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ABSTRACT: Evacuation research relies heavily on the efficiency analysis of the study navigation networks, and this principle also 

applies to indoor scenarios. One crucial type of these scenarios is the attacker and defender topic, which discusses the paralyzing and 

recovering operations for a specific indoor navigation network. Our approach is to apply the Generative-Adversarial-Neural network 

(GAN) model to optimize both reduction and increase operations for a specific indoor navigation network. In other words, the 

proposed model utilizes GAN both in the attacking behavior efficiency analysis and the recovering behavior efficiency analysis. To 

this purpose, we design a black box of training the generative model and adversarial model to construct the hidden neural networks 

to mimic the human selection of choosing the critical nodes in the studying navigation networks. The experiment shows that the 

proposed model could alleviate the selection of nodes that significantly influence network transportation efficiency. Therefore, we 

could apply this model to disaster responding scenarios like fire evacuation and communication network recovery operations. 

* Corresponding author

1. INTRODUCTION

1.1 A general introduction of deep learning models 

The indoor navigation network is crucial for many application 

scenes like indoor routing and emergency evacuation, and the 

research results from these studies could significantly reduce the 

total evacuation time and egress routes’ length (Scholz and 

Schabus, 2014, Zlatanova et al., 2013, Liu and Zlatanova, 2011, 

Krūminaitė and Zlatanova, 2014, Gozick et al., 2011, Kirkko-

Jaakkola et al., 2013). Therefore, many researchers committed 

contributions to investigate the robustness for this specific type 

of navigation networks (Freitas and Chau, 2020, Alattas et al., 

2017, Fellner et al., 2017, Snelder et al., 2012, Santos et al., 

2010). 

The graphs studies usually are in the form of networks, which 

are widely used for processing several critical graphs and 

applications like transportation network analysis and a 

significant loss. This approach originated from the graph 

convolution network, which uses deep networks to extract 

global and local graphs. The specific graphs for this approach 

are widely used along with this approach and promising for 

many fields. They can still conclude several layers of deep 

learning networks, consisting of millions of parameters for a 

specific model. To mitigate the specific challenges brought by 

the indoor navigation environment, we have to tune these 

models for our specific usage. 

Fortunately, we could refer to many existing methods that could 

efficiently handle the challenges of introducing deep learning 

techniques for indoor navigation networks. One of the most 

heavily studied solutions is based on the generative adversarial 

network (GAN) framework (Liu et al., 2019, Suárez et al., 2017, 

Martin Arjovsky, 2017, Qiyue Li 2020, Jonas Adler 2018, Cao 

et al., 2019). Thus, we follow this approach due to its 

advantages in taking both the global and local processing 

information features. 

Figure 1. The demonstration of the GraphGAN for our approach 
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Along with our approach, we utilize the GAN that uses a 

generator and discriminator to study the connection features of 

the navigation graphs in figure 1 (Hou et al., 2019, Suárez et al., 

2017, Adler and Lunz, 2018). Although our current 

investigation solution is premature and naïve, we still believe it 

could extract critical features from the whole navigation 

network that will influence the network’s connectivity status. 

As a GAN framework, one part of this model is named the 

‘generator’; the other network is named the ‘discriminator.’ The 

first one that is in charge of generating objects as realistic as the 

studying examples; while the latter one act like judges, who will 

distinguish the fake pictures of networks, which are previously 

generated by the generator. Using the generator and 

discriminator, we can identify fake objects like pictures that are 

very like the actual pictures generated by a selected optimizer. 

For our purpose, we use the generator and discriminator 

function as the attacking and defending of the critical nodes of 

the navigation networks (Freitas and Chau, 2020, Duan and Lu, 

2014, Zlatanova et al., 2013, Liu and Zlatanova, 2011, 

Krūminaitė and Zlatanova, 2014).  

 

2. THE MECHANISM OF GRAPHGAN FOR INDOOR 

NAVIGATION NETWORK ANALYSIS  

 

We build this model because we are inspired by the GraphGAN 

project from GitHub: 

https://github.com/hwwang55/GraphGAN/tree/3f1c3f7db6b8b5

102eea899659d4c52f64c4288c, which is shown in figure 2. The 

composition mechanism is quite straight, and we inherit the 

main schema of this GraphGAN framework. Thus, we establish 

the generator with a softmax mechanism to minimize the 

logarithm result between the produced graphs and the learning 

graph layers. On the contrary, the introduced discriminator aims 

to maximize the logarithm result between the provided graph 

results mixed with the original graphs and the generator-

produced graphs. The detail foundation theory and proving 

detail could be found in the original GraphGAN paper and is 

generally demonstrated in figure 2. 

