the time spent on data

transfer, so it is important to maintain a balance between

computing performance and the number of nodes.

It should also be noted that many algorithms for distributed

spatial computing do not always have a reliable and multisystem

implementation, which makes it difficult to reliably compare

different approaches from a practical point of view.

ACKNOWLEDGEMENTS

The article was prepared within the grant for carrying out major

scientific projects in priority areas of scientific and

technological development under the subprogram "Fundamental

scientific research for the long-term development and ensuring

the competitiveness of society and the state" of the state

program of the Russian Federation "Scientific and technological

development of the Russian Federation," project "Social and

economic development of Asian Russia on the basis of synergy

of transport accessibility, system knowledge of natural resource

potential, and expanding area of interregional interactions",

agreement with the Ministry of Science and Higher Education

of the Russian Federation № 075-15-2020-804 (internal number

13.1902.21.0016).

REFERENCES

Andrzejewski W, Boinski P (2018) Efficient spatial co-location

pattern mining on multiple GPUs. Expert Syst Appl 93(C):465–

483

Armstrong, M. P., 2014. Distributed LiDAR data processing in

a high-memory cloud-computing environment. Annals of GIS,

20(4), 255-264.

Barik, R. K., Priyadarshini, R., Lenka, R. K., Dubey, H., &

Mankodiya, K., 2020: Fog Computing Architecture for Scalable

Processing of Geospatial Big Data. International Journal of

Applied Geospatial Research (IJAGR), 11(1), 1-20.

doi.org/10.4018/IJAGR.2020010101

Boudriki S. B., El Amrani C., Ortiz G., 2019: Adopting the

Hadoop Architecture to Process Satellite Pollution Big Data.

International Journal of Technology and Engineering Studies.

5. doi.org/10.20469/ijtes.5.40001-2.

Çatak, F. Ö. and M. E. Balaban, 2013. A MapReduce based

distributed SVM algorithm for binary classification. Turkish

Journal of Electrical Engineering & Computer Science.

Eldawy A., Mokbel M. F., 2015: Spatial Hadoop: a map reduce

framework for spatial data. IEEE 31st International Conference

on Data Engineering, 1352–1363.

doi.org/10.1109/ICDE.2015.7113382

Eldawy, Ahmed & Mokbel, Mohamed. (2016). The Era of Big

Spatial Data: A Survey. Foundations and Trends in Databases.

6. 163-273. 10.1561/1900000054.

Hegeman, J. W., Sardeshmukh, V. B., Sugumaran, R., &

Lan H., Zheng X., Torrens P. M., 2018: Spark Sensing: A

Cloud Computing Framework to Unfold Processing Efficiencies

for Large and Multiscale Remotely Sensed Data, with Examples

on Landsat 8 and MODIS Data, Journal of Sensors, 2018,

2075057. doi.org/10.1155/2018/2075057

Li, Z. & Hodgson, Michael & Li, Wenwen. (2017). A general-

purpose framework for parallel processing of large-scale

LiDAR data. International Journal of Digital Earth. 10. 1-22.

10.1080/17538947.2016.1269842.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2021
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-111-2021 | © Author(s) 2021. CC BY 4.0 License.

115

Liu, Y.; Jing, N.; Chen, L.; Wei, X. Algorithm for processing k-

nearest join based on r-tree in mapreduce. J. Softw. 2013,24,

1836–1851

Lv, Z., Hu, Y., Zhong, H., Wu, J., Li, B., & Zhao, H., 2010.

Parallel K-means clustering of remote sensing images based on

MapReduce. Web Information Systems and Mining, pp. 162-

170.

Mohan P, Shekhar S, Shine J, ROgers J, Jiang Z, Wayant N.

2011: A neighborhood graph based approach to regional co-

location pattern discovery: a summary of results. In:

Proceedings of the ACM SIGSPATIAL international conference

on advances in geographic information systems, pp 122–132

Panidi E.A., Rykin I.S., 2020: Toward the capabilities of

integration of the cloud-based spatial data infrastructures and

universal desktop geographic information systems, case study of

Google Earth Engine and QGIS. InterCarto. InterGIS. GI

support of sustainable development of territories: Proceedings

of the International conference. Moscow: Moscow University

Press, 2020. 26(1). 421–433. doi.org/10.35595/2414-9179-

2020-1-26-421-433

Sainju AM, Aghajarian D, Jiang Z, Prasad SK (2018) Parallel

grid-based colocation mining algorithms on GPUs for big

spatial event data. IEEE Trans Big Data.

https://doi.org/10.1109/TBDATA.2018.2871062

Salman S., Mariam, Komal & Kitagawa, Hiroyuki & Kim,

Kyoungsook. (2020). GeoFlink: A Framework for the Real-time

Processing of Spatial Streams.

Sharma T., Shokeen V., Mathur S. 2020: Distributed Approach

to Process Satellite Image Edge Detection on Hadoop Using

Artificial Bee Colony. International Journal of Service Science,

Management, Engineering, and Technology. 11. 80-94.

doi.org/10.4018/IJSSMET.2020040105.

Sharma, T., Shokeen, V., & Mathur, S., 2017: Distributed

Processing of Satellite Images on Hadoop to Generate

Normalized Difference Vegetation Index Images. International

Conference on Computing, Communication, Control and

Automation (ICCUBEA), 1-5.

Sierra R, Stephens CR. 2012: Exploratory analysis of the

interrelations between co-located boolean spatial features using

network graphs. Geogr Inf Sci 26(3):441–468

Vatsavai RR, Ganguly A, Chandola V, Stefanidis A, Klasky S,

Shekhar S. 2012: Spatiotemporal data mining in the era of big

spatial data: algorithms and applications. In: Proceedings of

ACM SIGSPATIAL international workshop on analytics for big

geospatial data, pp 1–10

Venugopal, V., Kannan, S. (2013). Accelerating real-time

LiDAR data processing using GPUs. 2013 IEEE 56th

International Midwest Symposium on Circuits and Systems

(MWSCAS), 1168-1171, IEEE.

Werner M (2019) Parallel Processing Strategies for Big

Geospatial Data. Front. Big Data 2:44. doi:

10.3389/fdata.2019.00044

Yoo, J.S., Boulware, D. & Kimmey, D. 2020: Parallel co-

location mining with MapReduce and NoSQL systems. Knowl

Inf Syst 62, 1433–1463. https://doi.org/10.1007/s10115-019-

01381-y

Yu J., Zhang Z., Sarwat M.. 2019: Spatial data management in

Apache Spark: the GeoSpark perspective and beyond.

Geoinformatica, 23, 1, 37–78. doi.org/10.1007/s10707-018-

0330-9

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2021
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-111-2021 | © Author(s) 2021. CC BY 4.0 License.

116

