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ABSTRACT: 

Time series analysis uses constant amplitude models to estimate seasonal changes, while the actual seasonal changes of station 

coordinates have varying degrees of modulation. The difference between the real modulation amplitude and the estimated constant 

amplitude enters the residual sequence. We analysed the contribution of the modulation amplitude to the regional CME 

characteristics based on the 410 GPS stations which located in China. The PCA method is used to carry out regional common-mode 

error analysis on the obtained residuals time series which is after deduction of deformation signals such as tectonic movements. The 

spectral analysis shows that the CME considering the amplitude modulation significantly weakens the characteristics of the annual 

cycle. The annual spectral peaks of the north components are reduced by 50%, the east components with a reduction of 80% and a 

reduction of 60% in the elevation component. The results of noise analysis show that the FN in CME that considers amplitude 

modulation is significantly lower than that of constant amplitude. This indicate that in time series analysis, the ‘signal’ that has not 

been estimated due to the oversimplification of the parameters is filtered in the area time will be evolved into CME, which means 

that CME not only contains errors, but also ‘signals’, that is, ‘signals’ that are not correctly modelled will affect the regional filtering 

effect. 

1. INTRODUCTION

Since the nineties of last century, with the rapid development of 

GPS technology, a large number of GPS continuous operation 

reference stations have been deployed around the world. These 

stations provide important data for geosciences study. However, 

because of involved many factors in data, errors in the 

positioning results cannot be totally eliminated. Previous studies 

have shown that the common mode error is the main source of 

error in the GPS position time series. It consists of two parts. 

One part comes from the observation error and the inaccuracy 

of the analysis model and introduces the station coordinate 

solution, referred to as the "error" part. For example, an 

incomplete satellite light pressure model may cause false 

displacements. Multipath effects at stations, atmospheric delays, 

ionosphere delays, systematic reference frame errors, etc. are 

also major sources of error. The other part comes from the 

signal part that is regarded as the residual error due to the 

excessive simplification of the model during the analysis of the 

station coordinate time series, referred to as the "signal" part. 

For example, the widely used time series analysis only estimates 

the initial position, linear velocity, co-seismic and post-seismic 

displacement, and annual and semi-annual terms. Other 

non-linear deformation signals other than the function 

attenuation enter the residual sequence. The common part in the 

residual sequence of the station coordinates is the common 

mode error (CME). Obviously, the CME also includes the error 

part and the signal part. One of the signal parts comes from the 

amplitude modulation of the seasonal changes of the station 

coordinates. Conventional time series analysis uses constant 

amplitude models to estimate seasonal changes, while the actual 

seasonal changes of station coordinates have varying degrees of 

modulation. The difference between the real modulation 
1amplitude and the estimated constant amplitude enters the 

residual sequence. This paper analyses focuses on the analysis 
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of the contribution of the modulation amplitude to the Regional 

CME characteristics based on the 410 GPS stations which 

located in China.  

2. METHOD

We use GAMIT/GLOBK to process the GPS data in order to 

get the position time series. Then use QOCA to analyse the time 

series. Both polynomial and spline functions can fit amplitude 

modulation signals, considering the stations with large 

amplitude differences, high-order polynomials are needed to 

characterize them. However, spline function can segment the 

fitting data, and each segment is fitted with different parameters, 

which can fully describe the characteristics of different 

segments, obtain very high-precision fitting results, and easily 

determine the fitting function. Therefore, this article uses spline 

function to express the modulation amplitude. 

2.1 GPS DATA PROCESSING METHOD 

At present, GPS data processing methods are basically mature, 

but many physical models and reference frame involved in data 

processing are still in the process of continuous improvement 

and refinement (Petit, 2010). This paper uses GPS 

double-difference carrier phase observation data, taking every 

24 hours as a period, using GAMIT (Herring et al., 2006) 

software to process and analyze the data. The processing 

strategies and models used are as follows: ①Orbital parameters 

are not constrained tightly. The station positions , satellite orbits 

(IGS precision ephemeris) and the earth rotation parameters 

(Bull_A) are allowed to be slightly adjusted, and the radial 

deviation of the satellite antenna phase center parameters are 

estimated at the same time; ②The earth's gravity field, solid 

tide and extreme tide Models follow the IERS2010 (Petit, 2010) 

specification; ③The latest global ocean tide model FES2004  
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(Lyard et al., 2006) is used to correct the station displacements 

caused by the ocean tide, and the change in the solid earth's 

center of mass caused by the ocean tide is also taken into 

account. ④The model calculates the initial values of the dry 

and wet delay components of the tropospheric zenith distance. 

