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ABSTRACT:

The land cover detection on our planet at high spatial resolution has a key role in many scientific and operational applications, such
as climate modeling, natural resources management, biodiversity studies, urbanization analyses and spatial demography. Thanks to
the progresses in Remote Sensing, accurate and high-resolution land cover maps have been developed over the last years, aiming at
detecting the spatial resolution of different types of surfaces. In this paper we propose a review of the high-resolution global land
cover products developed through Earth Observation technologies. A series of general information regarding imagery and data used
to produce the map, the procedures employed for the map development and for the map accuracy assessment have been provided for
every dataset. The land cover maps described in this paper concern the global distribution of settlements (Global Urban Footprint,
Global Human Settlement Built-Up, World Settlement Footprint), water (Global Surface Water), forests (Forest/Non-forest, Tree
canopy cover), and a two land cover maps describing world in 10 generic classes (GlobeLand30 and Finer Resolution Observation
and Monitoring of Global Land Cover). The advantages and shortcomings of these maps and of the methods employed to produce
them are summarized and compared in the conclusions.

1. INTRODUCTION

The number of high-resolution (HR) global land cover (LC)
maps has increased. This is not a surprise given the advances in
Remote Sensing. Moreover, HRLC is useful for numerous ap-
plications such as climate modeling, biodiversity studies, nat-
ural resource management, inter-comparison, etc. LC produc-
tion, including HRLC production, is not standardized. As a
result, available HRLC is produced in different ways and have
different characteristics. We made a review of the relevant liter-
ature of the existing HRLC maps to make an overview of their
main characteristics, and to make a comparison among them.

The scope of the review is to make an outline of the available
HRLC and their characteristics. This will allow the potential
users to find all the details necessary for the proper HRLC ex-
ploitation in one place. Furthermore, thanks to the overview
we will be able to observe if the information about different
characteristics is complete and suitable, and we will suggest
improvements of HRLC literature/documentation. The review
will be based on the scientific literature on binary and multi-
class global HRLCs. Binary datasets include Global Urban
Footprint (GUF) (Esch et al., 2018), Global Human Settlement
Built-Up Grid – Sentinel-1 (GHS BU S1NODSM) (Corbane et
al., 2017), Global Human Settlement Built-Up Grid – Landsat
(GHS BU LDSMT) (Corbane et al., 2017), Global Surface Wa-
ter (GSW) (Pekel et al., 2016), Forest / Non-Forest (FNF) (Shi-
mada et al., 2014), Tree canopy cover (Hansen et al., 2013),
World Settlement Footprint (WSF) (Marconcini et al., 2020),
GlobeLand30 (GL30) (Chen et al., 2015), Finer Resolution Ob-
servation and Monitoring of Global Land Cover (FROM-GLC)
∗ Corresponding author

(Gong et al., 2013). Most of the references were cited hundreds
of times which is indicating that the datasets were found useful
for research.

For the review, we will take into consideration different aspects
of HRLC production and validation. We will enter into details
regarding input satellite imagery (e.g. type, acquisition date,
resolution, etc) and auxiliary data used for derivation of HRLC.
Furthermore, we will include a description of the sampling
schemes and sources of training and validation data. Lastly,
we will outline legend definition and accuracy assessment and
results. Table 1 provides an overview of the existing HRLC,
reporting the datasets producer, spatial resolution and reference
years.

2. HIGH-RESOLUTION GLOBAL LAND COVER

2.1 GlobeLand30

GL30 is a set of global land cover maps at 30 m resolution
(Chen et al., 2015). Three version of GL30 are available for
3 different years: 2000, 2010, and since recently for 2020.
National Geomatics Center of China, producer of this map,
provides the two datasets as open-access in the official web-site
(http://www.globallandcover.com/). It is provided in the Uni-
versal Transverse Mercator (UTM) projection. Legend of GL30
consists of 10 main classes: Cultivated land, Forest, Grassland,
Shrubland, Wetland, Water bodies, Tundra, Artificial surfaces,
Bare land and Permanent snow and ice. Description of every
class can be found at the official website.
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Name Producer Resolution Year

GL30 NGCC 30 m 2000, 2010,
2020

FROM-
GLC Tsinghua University 30 m 2010, 2015,

2017
GHS BU
S1NODSM Joint Research Center 20 m 2016

GHS BU
LDSMT Joint Research Center 30m 1990, 2000,

2014

GUF German Aerospace
Center 12 m 2011

GSW Joint Research Center 30 m
1984 – 2019
(map for
every year)

FNF
The Japan Aerospace
Exploration Agency –
Earth Observation Re-
search Center

25 m

2007 – 2010
(map for
every year);
2015 – 2017
(map for
every year)

Tree can-
opy cover

Hansen - University
of Maryland (UMD)
- Google - United
States Geological
Survey (USGS) - Na-
tional Aeronautics and
Space Administration
(NASA)

30 m 2000

WSF German Aerospace
Center 10 m 2015

Table 1. Overview of the existing HRLC

2.1.1 Imagery Main data source of satellite imagery for de-
riving GL30 were Landsat 5, 7, and 8 collections. Moreover,
Chinese Environmental and Disaster satellite (HJ-1) and China
High Resolution Satellite (GF-1) were supplementary image
sources for v.2010 and v.2020, respectively. The imagery se-
lected for production was imagery sensed during the vegetation
growing season. Data gaps were filled with imagery sensed in
the time window of 2 years prior or after the product baseline
year. GL30 v.2020 is fairly new, and information about this ver-
sion are limited, so the following subheadings are referring to
the first two GL30 versions mostly.

