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ABSTRACT: 
 
With every new generation of smart devices, new sensors are introduced, such as depth camera or UWB sensors. Combined with the 
rapidly growing number of smart mobile devices, indoor positioning systems (IPS) have seen increasing interest due to numerous 
indoor location-based services (ILBS) and mobile applications at large. Wi-Fi Received Signal Strength (RSS) based fingerprinting 
positioning (WF) techniques are popularly used in many IPS as the widespread deployment of IEEE 802.11 WLAN (Wi-Fi) networks, 
as this technique requires no line-of-sight to the access points (APs), and it is easy to extract Wi-Fi signal from 802.11 networks with 
smart devices. However, WF techniques have problems with fingerprint variance, i.e., fluctuation of the sensed signal, and efficient 
map updating due to the frequently changing environment. To address these problems, we propose a novel framework of IPS which 
uses particle filter to fuse WF and state-of-the-art CNN-based visual localization method to better adapt to changing indoor 
environment. The suggested system was tested with real-world crowdsourced data collected by multiple devices in an office hallway. 
The experimental results demonstrate that the system can achieve robust localization at a 0.3~1.5 m mean error (ME) accuracy, and 
map updating with a 79% correction rate. 
 
 

1. INTRODUCTION 

Location estimation is the essential procedure for several Indoor 
Location Based Services (ILBS) such as rescue management, 
patient monitoring in hospitals, and security applications that 
require a meter-level accuracy. Furthermore, the facing direction 
estimation is also needed for the navigation applications which 
guide users from point A to point B no matter indoor or outdoor. 
 
Along with the proliferation of using smartphones, the ILBS 
solutions specified for the sensors embedded in smartphones 
have been gaining attention due to the increasingly emerging 
indoor commercial application market. From a commercial 
perspective, typical requirements for these applications are user-
friendly, which means ease of use, low cost, robustness, high 
accuracy, easy to deploy, easy of calibration, and universal 
availability. Since GPS does not work indoors, many alternative 
localization techniques, based on various smartphone-equipped 
sensors/signals have been proposed to estimate user location. 
Among them, Wi-Fi received signal strength (RSS) based 
methods attracted continuous attention, as the widespread 
deployment of IEEE 802.11 WLAN (Wi-Fi) networks; the 
technique does not need line-of-sight to access points (APs), and 
it is easy to extract Wi-Fi signal from 802.11 networks with smart 
devices. 
 
Two main categories of signal power (RSS) based positioning 
techniques are fingerprinting and ranging (path loss) techniques 
(Atia et al., 2012). Ranging methods (Bernardos et al., 2010) 
relates RSS and distance between signal receiving device to 
transmitter with regression-based algorithm. Fingerprinting 
methods is to determine the location of signal receiving device 
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by comparing the obtained RSS data with a database which 
contains measured RSS data at certain calibration points (CPs). 
Both fingerprinting and ranging technologies have one common 
issue that they suffer from RSS variance problem, which is 
caused by measurement noise, including the discrepancy of 
device types, user direction and environmental changes, such as 
altering in the layout of indoor environment, and removing, 
replacing, adding new APs. To continuously adapt to RSS 
changes for RF-only positioning system, the issue is traditionally 
treated as either calibration problem (Anagnostopoulos, 2017; 
Bernardos, et al., 2010; Lim, et al., 2013) or map updating 
problem (Atia, et al., 2012; Sun, et al., 2008; Wu, et al., 2017; 
Xu, et al., 2019; Yin, et al., 2005; Yin, et al., 2008) and solved 
with hyperparameter optimization methods. For example, 
(Anagnostopoulos, 2017) present an approach to on-line 
recalibration of the propagation model parameters, in a Bluetooth 
low energy beacons (BLE)-based RSS ranging positioning 
methods. (Atia, et al., 2012) and (Xu, et al., 2019) construct RSS 
radio map for each APs with Gaussian Process Regression (GPR) 
model and on-line updating/calibrating hyperparameters by using 
maximizing loss function and particle filter respectively. The 
common issues for these hyperparameter optimization methods 
are: (1) training process of these algorithms are usually 
computationally expensive, (2) there is no universal model for all 
places of indoor environment or all signal sources (APs) due to 
the complex structures and dynamic nature of indoor 
environment, (3) the quantity and quality of crowdsourcing data 
from a certain user may not be sufficient for updating the entire 
model, (4) all these algorithms need a continuing data collection 
or measurement covering the whole site which is not applicable 
for the instant static point positioning application, (5) these 
algorithms cannot adapt to large changes caused by removing or 
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adding APs (Atia, et al., 2012; Bergamo et al., 2002; Chen et al., 
2002; He et al., 2015; Lim et al., 2010;). A more adaptive scheme 
is to directly update the signal map through crowdsourcing data 
with optimized positioning results by using Wi-Fi fingerprinting-
IMU sensor fusion algorithm (Chang et al., 2014; Kim et al., 
2015; Taniuchi et al., 2015; Wu et al., 2015). The main 
drawbacks of these motion sensor-based methods are (1) the 
accuracy of motion sensor suffer from measurement noise, (2) 
executing the complex initialization process is not easy for 
unprofessional users. 
 
