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ABSTRACT: 

 

In this paper we introduce a topology-aware data-driven approach for 3D reconstruction of indoor spaces, which is an active research 

topic with several practical applications. After separating floor and ceiling, segmentation is followed by computing the 𝛼-shapes of the 

segment. The adjacency graph of all  𝛼-shapes is used to find the intersecting planes. By employing a B-rep approach, an initial 3D 

model is computed. Afterwards, adjacency graph of the intersected planes which constitute the initial model is analyzed in order to 

refine the 3D model. This leads to a water-tight and topologically correct 3D model. The performance of our proposed approach is 

qualitatively and quantitatively evaluated on an ISPRS benchmark data set. On this dataset, we achieved 77% completeness, 53% 

correctness and 1.7-5 cm accuracy with comparison of the final 3D model to the ground truth.  

 

 

1. INTRODUCTION  

Wide range of applications of 3D building models such as  

Building Information Modelling (BIM), facility management, 

Indoor Location Based Services (ILBSs), virtual and augmented 

reality, and emergency response  motivates several researchers in 

photogrammetry, computer vision, computer graphics and other 

relevant disciplines to increase the level of automation of the 

reconstruction process (Mura et al., 2016; Ochmann et al., 2015; 

Pintore et al., 2020; Sahebdivani et al., 2020; Sanchez & Zakhor, 

2012). Meanwhile, with the increasing availability of various 

types of the sensors for generating point clouds such as terrestrial 

laser scanners (Jung et al., 2018) as well as mobile laser scanners 

(Karam et al., 2018; Maboudi et al., 2018), and HoloLens 

(Hübner et al., 2020) point clouds are ubiquitous data source for 

3D modelling of indoor (and outdoor) spaces. Low-cost and 

mobile system offer huge datasets, but most users prefer to work 

with vector representation which is much lighter and more 

manageable. High demand for 3D models and availability of data 

capturing devices with various prices and quality ranges, 

motivates ongoing research on automated 3D reconstruction 

approaches. since main structural elements of the indoor space of 

the buildings could` be generated directly or from extrusion of a 

2D layout of the building, both 3D and 2D approaches are 

investigated by researchers for indoor 3D modelling (Bassier et 

al., 2020; Mura et al., 2016).  

 

Several problems arise in real world 3D building reconstruction. 

One of the challenges is that the indoor spaces contain clutters 

(mostly due to furniture) that should be separated from 

permanent components of the buildings (Mura et al., 2016). 

Occlusion and incompleteness of the data are another important 

challenge which diminishes the completeness of the raw dataset 

and leads to missing elements in the reconstructed mode, 

misinterpretation of the structures and also can decrease the 

accuracy of the model. Complex layout of indoor spaces (Jung et 

al., 2018), and adding semantic information like doors and 

windows to the 3D model are the other challenges which attracted 

the attentions. 

                                                           
* Corresponding author 

 

Floor, ceiling, and walls are main structural elements of the 

buildings. Moreover, in most of the buildings, floor and ceiling 

are parallel and horizontal. They also serve as lower and upper 

bounds of height of the points in each floor. Separating floor and 

ceiling is one of the first steps in many 3D reconstruction 

approaches  which are mostly based on height histogram (Jung et 

al., 2018; Tran, Khoshelham, Kealy, et al., 2019) or normal 

vector analysis (Sanchez & Zakhor, 2012). There are some other 

approaches like directly applying RANSAC for separating planes 

with most inliers (floor and ceiling) which are less efficient. (Wu 

et al., 2020) used RANSAC followed by a grid-based outlier 

removal algorithm to separate the floor and ceiling and 

eliminating the points on the ceiling height (for example in the 

staircases) which do not belong to the ceiling part. While most of 

the proposed approaches assume a flat ceiling, some research like 

(Mura et al., 2016) also allow having slanted ceiling.  

 

Walls of the buildings are most important parts of the 3D models. 

After separating the floor and ceiling, different methods could be 

used to detect and model the walls. Here again the trivial 

assumption for the walls of the most buildings is to be vertical. 

Moreover, in a typical building, it is generally expected that wall 

structures cover a vertical extent that connect floor to the ceiling, 

while doors, most windows and almost all clutters do not. While 

most of the existing methods assume Manhattan-world layout of 

the walls, curved walls are also considered in some investigations 

(Turner, 2015; Yang et al., 2019) 

 

In more recent works an attention shift towards semantics to 3D 

model is also notable (Mura et al., 2016; Ochmann et al., 2019). 