2.1.2 Training data In case of GL30 v.2000 and v.2010
there were various sources of reference data for training. These
include existing global and regional LC, global Digital Eleva-
tion Models (DEM) - SRTM (Shuttle Radar Topographic Mis-
sion) and ASTER (Advanced Spaceborne Thermal Emission
and Reflection Radiometer), global topographic data with 1 :
1 000 000 scale (Hayakawa et al., 2008), and ecological zones
(Olson et al., 2001). Furthermore, ancillary sources such as
Google map, Map World, Open Street Map (OSM) and Geo-
Wiki were exploited as well. To be able to integrate reference
data form different sources and with diverse format, accuracy
and spatial resolution specific tool with unique user interface
was developed.

2.1.3 Algorithms For production of GL30 Pixel-Object-
Knowledge-based (POK-based) classification approach was ad-
opted. This approach is initialized with pixel-based classific-
ation, then different thresholds are applied to define objects,
and finally nature-based, culture-based or temporal constraints
knowledge is introduced for verification purpose. Pixel-based
classification was hierarchical with aim to reduce spectral con-
fusion among pixels. This means that one class at the time was
classified in the following sequence - water bodies, wetland,
permanent ice/snow, artificial surfaces, cultivated land, forest,
shrubland, grassland, bareland and tundra. Multiple classific-
ation algorithms were used for pixel-based classification, such

as Maximum Likelihood Classifier (MLC), Support Vector Ma-
chine (SVM), Decision Tree (DT) or Automated threshold-
ing. Some classes were extracted based on only one algorithm,
while in some other classes were extracted by combining out-
comes of several algorithms.

2.1.4 Validation data and results The validation exercise
of NGCC was a preliminary validation of land cover map for
2010. Validation dataset comprised of 154 586 valid pixel
samples out of the initial 159 874 pixel samples. The samples
were extracted by a two-rank sampling strategy. In the first rank
sampling, 80 out of 847 map sheet were selected. The map
sheets were distributed among 5 continents taking into consid-
eration land-area ratio. In the second rank, sampling stratific-
ation by land cover type was performed. Number of samples
per each land cover type was estimated with landscape index
and layer are ratio in the total sample size. Finally, location of
samples was determined based on spatial correlation analyses.

The estimated Overall Accuracy (OA) in the preliminary accur-
acy of GL30-2010 (Table 2) was 80%. User’s Accuracy (UA)
was ranging 72.16% - 86.7% (Chen et al., 2017). Preliminary
accuracy assessment does not report Producer’s Accuracy (PA).
Also, accuracy for GL30-2000 on a global level was not repor-
ted. Independent accuracy assessment of GL30 conducted at
regional (Manakos et al., 2014), national (Brovelli et al., 2015;
Yang et al., 2017), and subcontinental level (Jacobson et al.,
2015) show similar results to the preliminary accuracy assess-
ment, with an exception in Central Asia where accuracy is 46%
(Sun et al., 2016).

Class of GL30 v.2010 UA [%]
Cultivated land 82.76
Forest 83.58
Grassland 72.16
Shrubland 72.64
Wetland 74.87
Water bodies 84.7
Artificial surfaces 86.7
Bareland 81.76
Permanent snow and ice 75.79
OA [%] 80.33% ± 0.2%
Kappa 0.75

Table 2. Accuracy of GL30 2010

2.2 Finer Resolution Observation and Monitoring of
Global Land Cover

FROM-GLC is a product of University of Tsinghua. Currently,
this map has 3 editions for years 2010, 2015, and 2017 (Gong
et al., 2013). Each edition has slightly different legend that
can be summarized into 10 main classes: Cropland, Forest,
Grass, Shrub, Wetland, Water, Tundra, Impervious, Bare land,
and Snow/Ice. Further details about FROM-GLC legend, as
well as free data download are provided on the official website
(http://data.ess.tsinghua.edu.cn/). Data is provided in WGS84
coordinate reference system (CRS).

2.2.1 Imagery Landsat 5 imagery acquired in 2009 and
2010 constitutes around 63% of imagery for production of 2010
edition. Landsat 5 and Landsat 7 collections from earlier years
were used to fill the data gaps. For 2015 edition, Landsat 8
imagery from 2014-2015 was predominant data source, but im-
agery from 2013 and 2016 was used when necessary to replace
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missing imagery. Sentinel-2 imagery from 2017 was the only
source of imagery for 2017 edition of FROM-GLC.

2.2.2 Training data When edition 2010 is concerned, there
were two phases of collecting training data. In the first phase
training samples were extracted and interpreted based on what
can be identified in Landsat imagery, and in some occasions
Google Earth imagery was used as a reference. As a results,
91 433 training samples were collected. From each Landsat
scene 10-20 samples were extracted, with maximum 3 samples
per class. They were limited to homogeneous landscape in 8x8
pixels area. The 2010 training samples were distributed in such
a way to be representative of major classes in the scene. The
second phase was refinement of the first-phase samples based
on additional information from time series vegetation index
from MODIS EVI for 2010. There were 10 photo-interpreters
involved in the second-phase.