In this work, we propose a novel system with particle filter (PF)-
based sensor fusion technology which integrates positioning 
estimates calculated with Wi-Fi RSS and visual data to 
simultaneously achieve efficient indoor positioning and radio 
map updating. The proposed system does not require special 
infrastructure or extra sensors. Additionally, this system is user 
friendly by using one-shot measurement, including 10~15 
seconds of Wi-Fi RSS data acquisition and one image, as input 
for finishing the whole localization estimation process. 
Moreover, the system has the potential to be used in any indoor 
environment with meter level average positioning accuracy, and 
efficiently updating radio map with crowdsourced data. The rest 
of this work is organized as follows. In section 2, we introduce 
the proposed system including the particle filter and map 
updating methods. In section 3, we present the implementation of 
system, including details of building indoor map and test 
datasets. The test results are presented and discussed in section 4. 
Finally, the conclusions are summarized in section 5. 
 

2. PROPOSED SYSTEM 

In the previous work (Yang et al., 2020), we presented a system 
that allows user to gain static 6DoF (map frame) indoor 
positioning information with meter level average accuracy, by 
firstly running a Bayes’-based WF algorithm to generate a coarse 
location estimation (Figure 1). The fingerprinting matching 
problem in WF system is solved to obtain the posterior 
distribution by using Bayes’ rule, which is described as, 
 

𝑝(𝑙|𝑜) = !(#|%)!(%)
!(#)

                                   (1) 
where  𝑝(𝑙|𝑜) = posterior of a possible CP location 𝑙 by given 

the observation 𝑜 
 𝑝(𝑜|𝑙) = likelihood 
 𝑝(𝑙) = prior probability 
                𝑝(𝑜) = margin 
 
Following the location estimation is refined by InLoc1 (Taira et 
al., 2018) which integrates deep-learning and photogrammetric 
technologies aided by the local 3D map. The advantages of this 
system are: (1) the search space of 3D map used in InLoc is 
reduced from a large-scale map to a local segment by using the 
coarse location resulted from WF, and (2) the refined localization 
estimation from InLoc outperforms the traditional WF in average 
accuracy. However, this system cannot optimize the localization 
results when drifts happen in InLoc, and the system cannot 
perform the map updating function. On the other hand, the Bayes-
based sensor fusion method has been demonstrated to be a 
promising solution for the map updating task (Yang et al., 2019; 
Xu, et al., 2019).  
 