 

The detail softmax mechanism is a graph softmax operation. 

This graph softmax is implemented by the Adam optimizer both 

across the generator and discriminator. Besides, there are three 

modes for the GraphGAN operations: link-prediction, node 

classification and recommendation. The first one is the process 

of generating fake edge by the generator and identification by 

the discriminator; while the second one is the process of 

generating different groups of edges that have labels to 

distinguish them; and the last one is to utilize the connectivity 

relationship to find recommendations between different nodes. 

We currently only consider the former two types of operations. 

 

The detail operation flow is: 

1. Use the word2vec libraries to embed the comparative 

similarity rate between different graph structures; 

2. Then use the previously produced embedding matrix to 

compute the generated graph edges for link prediction and node 

groups; 

3. Generate the output matrixes by executing the Tensorflow 

loops. 

 

Figure 2 shows that the working performance of the generator. 

As in the left part of this figure, we could easily perceive that 

the accessible nodes selected by the generator does not overlap 

with any of the existing target learning nodes. Thus, under this 

circumstance, the generator fails to achieve the link generation 

purpose, and we name this situation as the underperformance. 

While for the central part, the generated nodes set is partially 

overlapping the existing target node set, and we name this 

situation as the approaching truth situation. For the last part of 

the figure, due to the selection set of the generator is nearly 

overlapping with the whole truth nodes set, thus the 

performance of using adversial training for generator is 

achieved. 

 

The most critical settings of Tensorflow based GraphGAN 

structures are the outer iterations and inner iterations for the 

computing process because these settings determine the 

studying result of the GraphGAN softmax layers on the input 

graph connection matrixes. 

 

Following this approach, without drowning with the tedious 

work of tuning hyper-parameter for our model, we can 

concentrate on optimizing the mechanism of generator and 

discriminator for identifying the indoor navigation networks.   

 

Figure 2. The mechanism of the GraphGAN （by courtesy of 

Hongwei Wang, etc..） 

 

These random indoor navigation networks that mainly consist 

of one hundred nodes. These networks have a maximum of four 

degrees of connectivity for the nodes in them. Although this 

setting connectivity degree is not thoroughly studied through 

the theoretical research, we extract this setting from a complete 

survey from the observation of realistic buildings from both the 

Henan university of urban construction number 5 building and 

the Meiluocheng building shanghai city in figure 3 and 4. 

 

 
Figure 3. The overview of the Henan University of Urban 

Construction Number 5 building 
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Figure 4. The overview of the Meiluocheng building 

 

3. DATASET AND EXPERIMENT RESULTS 

3.1 Test platform and configurations 

Test platform hardware configuration is 16 core Ryzen 9 3950X 

with 64GB DDR3000 rams and Geforce GTX 2070; the 

software platform is Ubuntu 20.04 LTS; the deep learning 

framework is Tensorflow 2.2 GPU. The detail configuration 

setting of the GraphGAN model is listed below: 

 

# training settings 

batch_size_gen = 64   

batch_size_dis = 64   

lambda_gen = 1e-5   

lambda_dis = 1e-5 

n_sample_gen = 20   

lr_gen = 1e-3   

lr_dis = 1e-3   

n_epochs = 20   

n_epochs_gen = 30   

n_epochs_dis = 30   

gen_interval = n_epochs_gen   

dis_interval = n_epochs_dis   

update_ratio = 1 

     

# model saving 

load_model = False   

save_steps = 10 

 

# other hyper-parameters 

n_emb = 128 

window_size = 2 

multi_processing = False   

 

‘batch_size_gen’ parameter determines the batch size for the 

generator; ‘batch_size_dis’ parameter determines the batch size 

for the discriminator; ‘lambda_gen’ parameter determines the l2 

loss regulation weight for the generator; ‘lambda_dis’ parameter 

determines the l2 loss regulation weight for the discriminator; 