For edition 2015, in the scope of sample collection, 13 im-
age interpreters were working with Global Mapper, the tool
that integrates Landsat images, MODIS (Moderate Resolution
Imaging Spectroradiometer) EVI (Enhanced Vegetation Index)
time series, monthly temperature and precipitation, and Google
Earth images. They interpreted samples in 4 different seasons,
in order to understand if samples from different season can im-
prove accuracy. The samples were cross-checked by senior spe-
cialist for photo-interpretation. Final number of training sample
points was 91 433.

For edition 2017, training samples from 2015 were exploited
for classifying Sentinel-2 images.

2.2.3 Algorithms Four different classification algorithms
were used for classification in 2010 : MLC, J4.8 DT, Random
Forest (RF) and SVM. For 2015 and 2017 editions, RF was
chosen after global and continental experiments.

2.2.4 Validation data and results Validation samples for
2010 were extracted by partitioning globe into 7 000 equal
area hexagons, and by selecting 5 samples for each of them.
The sample interpretation had 2 phases. In the first phase
samples were photo-interpreted from Landsat imagery, while
in the second phase they were refined with reference to the
MODIS EVI time series. 36 630 validation samples were ex-
tracted. Validation data collection strategy for 2015 was the
same, and it resulted in 36 000 samples. The validation samples
from 2015 were reused in the 2017 edition validation exercise.
Outcome of all 4 algorithms used for 2010 production was as-
sessed. OA shows that the SVM was the best algorithm with
64.89%, followed by RF, J4.8 and MLC with 59.83%, 57.88%,
and 53.88%, respectively. There is a slight increase in the OA in
2017 with respect to OA in 2010 and 2015 (Table 3). Moreover,
there is evident increase of class accuracy in case of Cropland,
Grass and Shrub in 2015 compared to 2010. OA by seasons for
the FROM-GLC 2015 and FROM-GLC 2017 product is repor-
ted in Table 4. It is evident that the highest OA is for a season
from December to February (70.95%), however it is not signi-
ficantly different with respect to all year OA (67.16%). In case
of FROM-GLC 2015 per-class accuracy metrics, UA and PA,
were not computed in the validation.

2.3 Global Human Settlements

GHS BU is a set of data that represents the built up surfaces
evolution and urban-rural delimitation. There are two different

Classes FROM-GLC v.2010 FROM-GLC v.2017
PA [%] UA [%] PA [%] UA [%]

Cropland 39.23 45.27 61.07 58.14
Forest 76.45 80.49 84.2 83.47
Grass 34.88 44.13 64.49 58.51
Shrub 33.94 49.65 50.77 62.75

Wetland - - 10.14 34.48
Water 88.76 80.56 92.32 86.39
Tundra - - 77.73 75.89

Impervious 10.53 30.77 72.19 61.76
Bare land 89.91 62.72 84.58 81.4
Snow/Ice 85.66 95.61 71.17 91.96
Clouds 77.6 69.65 - -

OA [%] 64.89 72.76

Table 3. Accuracy of FROM-GLC 2010 (SVM algorithm) and
FROM-GLC 2017

FROM-GLC 2015 season OA [%]
Dec-Feb 70.95
Mar-May 67.81
Jun-Aug 63.97
Sep-Nov 65.91
All seasons 67.16

Table 4. Accuracy of FROM-GLC 2015 by seasons and overall

streams of GHS BU production, one multi-temporal 30 m res-
olution product based on Landsat optical imagery - GHS BU
LDSMT and one 20 m resolution product based on Sentinel-1
SAR imagery - GHS BU S1NODSM (Corbane et al., 2017).
GHS BU LDSMT data refer to four different epochs - 1975,
1990, 2000 and 2014, while GHS BU S1NODSM is only for
2016. First release of GHS BU LDSMT (v.2015) had 38 m
resolution and was reprocessed to second/current (v.2017) re-
lease with 30 m resolution. Original GHS BU products are
provided in the Web Mercator projection (EPSG:3857). Res-
ampled versions of original products at resolutions of 250
m and 1 km are available in World Mollweide projection
(EPSG:54009). Free download is available at website: ht-
tps://ghsl.jrc.ec.europa.eu/download.php. Table 5 contains the
legend of the two products GHS BU S1NODSM and GHS BU
LDSMT.

Class code Class

S1 0 Non-built-up areas
1 Built-up areas

LDSMT

0 No data
1 Water surface
2 Land not built-up in any epoch
3 Built-up from 2000 to 2014
4 Built-up from 1990 to 2000
5 Built-up from 1975 to 1990
6 Built-up up to 1975

Table 5. Legend of GHS BU S1NODSM and GHS BU LDSMT

2.3.1 Imagery A total number of 32 808 Landsat images
were used for the production of GHS BU LDSMT (v.2015 and
v.2017). In particular, 7 588 scenes acquired by the Multis-
pectral Scanner (1975 collection), 7 375 by Landsat 4-5 (1990
collection), 8 756 by Landsat 7 (2000 collection) and 9 089 by
Landsat 8 (2014 collection). For the GHS BU S1NODSM 2016
product, 5 026 Sentinel-1A images acquired between December
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2015 and October 2016, as well as 1 695 Sentinel-1A and 329
Sentinel-1B images from November 2016 to December 2017
were employed.