Therefore, the goal of this work is to make one step further by 
applying an extra particle filter, which is suitable for no 
gaussian/nonparametric positioning task (Arulampalam, et al., 

 
1 https://github.com/HajimeTaira/InLoc_demo 

2002; Gustafsson, 2010) to combine WF and InLoc for 
localization and radio map updating (Figure 2). Since the 
positioning result from WF is only a coarse estimation used for 
optimizing the search space of 3D map in InLoc process in most 
cases, the complex and computationally expensive models of 
signal propagation, such as path loss, Gaussian Process 
Regression (GPR) or deep-learning, are not necessary in our 
work. Thus, the strategy of map updating in our system is not the 
online calibration of hyperparameters but correctly locating and 
storing crowdsourcing data in map dataset. Similar map updating 
strategies were proposed by (Gallagher, et al., 2010; He, et al., 
2016; Lim, et al., 2013). However, since all these researches 
applied only Wi-Fi sensor for both localization and map 
updating, the systems can easily fall into a vicious cycle in which 
the noisy positioning results were used for map updating and then 
the incorrectly updated map was used for the future localization 
process. In our system, the optimized localization results from 
particle filter can significantly mitigate this issue. The proposed 
filter is defined as follows: 
1. The top 𝑖𝑡ℎ WF results (equation 1), which are the possible 

2D locations 𝑥,' and their corresponding posterior 𝑝', are 
used as particles and weights. Therefore, the particles set has 
the form as 𝑆(|()* = .𝑥,' , 𝑤()*' 1, 𝑖 = 1. . 𝑛, 𝑤𝑖𝑡ℎ	𝑤()*' = 𝑝' . 
Note that the 𝑡 − 1 and 𝑡 here means before and after 
updating, since our system is Markovian, and the 
measurements do not contain multiple time frames. In the 
experiment, we tested different number of particles, 𝑛 = 3 
and 𝑛 = 5 e.g., the top 3 and top 5 highest posterior 
probability in WF results. 

2. Next, with InLoc horizontal localization result 𝑥9, the weight 
of each particle is then updated with the likelihood function 
same as the Bootstrap particle filter (Marron, et al., 2007): 
 

𝑤(' = 𝑤()*' ∙ 𝑝'(𝑥9|𝑥,')                          (2) 
with 

𝑝'(𝑥9|𝑥,') = exp >− ‖,-),.!‖"

/0"
?                    (3) 

where               	𝜎 = scaling parameter 
 

3. Finally, the localization is estimated by plugging particles 
and updated weights in the following estimation function: 
 

𝑙A = ∑ 1#!,.!
∑ 1#!$
!%&

3
'4*                                (4) 

 
For each users’ measurement includes one fingerprint and one 
query picture, this particle filter runs one iteration since there is 
only one updating information from photogrammetric result. 
With estimated localization 𝑙A via particle filter, the map updating 
mechanism is realized by using function: 
 

𝑉D𝑙A, 𝑥,56,E = F𝑈𝑝𝑑𝑎𝑡𝑖𝑛𝑔, 𝑖𝑓	L𝑙
A − 𝑥,56,L ≥ 𝑠

𝑁𝑜	𝑢𝑝𝑑𝑎𝑡𝑖𝑛𝑔, 	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
       (5) 

 
where 𝑥,56, is the localization estimation which has the 
maximum posterior probability among WF results. In this work, 
the threshold was set to 𝑠=3 m; the same as the length of a cell in 
the radio map. Note that this parameter may vary with changing 
cell size. If it needs to be updated, the crowdsourcing Wi-Fi RSS 
fingerprint from user device will be added into the cell where  𝑙A 
located. 
 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2021 
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-259-2021 | © Author(s) 2021. CC BY 4.0 License.

 
260



 

 
Figure 1. Workflow of Wi-Fi fingerprinting system. 

 

Figure 2. Workflow of proposed system. 
 

3. EXPERIMENT 

The data gathering and map creating methods are similar to the 
previous work (Yang, et al., 2020), in which the 3D map is built 
by the RGBD SLAM (RTAB-map) with Kinect V1 RGBD 
camera and LooMo robot, and Wi-Fi fingerprints in radio map 
are collected by a laptop with a 3 m interval, as a balance between 
labor cost and accuracy, between every two calibration points. In 
this work, we implement experiments in another office hallway 
(55 m*3 m) at the Ohio State University, see Figure 3 and Table 
1. Additionally, to comprehensively test the performance of 
proposed system under the RSS variance challenge, multiple 
devices are used to generate Wi-Fi fingerprints dataset. 
 