‘n_sample_gen’ parameter determines the number of samples 

for the generator; ‘lr_gen’ parameter determines the learning 

rate for the generator; ‘lr_dis’ parameter determines the learning 

rate for the discriminator; ‘n_epochs’ parameter determines the 

number of outer loops; ‘n_epochs_gen’ parameter determines 

the number of inner loops for the generator; ‘n_epochs_dis’ 

parameter determines the number of inner loops for the 

discriminator; ‘gen_interval’ parameter determines the sample 

new nodes for the generator for every generator interval 

iterations; ‘dis_interval’ parameter determines the sample new 

nodes for the discriminator for every discriminator interval 

iterations; ‘update_ratio’ parameter determines the updating 

ratio when choose the trees; ‘load_model’ parameter determines 

whether loading existing model for initialization; ‘save_steps’ 

parameter determines the step saving frequencies; ‘n_emb’ 

parameter determines the embedding matrix’s mapping node 

number; ‘window_size’ parameters determine the searching 

windows size; ‘multi_processing’ parameter determines whether 

using multi-processing to construct BFS-trees. The BFS-tree 

here means the breadth first searching tree formed for the 

specific node. 

 

The experiments are executed on these random networks set 

with 100 nodes and 4 degrees of the maximum connection 

degree. We choose these specific node numbers and degree 

settings because, according to our current study of the existing 

floor, blueprints of several collected buildings are with these 

settings. 

 

Because the research of GraphGAN on these navigation 

networks is scarce and rare, we can only extract several key 

features favoured from our aspects. A complete, more objective 

refinery of the raw data from the defined GAN produced results 

is expected in the following research step. 

 

3.2 Experiment result types 

The first result is named the uniform manifold approximation 

and projection (UMAP); the second result is the ‘Student-t 

distribution stochastic neighbor embedding’ (t-SNE in short); 

the third result is the principal component analysis (PCA) 

analysis result. The first two types of results show the analyzing 

data correlations across high dimensional space, and the last 

one shows the traditional correlations between any combination 

of selected features. 

 

4. DISCUSSIONS AND EXTENSIVE STUDY OF 

RESULTS 

From the results, we can find that these two networks are 

producing quite complex results, and the reason we have not 

provided the loss results of the experiment is due to that the 

current stage of our research is to testify the working flow of the 

combination between GraphGAN and the indoor navigation 

networks, we only committed the loops with the minimum 

setting of the GraphGAN model. This minimum setting is of 10 

epochs for the input simulated graphs, thus the loss results of 

this simulation mechanism could not provide a complete 

overview of the total learning performance for this model. 

Besides, because we have not thoroughly investigated the 

different setting of the GraphGAN model.  

 

The PCA results demonstrate the different mapping between the 

generated indoor navigation networks embedding relationships 

across different groups. The results provided below are these 

results among classes 1, 2, and 3; 4, 5, and 6; 7, 8, and 9, shown 

in Figures 5, 6, and 7. 

 

The UMAP results show the graphs have relatively sparse 

distributions of the network: most of the nodes are distributed 

along a centric area but without prominent spatial distributions. 

The results provided are the snapshots of using 5 neighbors, 25 
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neighbors, and 50 neighbors for this type of data evaluation 

aspect in Figures 8, 9, and 10. 

 

The analysis result for t-SNE shows step 1003 for the iterations 

of the Student-t distribution stochastic neighbor embedding 

features for the iteration between all evaluation nodes in the test 

graphs, shown in figure 11. 

 

Figure 5. The demonstration of the PCA 1-2-3 result. 

 

Figure 6. The demonstration of the PCA 4-5-6 result. 

 

Figure 7. The demonstration of the PCA 7-8-9 result. 

 

Figure 8. The demonstration of the UMAP 5 neighbors’ result. 

 

Figure 9. The demonstration of the UMAP 25 neighbors’ result. 

 

Figure 10. The demonstration of the UMAP 50 neighbors’ 

result. 

 

 

 

 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2021 
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-237-2021 | © Author(s) 2021. CC BY 4.0 License.

 
240



 

 

 

 

Figure 11. The demonstration of the t-SNE result with 1003 

steps of iterations. 

 

5. CONCLUSIONS 

Aiming to solve the graph analysis problems by introducing 

GAN models, we have successfully established a foundational 

GraphGAN framework for analyzing the critical nodes in indoor 

navigation works. Although the current solution is naïve and 

preliminary, it still proposes a promising solution for starting 

the first step to study more complex and large-scale indoor 

navigation networks. 

 

To mitigate the current bottlenecks of the proposed solution, we 

plan to configure the hyper test parameters with more loops, 

which may exceed 10,000 loops. An extensive set of nodes may 

exceed 10,000 for the number of nodes and connection degree 

more significant than 10. However, we still have to pay enough 

attention to the balance between payouts of data model analysis 

and efficiency without introducing an overwhelming 

computational burden on test platforms with acceptable price. 
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