2.3.2 Training data A quite heterogeneous training data-
set sources were used for the classification of the Landsat im-
ages for the first release. It includes MERIS Globe Cover ar-
tificial surfaces, LandScan population grids, OSM, Geonames
and MODIS 500 m (MOD500) global urban extents. For the
classification of Sentinel-1 images, the GL30 product together
with the built-up areas derived from the first release of GHS
BU LDSMT product were used. Finally, for the reprocessing
of Landsat data for the second (current) release, the artifi-
cial surfaces from GL30 and the built-up areas from GHS BU
S1NODSM 2016 were employed. Basically, an incremental
learning was tested, leading to a progressive refinement of the
product. Moreover, ancillary data were used for the processing
of Sentinel-1 data, namely SRTM DEM (with 1 arcsec resolu-
tion) and ASTER GDEM V2 (Global DEM Version 2).

2.3.3 Algorithms The method used for the built-up recog-
nition is based on Symbolic Machine Learning (SML) (Pesaresi
et al., 2016). For the processing of Sentinel-1 images, input
features (Sentinel-1 GRD image features and topographic fea-
tures) are reduced to unique sequences and then associated with
the built-up learning set to obtain a built-up confidence ENDI
(Evidence-based Normalized Differential Index); through the
Otsu binarization (Otsu, 1979), a binary built-up map is ob-
tained. For the processing of Landsat data, input features (ra-
diometric and textural features) are associated with the training
set to generate built-up maps per date (1975, 1990, 2000 and
2014); from the multi-temporal fusion of these maps, the new
product is obtained.

2.3.4 Validation data and results The GUF dataset was
used as reference for the quantitative assessment of the out-
puts and in particular for a cross-comparison of the different
SML outputs. The Kappa coefficient, commission and omis-
sion errors were evaluated. The median and standard deviation
of these metrics were calculated for 23 134 tiles of 150x150 km
size. An increasing value of Kappa coefficient and a decreasing
commission and omission errors can be observed in GHS BU
S1NODSM 2016 and GHS BU LDSMT v.2017 with respect to
the GHS BU LDSMT v.2015. Moreover, an increasing agree-
ment was observed moving from GHS BU S1NODSM 2016
to GHS BU LDSMT v.2015 product, confirming the utility
of the incremental learning that characterizes the SML classi-
fier. Significant improvements were observed in Africa (reduc-
tion of commission errors with the GHS BU LDSMT v.2017),
while the best result in terms of omission error was obtained in
Asia. The lowest median commission error (0.27) is observed in
South America with the GHS BU LDSMT v.2017 product, the
lowest median omission error (0.35) is observed in Europe with
the GHS BU S1NODSM 2016 product. Finally, South Amer-
ica is the area showing the highest overall agreement with the
reference data (Kappa coefficient equal to 0.50 obtained with
the GHS BU LDSMT v.2017 product); Kappa resulted equal to
0.42 and 0.40 respectively for Europe and North America for
GHS BU LDSMT v.2017.

2.4 Global Urban Footprint

GUF is a raster dataset based on satellite radar imagery that
represents the human settlements pattern in urban and rural
environment with a spatial resolution of 0.4 arcsec (about
12 m near the equator) (Esch et al., 2018). The dataset is

given in WGS84 CRS and is provided by the DLR (Ger-
man Aerospace Center) German Remote Sensing Data Center
(https://geoservice.dlr.de/web/maps/eoc:guf:4326). The dataset
at full spatial resolution is freely available for scientific use,
whereas the generalized version with lower resolution (2.8 arc-
sec, corresponding to about 84 m near the equator) is available
for non-profit and non-scientific applications. The product is a
binary raster data in 8-bit (LZW-compressed GeoTIFF format)
that shows three coverage categories in a black-and-white rep-
resentation: built-up areas in black (value = 255), non-built
up surfaces in white (value = 0) and no-data in grey (value =
NoData). Built-up areas are defined as regions featuring man-
made building structures with a vertical component.

2.4.1 Imagery A total of 182 249 TanDEM-X and
TerraSAR-C radar images with a 3 m ground resolution were
used for the GUF map production. These satellite images were
mostly collected between 2011 and 2012 (93%) in the con-
text of the TanDEM-X German mission. Single scenes sensed
between 2013 and 2014 were employed to fill data gaps.

2.4.2 Training data Training samples are automatically
identified on the basis of certain thresholds derived from image
statistics in terms of amplitude and texture data. Auxiliary data
were used to improve the classification performance. The fol-
lowing layers were used as ancillary data in the post-processing
phase: OSM Settlements and Roads, DLR Relief mask and
Road Clusters, GL30 Settlements, Water and Wetlands, Co-
pernicus Imperviousness Layer 2012, US National Land Cover
Dataset 2011, TimeScan-ASAR and TimeScan-Landsat. These
layers were used to confirm or exclude pixels that were classi-
fied as built-up areas.