In the 3D mapping process, the changing of illumination in the 
environment caused significant drift in the RGBD SLAM process 
which is still significant after post processing with only RGBD 
data. To further mitigate the drifting issue, we generated 
simulated Lidar point cloud data based on the depth data from 
RGBD camera, and then used it in the post processing for 
optimization, see Figure 4. All these functions are included in 
RTAB-map library. Finally, the algorithm resulted in a 3D model 
of hallway with 50 million colored points, 4568 key frames 
including 6DoF camera poses of RGB images (640*480), and 3D 
scan data. 
 
The radio map is built with 18 calibration points, where the Wi-
Fi RSS was measured within a period from 50 to 60 seconds, and 
the MAC addresses and IP information of APs are also recorded. 
Then the fingerprints are generated by PWF methods, the same 
way is described in (Yang et al., 2018). The RSS quality of all 18 
fingerprints in radio map are stable and mainly distributed 
between -70 ~ -85 dBm, see Figure 5. A VAIO Z Canvas laptop 
was used for radio map data collection, as well as the coordinates 

of CPs are manually picked from 3D model rendered from 
RTAB-map (red marker). 
 

 
Figure 3. Experiment environment (left) and top view of 3D 

model rendered from RTAB-map (right). 
 

 
Figure 4. (a) shows one frame of RGBD data with simulated 
Lidar point cloud (red points). (b) is the screen shot of post 

processing with ICP selection in RTAB-map. (c) shows post 
processed 3D model with only RGBD data. (d) shows post 

processed 3D model with both RGBD and simulated Lidar data. 
 

 
Figure 5. RSS values of all fingerprints in radio map. 
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Devices for collecting 
Wi-Fi fingerprints 

Dataset Duration of each 
measurement 

Devices for taking 
images 

Dataset Image size 
(Pixel) 

VAIO Z Canvas Radio 
map 

50~60 sec Kinect V1 Map 640*480 

VAIO Z Canvas, 
ThinkPad X1, 
HP ProBook 

Test 
dataset 

15~25 sec Kinect V1, 
SONY XPERIA X 

Query 
image 

640*480, 
2,160*2,880 

Table 1. Devices used in test.

Test datasets are built on 18 points, where 3 laptops (VAIO Z 
Canvas, ThinkPad X1, HP ProBook) and 2 cameras (Kinect V1, 
SONY XPERIA X smartphone) are used for collecting Wi-Fi 
RSS and query images respectively. The configuration of test 
points is set as in our previous work (Figure 6) (Yang et al., 
2020), which means that black points are randomly set in the 
hallway and green points are set between calibration points 
aligned with the middle line of the hallway where the mapping 
robot LooMo will pass over it. Therefore, the query images 
recorded by Kinect have 6DoF camera pose obtained from 
RGBD SLAM as ground-truth, while query images recorded by 
the smartphone have only 2D location ground-truth. Finally, 7 
points with black maker and 11 points with green marker are set 
in the testing environment. For a thorough comparison in 
localization performance, in this study we also take query images 
on green points with the SONY smartphone (without heading 
ground truth). As a result, a totally 9 groups of test datasets are 
finally created, see Table 2.  
 

 
Figure 6. Examples of markers (left), in which CP is denoted in 
red, test point is in black and green; (Right) shows markers in 

the 3D model. 
 
In the fingerprint datasets, the RSS variance problem can be seen 
from two aspects: (1) the RSS values of fingerprints which 
collected by different devices shown in Figure 7, and (2) the total 
number of APs in different dataset, see Table 3. The 
measurement period of collecting Wi-Fi fingerprints for building 
test dataset is varied from 15 to 25 seconds. 
 