At the same time, each station estimates a zenith distance delay 

correction parameter every 2 hours. The meteorological data are 

obtained by the GPT2 model (Lagler, 2013). The mapping 

function adopts the GMF model; ⑤ Considering the 

inhomogeneity of the atmosphere, two atmospheric level 

gradient parameters are added to each station in the east-west 

and north-south directions. 

GAMIT software adopts the double-difference data mode. As 

the number of stations increases, the CPU calculation time 

required increases progressively. Therefore, it is not a feasible 

way to process all reference stations together. According to the 

geographical distribution, this research divides the base station 

into 5 subnets in Northeast, Central China, South China, West 

and Central, respectively, and selects 3-5 common stations as 

the connection stations between the geographically adjacent 

subnets. Each subnet there are about ~55 base stations average. 

In order to improve the efficiency of data processing, the 

solution of the global IGS station adopts the solution result of 

SOPAC (http://sopac.ucsd.edu). The one-day solution gives the 

coordinates, polar shifts, UT1, satellite orbit parameters, 

satellite antenna phase centres radial deviation and troposphere 

zenith delay parameters estimates of each station, and the 

variance-covariance matrix of these estimates. The single-day 

relaxation solutions of these subnets are obtained by using the 

coordinate parameters and satellite orbit parameters of common 

GPS stations to obtain a joint solution using GLOBK software, 

thereby obtaining the overall single-day relaxation solution 

sequence including global IGS stations and my country's 

reference stations. Then, the seven parameters of similar 

changes relative to the ITRF2014 ( Altamimi et al., 2016) 

benchmark are solved by the globally distributed reference 

stations included in the solution, and the single-day 

no-benchmark solution is converted to the ITRF2014 

framework with the obtained seven parameters, thus obtaining 

The position solution time series of all reference stations under 

the ITRF2014 framework. 

 
Figure 1. GPS stations map 

 

2.2 TIME SERIES ANALYSES METHOD 

Considering that incomplete time series will affect the final 

CME results, we filtered the time series of all stations. The 

principles of filter are: (1) Stations whose time series integrity is 

less than 80% are eliminated; (2) The epochs with less than 10% 

stations are eliminated, which means that the epochs with less 

than 41 observation stations at the same day are eliminated. 

After filtering, the effective stations are 389, the effective 

epochs are 4225. 

The time series of station locations involved long-term tectonic 

movements, annual and semi-annual seasonal changes, 

co-seismic and post-seismic displacements caused by major 

earthquakes, and position mutations introduced by antenna 

replacement. In addition, scientists have also found the 1.040± 

0.008 cpy frequency abnormal signal (Collilieux et al. 2007; 

Ray et al. 2008 ;). Because the period is close to the repetition 

period of the GPS constellation, Ray et al. call it the GPS "nodal 

year" signal, and believe that long-period GPS satellite orbit 

model errors and near-field multipath effects are possible 

reasons. According to the mixing theory, it needs 25.5 years to 

accurately separate the 1-year periodic signal from the 

1.040-period "intersection year" signal (Davis et al. 2012; Ray 

et al. 2013). Therefore, this article cannot estimate the "nodal 

year" signal. First, use parameter estimation to remove these 

known deformation signals and local effects. The main 

earthquakes including the Mw9.0 earthquake in Miyagi, Japan 

earthquake on March 11, 2011, and Lushan Mw7.0 earthquake 

on April 20, 2013, the Mw 8.1 earthquake in Nepal on April 25, 

2015. 

 

2.3 Modulation amplitudes imulation method 

 

 

Figure 2. Comparative analysis fitting results of polynomial 

and spline function. The black dot in the figure represents the 

residual time series, the blue curve is the polynomial fitting 
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result, and the red curve is the spline function fitting result. 

 

In previous studies (Williams et al., 2004; Nikolaidis, 2002; 

Langbein J. 2008), the annual or half-anniversary constant 

amplitude and constant phase harmonic models are usually used 

to express the seasonal signals in the original GPS time series. 

In fact, climate changes in different years are not consistent, and 

the response of GPS stations to environmental changes on a 

seasonal scale is time-varying (Dong et al., 2002). Therefore, 

there are often these uncompleted and false seasonal signals in 

the residual series (Freymueller, 2009; Zou et al., 2014). Bennet 

(2008) assumes that the amplitude of the annual signal in GPS 

time series changes with time, and uses a semi-parametric 

model to simulate a "time-varying amplitude period" signal. 