2.4.3 Algorithms In order to produce the GUF layer a fully
automated processing environment was used, namely the Urban
Footprint Processor (UFP). The UFP is able to manage every
part of the processing chain: feature extraction, unsupervised
classification, mosaicking and post-editing. An unsupervised
classification method called Support Vector Data Description
(SVDD), combining data of backscatter amplitude and of local
texture, was used in this context. The classificator determines
the hypersphere with minimum radius that encloses all the train-
ing samples for the built-up class and then it associates the un-
known samples falling within the hypersphere boundary to the
built-up class. The procedure allows to detect essentially ver-
tical structures of urban habitations and not impervious surfaces
such as roads or paved elements.

2.4.4 Validation data and results Accuracy of GUF was
evaluated on the basis of ground truth data and considering es-
tablished settlements maps (GHS BU, GL30 and MOD500) for
a relative comparison. Ground truth data were manually collec-
ted from very high resolution optical images for 12 urban sites
(see Table 6) across the world, each one covering an area of 1°
latitude by 1° longitude. A total of 1 000 points for each class
(built-up and non-built-up) and for each test area were randomly
extracted and used as reference for the accuracy estimate. The
validation showed that the GUF has the highest accuracy (OA
= 85.04%, Kappa = 0.686), with the lowest standard deviation
(3.96% of the overall accuracy), followed by GHS BU, GL30
and MOD500, that has the lowest accuracy measures. Beside
this regional validation, the four data sets were compared at a
global level: basically, a great difference between existing in-
ventories exists. Table 6 summarizes the accuracy assessment
results for 12 urban study sites.
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OA [%] Kappa
Addis Ababa 84.87 0.695
Athens 85.42 0.672
Beijing 87.35 0.682
Dar Er Salaam 85.01 0.689
Kampala 84.95 0.690
Kigali 82.60 0.623
Lagos 84.49 0.688
Mexico City 89.40 0.786
Milan 89.33 0.784
Nairobi 85.01 0.688
New York 74.28 0.480
Perth 87.75 0.753
Mean 85.04 0.686
Standard deviation 3.96 0.080

Table 6. Accuracy of GUF

2.5 World Settlement Footprint

WSF is a raster dataset representing the spatial distribution of
human settlements for the year 2015 at a global level (Mar-
concini et al., 2020). The dataset is available with a res-
olution of about 10 m (0.32 arcsec) and it is produced by
the DLR. The dataset is publicly and freely available through
figshare (https://doi.org/10.6084/ m9.figshare.c.4712852) and
can be downloaded in 306 GeoTIFF files in WGS84 CRS
(EPSG:4326). The legend of WSF has value 255 that corres-
pond to settlements, while the other surfaces are labelled with
the value 0. Settlements are defined as a region featuring man-
made structures.

2.5.1 Imagery The satellite images used for the WSF2015
production include both radar (Sentinel-1) and optical (Landsat
8) data. The former are about 107 000 images with a resolution
of 10 m, the latter are about 217 000 images with a resolution
of 30 m. Optical data are used to overcome the limitations of
radar data, and vice versa.

2.5.2 Training data In order to train the classifier, differ-
ent training samples were selected. For optical data, training
samples for the two classes (settlement and non-settlement)
were selected based on specific thresholds applied to the in-
dexes NDBI (Normalized Difference Built-up Index), NDVI
(Normalized Difference Vegetation Index) and MNDWI (Mod-
ified Normalized Difference Water Index). For radar data,
thresholds in terms of mean backscattering were determined
instead. For the classification procedure, ancillary data were
employed, namely the SRTM and the ASTER DEM: these data
were used in the processing of radar data, in order to remove
pixels characterized by a slope higher than 10°.

2.5.3 Algorithms An advanced classification system that
jointly exploits optical and radar satellite imagery was em-
ployed. First, images were pre-processed and temporal stat-
istics were extracted for the automatic selection of the training
set. Afterwards, a SVM algorithm with Radial Basis Function
(RBF) Gaussian Kernel classifier was applied for the two types
of images. A final post-classification procedure was performed
to combine the maps derived from optical and radar images and
to remove false alarms.

2.5.4 Validation data and results The final product of
WSF represents the global distributions of settlements referred
to the year 2015. In order to evaluate the map accuracy, 900

000 samples labelled with a crowdsourcing activity, through
the visual interpretation of very high resolution Google Earth
satellite imagery (relative to the period 2014-2015 and with a
spatial resolution of 1.5, 0.5 and 0.15 m) were employed. As
for sampling design, a stratified random sampling was applied,
with 50 tiles of 1x1 degree size; a 3x3 block spatial assessment
unit, composed of 9 cells with dimensions 10x10 m was chosen:
for every block and for every tile, 1 000 samples for settlement
and 1 000 samples for non-settlement class were extracted. The
evaluation was performed on 3 different settlement definitions
and 4 assessment criteria. The result shows a mean Average
Accuracy (AA%) equal to 86.37% and an average Kappa equal
to 0.6885. AA% is a balanced measure of correct settlement
and non-settlement detection obtained as the mean between PA
for settlements - PAS and PA for Non-settlements-PANS%). The
best accuracy results were obtained when considering the com-
bination buildings-building lots as settlement definition. Fur-
thermore, the average PA are equal to 88.71% and 84.04% re-
spectively for the class settlement and non-settlement. Com-
pared to similar product, such as GUF, GHSL and GLC30, the
WSF2015 accuracy is higher. Also, WSF2015 product shows
a significant improvement in the detection of small settlements
in rural regions as well as scattered suburban areas. Table 7 re-
ports the worst and the best results in terms of accuracy. The
former was obtained considering buildings as settlement and
employing the assessment criterion 1 (per-cell matching); the
latter considering buildings and building lots as settlement and
employing the assessment criterion 4 (per-block matching).