The query images (2,160*2,880) by SONY XPERIA X 
smartphone are acquired at both green and black test points. In 
the middle of experiment, there is a renovation project conducted 
at the testing site. Therefore, some images contain significant 
noise by dynamic elements, such as moving people and objects, 
see Figure 8 and Figure 9, which is a common challenge to 
robustness of photogrammetry-based ILBS in the real-word 
implementation. The 6DoF camera poses associated query 

images from Kinect V1 camera for black test points are selected 
from RTAB-map results in a similar manner as in previous work 
(Figure 10). From Figure 10, it is easy to see that the Kinect RGB 
camera is more sensitive to the change of illumination in the 
environment. The intrinsic parameters of two cameras used in 
InLoc are same as in previous work. Due to the limitation of the 
3D mapping technique used in this work, we only map the 
hallway in a short distance from one direction with RGBD 
SLAM. Correspondingly, the query images are also recorded in 
a similar heading direction as there is no observation from other 
directions stored in map dataset for localization. Therefore, the 
performance of proposed system may vary if tested with different 
map dataset. 
 

Dataset 
name 

Hardware 
for Wi-Fi 

RSS 
measuremen

t 

Test 
points 
type 

(marker 
color, 

amount) 

Hardware 
for taking 

query 
image 

Type of 
ground-

truth 

h_b_s HP Black, 7 SONY 2D 
location 
(X, Y) 

h_g_k HP Green, 
11 

Kinect 6DoF 
camera 

pose 
h_g_s HP Green, 

11 
SONY 2D 

location 
(X, Y) 

t_b_s ThinkPad Black, 7 SONY 2D 
location 
(X, Y) 

t_g_k ThinkPad Green, 
11 

Kinect 6DoF 
camera 

pose 
t_g_s ThinkPad Green, 

11 
SONY 2D 

location 
(X, Y) 

v_b_s VAIO Black, 7 SONY 2D 
location 
(X, Y) 

v_g_k VAIO Green, 
11 

Kinect 6DoF 
camera 

pose 
v_g_s VAIO Green, 

11 
SONY 2D 

location 
(X, Y) 

Table 2. Configuration of 9 groups of test datasets. 
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Figure 7. Example of RSS variance problem between Wi-Fi 
fingerprints collected on the 11th green test point by three 

devices. The boxplot in (a) shows the value of all measured 
RSS. Note that RSS value measured by ThinkPad has the 

smallest distribution interval among the three datasets. Samples 
of RSS value from 41 APs are presented in (b). It is obvious 

that the RSS collected by ThinkPad is the weakest among three 
devices, while RSS measured by HP is slightly higher than the 

RSS measured by VAIO. 
 

Fingerprint 
dataset 

Hardware for 
Wi-Fi RSS 

measurement 

Test points type 
(marker color, 

amount) 

Number 
of APs 

Radio map VAIO Red, 18 379 
h_b HP Black, 7 156 
h_g HP Green, 11 170 
t_b ThinkPad Black, 7 323 
t_g ThinkPad Green, 11 325 
v_b VAIO Black, 7 326 
v_g VAIO Green, 11 344 
Table 3. Number of APs in different Wi-Fi fingerprint dataset. 

The first row is the training dataset (radio map), and the rest are 
the test datasets. 

 

 
Figure 8. Query images took by SONY smartphone on 7 black 

test points. 

 
Figure. 9 Query images took by SONY cellphone on 11 green 

test points. 
 

 
Figure 10. Query images took by Kinect V1 on 11 green test 

points. It is obvious that the Kinect RGB camera is sensitive to 
the change of illumination in the environment. 