However, the theory and calculations of this model are very 

complex and inconvenient for practical applications. Both 

polynomial and spline functions can be fitted to amplitude 

modulation signals. We use polynomial and spline functions to 

fit the amplitude modulation to the residual sequence of the 

AVRY station (1999-2010) position time series subtracting the 

structure motion signal and the long-term velocity term 

respectively. The signals and the fitting results are shown in 

Figure 1. It can be seen in the figure that for AVRY stations 

with large amplitude differences in each year, higher-order 

polynomials are required to characterize them. For example, a 

10-order polynomial is used in this article, but the fitting 

accuracy is not as good as the spline function. This is mainly 

because the spline function can fit the data For segmentation, 

each segment is fitted with different parameters, which can fully 

describe the characteristics of different segments, obtain very 

high-precision fitting results, and easily determine the fitting 

function, so this article uses a spline function to express the 

modulation amplitude. 

 

The first-order spline interpolation function is piecewise linear 

interpolation, which means the interpolation function is not 

smooth (it does not have the property of first-order continuous 

derivative) and cannot match the requirements. Usually the 

cubic spline interpolation function is often used (Mingfeng, 

2016), and the spline function has the second-order continuous 

derivative characteristic. According to the definition of cubic 

spline function (Ahlbery et al., 1967), the spline function of the 

interpolation function on each subinterval is a cubic polynomial, 

that is, the cubic spline function S(x) is composed of n cubic 

polynomials on n intervals, and each third-degree polynomial 

can be described as the following form: 

n  idxcxbxaxs iiiii ，，，）（   2 1      
23     (1) 

In this paper, the cubic spline function is used to characterize 

the amplitude modulation, and the boundary conditions of the 

spline function value and the first derivative on both sides of the 

sub-interval are the same. The entire time series is divided into 

three sub-intervals. The fitting results are shown in the red 

curve in the figure 2. Due to space limitations, only two stations 

are given as examples. The jump in the figure in 2011 is the 

coseismic deformation of the Mw9.0 Miyagi earthquake in 

Japan. 

 

 

 
 

 
 

Figure 3. Time series diagram. the black circles represent the 

time series of the position, blue curve: fit results of the constant 

amplitude model, red curve: fit results of the amplitude 

modulation model. The grey circle represents the filtered 

residual sequence (the residual sequence is shifted for clarity). 

 

2.3 CME analyse method 

The physical source of the spatially correlated public noise 

CME in the GPS station's time series remains to be solved, 

however it can be eliminated by post-processing filtering 

techniques. The regional filtering method and the PCA method 

are both based on the GPS coordinate time series. The implicit 
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prerequisite of regional filtering is that the spatial response of 

the regional common mode error is uniformly distributed. The 

limitation of this simplified assumption makes it difficult to 

adapt to the precise extraction of the common mode error of the 

large spatial scale GPS network. The PCA method does not 

require any prior assumptions, and can directly obtain the CME 

time series corresponding to each station, and then analyze its 

spectral characteristics (Dong et al, 2006; Serpelloni et al, 2013), 

so we used the PCA method to determine the CME. 

PCA (Dong et al, 2006) is also called empirical orthogonal 

function decomposition, which is a decomposition method that 

constructs an orthogonal basis based on the data itself. If the 

time series of each station are arranged, each column is one 

station’s time series, which can be expressed as a digital matrix 

of m, x, n (usually, m>n) 
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Equation (2) can be decomposed by singular value analysis to

T
VUX                  (3)  

 

In the formula, П is the diagonal matrix of m*n size, U is the (m, 

x, m) orthogonal normal matrix, also is the (m, x, n) 

quasi-diagonal matrix; V is (n, x, n) orthogonal normalized 

matrix. The most common situation in geosciences research is 

m>n, and the rank of X is n. At this time, the variance matrix of 

X can be expressed as 

 

TT
VVΛXXC             (4) 

 

In the formula, 
T

Λ is (n, x, n) diagonal matrix, and 

each diagonal element is the power of singular value. At this 

time, V constitutes the orthogonal base of X, and X can be 

expanded on this orthogonal base to 

                          


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
n

k

jkikji xvtaxt
1

)()(),(X        (5) 

In the formula, the sequence of expansion coefficients is the 

k-order principal component, and vk(xj) is its corresponding 

site-related spatial response eigenvector, and there is 

                     


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j
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The PCA method decomposes the time series of the station 

network solution that changes with time into the principal 

component in the time domain and the eigenvector in the space 

domain. Since the decomposition is arranged in accordance with 

the power (energy) contributed by each principal component, if 

there is no particularly anomalous local effect of individual 

stations, the regional common time change characteristics of the 

station network solution can be based on the first few principal 

components. The characteristics of change are expressed to the 

maximum extent, and the characteristic vectors corresponding 

to these principal components reflect the spatial distribution of 

the strength of these time changes. Taking into account the large 

spatial scale of my country's reference station network, this 

paper uses the PCA method to analyze the time series of my 

country's reference station, taking the first two principal 

components to represent the CME. 