Settlement =
buildings

Settlement =
buildings +

building lots
Assessment
criterion 1

Assessment
criterion 4

AA [%] 83.27 89.33
Kappa 0.5486 0.7822
PAS [%] 91.99 89.61
PANS [%] 74.56 89.06
UAS [%] 59.41 85.85
UANS [%] 96.40 92.04

Table 7. Accuracy of WSF. S indicates settlements and NS
indicates non-settlements

2.6 Global Surface Water

GSW is a dataset representing the spatio-temporal variability of
the global water surface and the changes occurred over the time
span 1984-2016 (32 years), with a resolution of 30 m (Pekel
et al., 2016). The dataset is now available for the time inter-
val 1984-2019. The layer has been developed in the frame-
work of the Copernicus Programme by the EC JRC, with the
aim of giving support to many applications including water re-
sources management, climate modelling, biodiversity conser-
vation and food security. The products are freely available
from https://global-surface-water.appspot.com and they include
maps of water occurrence, occurrence change intensity, season-
ality, recurrence, transitions, maximum water extent, monthly
recurrence, yearly history and monthly water history. Legends
and more detailed description of all the maps are available at
the above mentioned web site.

2.6.1 Imagery The data used in this context include the
entire multi-temporal and orthorectified archive of Landsat
5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic
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Mapper-plus (ETM+) and Landsat 8 Operational Land Imager
(OLI), Top-Of-Atmosphere (TOA) reflectance and brightness
temperature images. In particular, the period of acquisition
between 16 March 1984 and 10 October 2015 was considered.

2.6.2 Training data In order to classify the Landsat images,
a spectral library, describing the behaviour of the three target
classes (namely, water, land and non-valid observations) was
built. A total number of 64 254 samples, obtained through
visual interpretation of 9 149 Landsat scenes, were used, so that
the intrinsic variability of the classes could be detected. These
records were integrated with the NDVI and the Hue-Saturation-
Value (HSV). Ancillary data were used as well: they include
DTMs, glacier data (Randolph Glacier Inventory 5.0), urban
areas data (GHSL) and a global-scale lava mask.

2.6.3 Algorithms Expert systems were employed for image
classification, in order to take into account data uncertainty, im-
age interpretation expertise and multiple data sources. The clas-
sification procedure consists in a sequential decision tree using
either multispectral and multitemporal attributes of the Land-
sat images and ancillary data. For improving the classifier per-
formance, visual analytics and evidential reasoning were used
as well. The expert system was run in Google Earth Engine and
the code can be provided on specific request.

2.6.4 Validation data and results The products were val-
idated by calculating commission and omission errors on a
sample of 40 124 control points, adequately selected to be geo-
graphically and temporally well-distributed. In particular, a 27
268 pixels sample was used for the omission error (i.e. 1-PA)
estimate and a 12 856 pixels sample for the commission er-
ror (i.e. 1-UA) estimate. The evaluation was performed using
a systematic sample frame (1° latitude by 1° longitude grid)
and the stratification to areas of high and low water probabil-
ity. A point was randomly selected within each cell and each
strata in order to evaluate commission and omission errors for
different images, randomly selected for each sensor across the
archive time span. Table 8 shows in detail the accuracy as-
sessment results. Errors of omission were overall less than 5%
and errors of commission less than 1%. Furthermore, all three
sensors provide similar and good results, with differences less
than 0.2% for commission errors and 1.2% for omission errors.
Also, all sensors provided a better performance in detecting per-
manent water with respect to seasonal water (the omission error
for seasonal water is always higher than the omission error for
permanent water).

UA [%] PA [%]

Landsat 5
Overall 99.45 97.01
Seasonal 98.80 74.91
Permanent 99.56 98.79

Landsat 7
Overall 99.35 95.79
Seasonal 98.38 73.82
Permanent 99.50 97.72

Landsat 8
Overall 99.54 96.25
Seasonal 98.53 77.40
Permanent 99.66 99.10

Table 8. Accuracy of GWS

2.7 Forest/Non-forest

The FNF dataset developed by the Japan Aerospace Ex-
ploration Agency (JAXA) represents the global distribution

of forests for the years 2007-2010 with a spatial resolu-
tion of about 25 m (0.8 arcsec) (Shimada et al., 2014).
Tree-covered areas larger than 0.5 ha and with a canopy
cover over 10% are here defined as forests. Data are
represented in the WGS84 CRS and can be accessed at
https://www.eorc.jaxa.jp/ALOS/en/palsar fnf/fnf index.htm#.
The legend of FNF consists of Forest, Non forest, and Water
classes represented by values 1, 2, and 3, respectively.Forest
is defined as the tree covered land with area larger than 0.5 ha
and canopy cover over 10%.