 
4. EXPERIMENTAL RESULTS 

In this section, based on experimental results, localization and 
map updating performance are discussed. As mentioned in 
section 5.3, two particle filter number configurations, 3 and 5, are 
tested in our experiments. Since the particles are set with the cell 
center, the changing of particle number has also an impact on the 
map search space in InLoc. The localization performance of the 
proposed system on each test point including WF, InLoc and final 
results are presented in Table 4 (3 particles) and Table 5 (5 
particles). The F value in InLoc category means the algorithm 
failed in location estimation due to a poor initial location by WF 
which results in an incorrect search space and map data. 
Correspondingly, the following PF will have also a F result. 
Therefore, the mean absolute error of each algorithm is calculated 
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with the available data. Note that all F results happened in the test 
(particle number = 3) with the dataset which contains the Wi-Fi 
fingerprints collected by ThinkPad. The reason for this issue is 
that a high localization error in WF results, caused by the large 
RSS variance problem at certain locations, such as 11th green 
point shown in Figure 7, lead to a wrong map searching space for 
InLoc. To solve this problem, we extend the search space from 3 
cells to 5 cells. The following test results show that the system 
can successfully estimate location with this search space, see 
Table 5. Therefore, localization results with 5-particle setting 
were used for the map updating experiment in the next step. 
 
In spite of failed estimations, the PF performance in both tests 
achieved similar accuracy level in mean absolute error (MAE) 
which are 0.3~1.3 m and 0.3~1.5 m for 3 and 5 particle number 
settings, respectively. Notably, take the localization for green test 
points as an example, system performance with different devices 
are stable at a submeter level, e.g., 0.6m with h_g_k, 0.7 m with 
h_g_s, 0.4 m with t_g_k, 0.4 m with t_g_s, 0.3 m with v_g_k and 
0.5 m with v_g_s. Such performance of the system can fulfill the 
accuracy requirement for most of ILBS, which usually require 
meter-level accuracy (Atia et al., 2012). It also clear that the PF 
outperformed the classic WF which achieved MAE accuracy in 
1.6~3.0 m, and could correct the drifting in InLoc, such as the 
localization estimation for 5th black point with the query image 
taken by the SONY smartphone. On the other hand, the overall 
performance of PF is slightly worse than only InLoc results due 
to the low accuracy WF positioning results used, but the final 
accuracy level is still acceptable for most ILBS applications.  
 
With the localization estimation from 5-particle solution, the 
radio map updating method is tested, and the statistics of 
performance are summarized in Table 6. The result shows 
particle filter-based map updating method achieved a 79% 
correct rate, clearly outperforming the method we used in 
previous work which had an accuracy of 64%. As expected, this 
result demonstrates that the increasing positioning accuracy can 
significantly improve the performance of the map updating 
function. On the other hand, those wrong updating happened with 
PF error > 1 m yet the error budget of false updating is only 1 
cell. However, when both WF and PF have a large localization 
error in the same direction, the updating mechanism encounters 
malfunction. For example, on the 5th test point in t_b_s, the radio 
map needs to be updated but the updating function does not 
activate due to the gap between WF and PF localization results is 
not larger than the threshold. 
 

5. CONCLUSION 

A novel particle filter-based sensor fusion indoor positioning 
system that works with Wi-Fi and camera data from smart 
devices is presented in this chapter. This approach could offer an 
instant 2D localization result with a 0.3 ~ 1.5 m MAE accuracy 
in map frame to users as well as simultaneously update the radio 
map dataset with crowdsourcing Wi-Fi fingerprint data when it 
is necessary. The main attributes of the proposed system, which 
includes a robust solution to challenges, such as RSS variance 
problem and the presence of dynamic objects in the indoor 
environment, are accurate static indoor positioning and map 
updating with crowdsourced data, demonstrated with the data 
collected in a real-word office hallway. 
 
Though most PF results (84%) are at submeter level accuracy, 
few localization estimations on certain test points shifted with 

 
2 https://shop.leica-geosystems.com/ 

meter level error due to the drifting happening in the previous 
InLoc step. One main reason for this matter is the quality of the 
map dataset. Since so far there is no suitable benchmark dataset 
for the proposed system, the solution is to create map datasets 
with a more accurate and robust SLAM system. Obviously, there 
are many commercial SLAM systems, such as Leica BLK 3602 
and GeoSLAM ZEB-REVO RT3 that are available on the market. 
On the other hand, the performance of SLAM used in this work, 
RTAB-Map, can be improved by integrating RGBD camera with 
2D/3D Lidar in the SLAM system (Labbé et al., 2019). However, 
building this kind of multi sensor SLAM system face challenges 
such as accurate sensor-to-sensor calibration and good 
synchronization which are important to avoid poor registration of 
the data generated from different sensors. Therefore, to build a 
better indoor map dataset remains future work. 
 