 

3. RESULTS AND DISCUSSIONS 

In order to evaluate the impact of amplitude modulation on 

CME, this paper also performs PCA analysis on the residual 

sequence fitted with constant amplitude seasonal terms, and 

uses spectral analysis and noise analysis to quantify the impact 

of amplitude modulation on CME.  

 

 
Figure 4. Comparison of CME principal component Spectral 

analysis considering amplitude Modulation and constant 

amplitude.  Horizontal axis: cycles per year, Blue: constant 

amplitude, Red: Consider amplitude modulation. (a), the first 

principal component (b) the second principal component 

 

The spectral analysis (Figure 4) shows that the CME 

considering the amplitude modulation significantly weakens the 

characteristics of the annual cycle. The annual spectral peaks of 
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the north components are reduced by 50%, the east components 

with a reduction of 80% and a reduction of 60% in the elevation 

component. This indicates that the time varying characteristics 

of seasonal terms may be one of the main sources of CME. 

Precious studies have shown that the residuals of seasonal items 

such as annuals still exist in the residual sequence of the WN 

(white noise) + FN (flicker noise) model swap, but the source of 

this seasonal residual is not clearly pointed out. Our 

experiments show that the amplitude modulation of the seasonal 

term is not considered in the time series analysis as the main 

reason for the residual of the seasonal term. 

 

items 

constant 

amplitude 
/mm 

amplitude 

modulation 
/mm 

Change 

percenta 
-ge 

The first 
principal 

compone

-nt 

W

N 

East 0.7±0.0 0.6±0.0 3% 

North 0.6±0.0 0.6±0.0 1% 

Up 1.1±0.1 1.0±0.1 6% 

F

N 

East 11.8±0.6 11.0±0.7 6% 

North 8.7±0.5 8.0±0.6 9% 

Up 29.3±1.3 27.3±1.2 7% 

The 

Second 
principal 

compone

-nt 

W

N 

East 0.4±0.0 0.5±0.0 4% 

North 0.4±0.0 0.6±0.0 15% 

Up 1.2±0.1 0.7±0.0 42% 

F

N 

East 7.7±0.4 7.5±0.5 2% 

North 7.7±0.5 7.7±0.6 1% 

Up 21.2±1.6 14.0±0.7 34% 

Table 1. Noise analysis results. 

We also performed noise analysis (Table 1) on the first and 

second principal component sequences of CME with modulated 

amplitude and constant amplitude. The amplitude variation of 

the first principal component considering the amplitude 

modulation relative to the constant amplitude is: WN s increases 

by 3% in the east direction, decreases by 1% in the north 

direction, decreases by 6% in the vertical direction, and FN 

amplitude decreases by 6% in the east direction, and decreases 

by 9% in the north-south direction, the vertical reduction is 7%. 

The amplitude variation of the second principal component 

considering the amplitude modulation relative to the constant 

amplitude is: WN amplitude increases by 4% in the east-west 

direction, 15% in the north-south direction, 42% in the vertical 

direction, and FN amplitude decreases by 2% in the east-west 

direction, and increases by 1 % in the north-south direction, the 

vertical reduction is 34%. It can be seen that after accessing the 

amplitude modulation, the FN amplitude of the two principal 

components is significantly reduced compared to the normal 

amplitude which means the FN in the CME is significantly 

reduced. It is worth mentioning that WN and FN are 

significantly reduced after estimated the amplitude modulation 

in the vertical direction, indicating that the characteristics of 

amplitude modulation in the vertical direction is more obvious. 

The results of noise analysis show that the FN in CME that 

considers amplitude modulation is significantly lower than that 

of constant amplitude. This indicate that in time series analysis, 

the ‘signal’ that has not been estimated due to the 

oversimplification of the parameters is filtered in the area time 

will be evolved into CME, which means that CME not only 

contains errors, but also ‘signals’, that is, ‘signals’ that are not 

correctly modelled will affect the regional filtering effect. 
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