2.7.1 Imagery For the 2007-2010 FNF land cover produc-
tion, four global mosaics of ALOS PALSAR (Advanced Land
Observing Satellite Phased Arrayed L-band Synthetic Aperture
Radar) HH and HV data were created and classified. These mo-
saics were obtained from data acquired annually between June
and October for the years 2007, 2008, 2009 and 2010. Sim-
ilarly, global mosaics of ALOS-2 PALSAR-2 are created for
years 2015-2020, but currently land cover maps are available
only for 2015, 2016, and 2017. Mosaics are expressed in terms
of gamma-naught (γ0, normalized radar cross section), a meas-
ure of the radar backscatter normalized with respect to the real-
istic illumination area.

2.7.2 Training data In order to discriminate forest from
non forest areas, specific thresholds in terms of HV γ0 was
derived from histograms and cumulative distribution functions.
The threshold estimations were based on based on training data
from 15 regions of the world: Sumatra Indonesia, Papua New
Guinea, Borneo, Malaysia, Philippines, East Asia, Japan, In-
dia, Europe–Russia, Australia, Amazon, Chile, Africa, North
America and Central America. The training data represent 3-
10 subareas in each of the 15 region for each class. They were
selected with reference to Google Earth Imagery to be repres-
entative of diverse forest types as well as non-forest categories.
There was 90 subareas representing forest, and 72 subareas rep-
resenting non-forest. Each subarea comprise around 65 000 to
80 000 pixels (40 - 50 km2).

2.7.3 Algorithms The procedure followed for the FNF
maps production consists in a multi-resolution segmentation of
each mosaic, with the application of a 5x5 median filter. The
software eCognition was employed for this purpose. After-
wards, the previously selected thresholds were applied for the
detection of settlement areas (thresholds in terms of HH γ0),
forest areas (thresholds in terms of HV γ0) and water bodies
(thresholds in terms of HH γ0, standard deviation of HH and
Geometric Density functions); non-forest areas are then com-
puted accordingly.

2.7.4 Validation data and results The products were val-
idated considering as references the Degree Confluence Pro-
ject (DCP), the Forest Resource Assessment (FRA) and Google
Earth Images (GEI). In particular, GEI data available from 2000
to 2012 were used, with a total of 4 114 reference points (1 456
points for forest and 2 548 for non-forest). As for the DCP is
concerned, data were collected by volunteers, for a total num-
ber of 2 652 validation points. Finally, the FNF maps were
compared with the FRA2005 and FRA2010 products of Food
and Agriculture Organization (FAO). Accuracies resulted equal
to 85%, 91% and 95% with respect to DCP, GEI and FRA
2005/2010. Table 9 reports more detailed information about
the accuracy assessment based on DCP and GEI.
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GEI DCP

Product Class PA
[%]

UA
[%]

OA
[%]

PA
[%]

UA
[%]

OA
[%]

FNF 2007 F 82.59 95.31 91.49 68.8 86.43 85.19NF 97.33 89.49 91.26 91.26

FNF 2008 F 81.13 94.31 90.58 68.65 83.01 84.78NF 96.79 88.65 90.2 92.72

FNF 2009 F 81.51 95.04 90.98 61.38 74.79 82.36NF 97.2 88.89 88.57 92.74

FNF 2010 F 81.64 95.33 91.13 66.67 89.8 87.14NF 97.37 88.98 93.46 93.46

Table 9. Overall Accuracy of PALSAR FNF (2007-2010) with
respect to DCP and GEI. F stands for Forest and NF for

Non-forest

2.8 Tree canopy cover

The Tree canopy cover is one of the many datasets of the Global
Forest Change project carried out by the University of Mary-
land, Google, USGS and NASA (Hansen et al., 2013). This
dataset represent Tree canopy closure of the trees with at least
5m height. It has values from 0 to 100 which correspond to per-
centage of canopy closure. It represent a state of forest in 2000
and it was used as a starting point to compute products of forest
gain and forest loss in the subsequent years. The Tree canopy
cover has a resolution of 30 m at the equator (1 arcsec). It is
available in the geographic reference system WGS84 and can be
accessed at https://earthenginepartners.appspot.com/science-
2013-global-forest/download v1.7.html.

2.8.1 Imagery For the production of the Tree canopy cover
Landsat 7 ETM+ images, collected during the growing season,
were employed.

2.8.2 Training data The set of training data was extracted
using ancillary information, in particular Quickbird imagery
and existing layers of percent tree cover derived from Landsat
in Web-Enabled Landsat Data (WELD) project (Hansen et al.,
2011) and from MODIS (Hansen et al., 2003) data. Training
data concern percent tree cover (i.e. Tree canopy cover), forest
loss and forest gain.

2.8.3 Algorithms The processing of Landsat data followed
a standard pre-processing schema that includes image res-
ampling, Digital Numbers conversion to TOA reflectance,
cloud detection and image normalization. The classification
procedure consists in a bagged decision tree that relates the
above-mentioned training data to Landsat data metrics. Landsat
metrics were extracted for each band, namely statistical values
of reflectance (mean, maximum, minimum and selected per-
centile values) and slope of the linear regression between band
reflectance and image date.

2.8.4 Validation data and results Since estimation of
forest loss and forest gain was primary goal of the Global Forest
Change project, the validation on global level was performed
only for forest loss and forest gain products, and not for the
Tree canopy cover.

3. CONCLUSIONS

In this paper nine global high-resolution land cover are de-
scribed. All of the datasets have same purpose - detect LC on
global level. However, approach for doing so is different de-
pending on the data producer.