Table 6. Statistics of radio map updating performance. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

3 https://geoslam.com/solutions/zeb-revo-rt/ 

 Number of correct 
updating 

Number of total 
updating 

h_b_s 1 2 
h_g_k 2 3 
h_g_s 2 3 
t_b_s 1 1 
t_g_k 4 4 
t_g_s 4 4 
v_b_s 0 1 
v_g_k 4 4 
v_g_s 1 2 
Total: 19 24 
Correct rate: 79% 
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Dataset Method Horizontal localization error on each test point (m) Horizontal 
MAE (m) 1 2 3 4 5 6 7 8 9 10 11 

h_b_s WF 1.8 1.3 4.1 5.7 2.5 4.4 1.0     3.0 
InLoc 0.2 0.9 2.3 1.5 3.6 0.5 0.6     1.4 

PF 0.0 1.1 1.9 1.7 3.4 0.6 0.5     1.3 
h_g_k WF 1.5 1.0 2.0 6.7 1.5 4.5 1.1 4.1 1.0 2.0 1.3 2.4 

InLoc 0.3 0.2 0.1 0.0 0.5 1.0 0.1 0.1 0.5 0.7 0.4 0.3 
PF 0.8 0.2 0.9 0.7 0.6 1.1 0.3 0.2 0.6 0.9 0.6 0.6 

h_g_s WF 1.5 1.0 2.0 6.7 1.6 4.5 1.1 4.1 1.0 2.0 1.3 2.4 
InLoc 0.3 0.1 0.4 0.1 0.3 0.3 0.2 0.7 1.0 1.6 0.7 0.5 

PF 0.9 0.3 0.4 0.7 0.2 0.6 0.2 0.7 0.7 1.7 1.1 0.7 
t_b_s WF 1.3 2.0 1.2 3.5 3.7 1.5 6.9     2.8 

InLoc 0.4 0.7 2.3 0.9 1.1 0.4 F     1.0 
PF 0.6 1.3 1.8 0.8 0.9 0.7 F     1.0 

t_g_k WF 1.5 1.0 1.0 3.7 1.5 1.6 4.2 1.0 4.1 1.0 4.9 2.3 
InLoc 0.3 0.2 0.1 0.0 0.4 0.2 0.1 0.3 0.9 0.2 F 0.3 

PF 0.5 1.1 0.0 0.0 1.6 0.4 0.1 0.3 0.8 0.1 F 0.5 
t_g_s WF 1.5 1.0 1.0 3.7 1.5 1.6 4.2 1.0 4.1 1.0 4.9 2.3 

InLoc 1.0 0.3 0.4 0.6 0.3 0.4 0.3 1.1 1.9 0.9 F 0.7 
PF 1.1 1.2 0.3 0.5 1.6 0.1 0.1 0.7 1.6 0.9 F 0.8 

v_b_s WF 1.8 1.3 4.1 0.7 0.8 1.8 1.0     1.6 
InLoc 0.2 0.4 2.3 0.9 3.2 0.4 0.5     1.1 

PF 0.2 1.4 1.8 0.8 2.4 0.7 0.6     1.1 
v_g_k WF 4.6 1.0 2.0 3.7 1.5 1.6 1.1 1.0 4.1 2.0 1.3 2.2 

InLoc 0.3 0.2 0.1 0.0 0.5 0.5 0.1 0.3 0.5 0.2 0.7 0.3 
PF 0.6 0.0 0.2 0.2 0.4 0.5 0.0 0.3 0.5 0.4 0.5 0.3 

v_g_s WF 4.6 1.0 2.0 3.7 1.5 1.6 1.1 1.0 4.1 2.0 1.3 2.2 
InLoc 0.6 0.1 1.4 0.2 0.4 0.1 0.1 0.6 0.0 0.4 0.2 0.4 

PF 0.9 0.1 1.4 0.0 0.2 0.2 0.1 0.5 0.1 0.0 0.2 0.3 
Table 4. Horizontal localization performance of proposed system with particle number = 3. 