In most of the cases, primary source of satellite imagery comes
from the optical satellite sensors such as Landsat ((GL30, GSW,
GHS LDSMT, Tree Canopy Cover, FROM GLC v.2010 and
v.2015) and Sentinel-2 (FROM GLC v. 2015). Few HRLC are
derived starting from radar images such as Sentinel-1 (GHS BU
S1NODSM) and ALOS PALSAR/ALOS2 PALSAR2 (FNF).
Lastly, one HRLC took advantage of both optical and radar
sensors - Sentinel-1 and Landsat 8 (WSF). In case of data gaps,
common solution was to use imagery from the same sensor in
the period prior or after product baseline year, but in the rare
cases data from other sensors were exploited.

Most of the HRLC are focused on detection of single class such
as built-up area (GHS BU S1NODSM, GHS LDSMT, GUF
and WSF), forest (FNF, Tree Canopy Cover) and water (GSW).
Nevertheless, GL30 and FROM-GLC have 10 classes which in
a generic way capture different types of Earth cover.

Selection of training data prevalently relied on photo-
interpretation of satellite imagery in combination with multiple
ancillary information (e.g. previous versions of the same data-
set, existing land cover data, MODIS EVI, OSM, etc). In par-
ticular, this is valid for GL30, FROM-GLC, first release of GHS
BU LDSMT, and Tree canopy cover. FROM-GLC v.2017 was
derived from the same samples as FROM-GLC v.2015. GSW
and FNF relied mostly on photo-interpretation and band stat-
istics, while WSF and GUF used automatic training extraction
based on certain thresholds. It is interesting to notice that for
GHS BU products incremental learning was used. I.e. each
previous version of product was used in combination with other
ancillary data for creating training for the following product.

FROM-GLC, WSF and Tree canopy cover were classified with
with single classification algorithm. In case of former two the
SVM was used, while for the latter one used bagged decision
tree. Other datasets were derived by custom made processing
chains created to address the issues of global variability of land
cover and/or to accommodate specific characteristics of input
imagery and large volumes of data. GL30 had POK-based
classification; GUF was computed in UFP processing envir-
onment with unsupervised classification method SVDD; GSW
was produced by expert systems by a sequential decision tree
taking into account multi-temporal and multi-spectral attributes
of Landsat images; FNF was developed in the rule-based ap-
proach depending on the thresholds of HV or HH γ0.

Different sampling schemes were applied for validation of dif-
ferent products. Often splitting world into a regular grid was
adopted, and then either some cells of the grid were selected
for extracting samples (e.g. GL30) or there was certain number
of samples determined for each cell of the grid (FROM-GLC,
GSW, WSF). Stratified random sampling was often exploited
for the sample allocation (GUF, GSW, WSF). GUF validation
samples were extracted for 12 urban cities. FNF does not re-
port sampling strategy for GEI, while DCP are distributed on
integer degree coordinates worldwide. GHS BU products were
inter-compared with GUF. Tree Canopy Cover does not report
validation. GHS BU products were inter-compared with GUF.

Even thought the approach for producing land cover is differ-
ent, the aspect that matter the most to users is the accuracy. OA
gives an overall impression about product accuracy, however it
is important also to look at the class accuracy as well. For ex-
ample, OA GL30 is better than FROM-GLC, but looking at the
UA FROM-GLC has significantly better accuracy for Ice and
snow class. OA in case of binary maps is less relavant for the
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comparison. This is because binary map consists of class of
interest and class that includes everything else. The latter one
is usually more accurate and covers larger area, thus it unjus-
tifiably increases OA value. Therefore, in case of binary maps
it is more appropriate to look at the accuracy of class of in-
terest. Binary map of forest - FNF - outperforms both GL30
and FROM-GLC regarding the UA of Forest class. The lowest
UA of FNF with respect to GEI is 94%, while UA of GL30 and
FROM-GLC for the same class is 80.49% and 83.47%, respect-
ively. GSW has impressive UA for water 99% that is signific-
antly better than UA of GL30 or FROM-GLC for water. Among
binary products for buitl up class, analyses made within valid-
ation of WSF show that on average WSF has the best accuracy
with AA% of 86.37, followed by GUF (80.13), GHSL(71.09)
and GLC30 (67.79).

After the review of literature it is evident that different meth-
odologies are needed to exploit information form different im-
agery sources and for detecting different LC classes. However,
couple of improvements could be made in reporting, as well as
in a production to facilitate exploitation of the HRLC. One flaw
of the HRLC documentation is that sometimes procedure of val-
idation is not clear enough, so it is not possible to understand
if accuracy was determined with a statistically valid number of
samples and sampling strategy (e.g. FNF). Even bigger issue is
when accuracy is not determined or reported (e.g. Tree Canopy
Cover). Another difficulty is use of different metrics or style
for reporting accuracy (e.g. GHSL BU). Lastly, classes with
the same name have different definition (i.e. do not represent
exactly the same features).

The mentioned issues could be addressed by a standard/de facto
standard which regulates definition of the classes (e.g. LCCS
of FAO), accuracy assessment procedure and reporting. This
would increase inter-operability and make it easer for user to
decide which HRLC to use or give them possibility of using
multiple HRLC simultaniously. The need of standard is critical
now given that production of land cover is an ongoing process.
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