 
Dataset Method Horizontal localization error on each test point (m) Horizontal 

MAE (m) 1 2 3 4 5 6 7 8 9 10 11 
h_b_s WF 1.8 1.3 4.1 5.7 2.5 4.4 1.0     3.0 

InLoc 0.2 0.9 2.3 1.5 3.6 0.4 0.7     1.4 
PF 0.0 1.1 2.0 1.7 3.4 0.6 0.7     1.4 

h_g_k WF 1.5 1.0 2.0 6.7 1.5 4.5 1.1 4.1 1.0 2.0 1.3 2.4 
InLoc 0.3 0.2 0.1 0.0 0.5 1.0 0.1 0.4 0.5 0.8 0.2 0.4 

PF 0.8 0.2 0.9 0.5 0.6 1.1 0.3 0.2 0.6 1.0 0.9 0.6 
h_g_s WF 1.5 1.0 2.0 6.7 1.5 4.5 1.1 4.1 1.0 2.0 1.3 2.4 

InLoc 0.2 0.4 0.4 0.9 0.4 0.2 0.1 0.6 1.0 2.1 0.2 0.6 
PF 0.7 0.7 0.5 0.6 0.1 0.4 0.3 0.7 0.8 2.0 1.0 0.7 

t_b_s WF 1.3 2.0 1.2 3.5 3.7 1.5 7.0     2.8 
InLoc 0.2 0.9 2.3 0.8 7.4 0.4 0.7     1.8 

PF 0.4 0.6 2.1 0.9 2.5 0.7 1.0     1.2 
t_g_k WF 1.5 1.0 1.0 3.7 1.5 1.6 4.2 1.0 4.1 1.0 4.9 2.3 

InLoc 0.3 0.2 0.1 0.0 0.5 0.5 0.1 0.3 0.4 0.2 0.4 0.3 
PF 0.5 0.6 0.0 0.0 0.7 0.7 0.0 0.3 0.4 0.1 0.7 0.4 

t_g_s WF 1.5 1.0 1.0 3.7 1.5 1.6 4.2 1.0 4.1 1.0 4.9 2.3 
InLoc 0.4 0.1 0.6 0.3 0.4 0.2 0.4 0.9 0.4 0.9 0.2 0.4 

PF 0.6 0.7 0.6 0.1 0.1 0.0 0.3 0.8 0.3 0.9 0.1 0.4 
v_b_s WF 1.8 1.3 4.1 0.7 0.8 1.8 1.0     1.6 

InLoc 0.2 0.9 2.3 0.8 5.2 0.6 0.7     1.5 
PF 0.2 1.2 2.1 0.8 4.8 0.7 0.6     1.5 

v_g_k WF 4.6 1.0 2.0 3.7 1.5 1.6 1.1 1.0 4.1 2.0 1.3 2.2 
InLoc 0.3 0.2 0.1 0.0 0.5 0.5 0.1 0.3 0.5 0.2 0.1 0.3 

PF 0.6 0.0 0.2 0.2 0.5 0.5 0.0 0.2 0.5 0.3 0.0 0.3 
v_g_s WF 4.6 1.0 2.0 3.7 1.5 1.6 1.1 1.0 4.1 2.0 1.3 2.2 

InLoc 0.2 0.1 0.8 1.5 0.4 0.2 0.2 0.4 1.2 0.9 0.3 0.6 
PF 0.5 0.1 0.6 1.3 0.2 0.2 0.1 0.4 1.0 0.6 0.3 0.5 

Table 5. Horizontal localization performance of proposed system with particle number = 5.
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