Adding windows and doors to the 3D geometric model which 

already consists of floor, ceiling and walls will result in LOD3 

(Jung et al., 2018; Ochmann et al., 2015). Nevertheless, 

modelling the wall openings like door and window is still 

challenging for many studies (Jung et al., 2018). Various 

approaches are introduced in  (L. Díaz-Vilariño et al., 2017), 

(Assi et al., 2019)  and (Jung et al., 2018) to detect door openings. 

(Malihi, Valadan Zoej, Hahn, et al., 2018) employed a density-
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based filtering approach which exploits perceptual organization 

for window detection from outdoor photogrammetric point 

cloud. 

 

Separating the rooms is another step which is demanded by many 

applications. Recently, the trajectory of the mobile scanners 

could also be delivered (Karam et al., 2018; Maboudi et al., 2017) 

which provides valuable information for 3D reconstruction and 

separating the rooms. Some researchers use scanner locations or 

sensor trajectory for initial room segmentation (Jung et al., 2018; 

Ochmann et al., 2015). Nonetheless, this information is not 

always available and it decrease the generalization of the 

approaches which rely on sensor position and trajectory. 

 

This paper is organized as follows: after this introduction, 

literature review of the recent state-of-the-art on indoor 3D 

building reconstruction approaches is presented in section 2. 

Section 3 introduces our topology-aware 3D reconstruction 

method. Experimental results and evaluation of the reconstructed 

models obtained from our approach are reported in section 4. 

 

2. LITERATURE REVIEW 

3D reconstruction of indoor and outdoor spaces of the buildings 

has been a topic of high interest in the last two decades (Ikehata 

& Yan, 2015; Malihi, Valadan Zoej, & Hahn, 2018; Ochmann et 

al., 2019; Sanchez & Zakhor, 2012). Although indoor and 

outdoor building reconstruction are closely related (Mura et al., 

2016) and the ultimate aim of a complete reconstruction process 

is the seamless reconstruction of inner and outer shell of the 

buildings,  some challenges are different.   

 

Modelling and reconstruction approaches could be clustered into 

two general categories, namely model-riven and data-driven 

methods. Model driven approaches are limited by the 

assumptions in the utilized model. For example, grammar-based 

approaches only work reasonable for grid-like architectural 

designs. In the other hand, data driven approaches are more 

flexible but more sensitive to noise and completeness of the 

dataset. Some hybrid methods like (Wu et al., 2020) also try to 

have the best of both worlds. However, the proposed hybrid 

approaches are still far from being a reliable solution for versatile 

data and applications. 

 

Projecting the point cloud on 2D and point cloud slicing are two 

common approaches which are used by many researchers (Jung 

et al., 2018; Xie et al., 2019) for generating a 2D layout of the 

interior spaces. Usually these 2D maps are extruded to the height 

of the ceiling to generate a 3D model (more exactly 2.5D model) 

of the buildings. Some researchers used one or several slices at 

different heights between the height of the top of the doors and 

ceiling to minimize the effect of common clutters and occlusions 

of indoor spaces (Previtali et al., 2018; Yang et al., 2019). (Jung 

et al., 2018) proposed an approach which is based on 2D 

processing of the wall candidates and assumes a Manhattan 

structure for the building. After separating walls from ceiling and 

floor, 2D boundaries of each room and corridors are extracted 

using some morphological operations and skeleton extraction. 

The opening of each room is also closed and regularized using 

Douglas-Peucker algorithm. Then, parallel lines are detected and 

used to form the volumetric cuboid structure of the walls. Finally, 

doors and windows are added to the model. A volumetric, 

parametric 3D reconstruction approach is introduced in 

(Ochmann et al., 2015) which assumes that each room is scanned 

from one position (or a few positions) and utilizes this prior 

information for separating the rooms. In this approach 3D 

buildings model are considered as a planar graph in which edges 

are walls and nodes are the intersection of the walls. Each edge 

is attributed with its thickness. Furthermore, faces of this planar 

graph represents the layout of the rooms. Considering the walls 

as piece-wise linear entities, vertical wall candidates are 

projected in 2D and extended to build a set of possible wall 

surfaces. Then, an energy minimization strategy is employed to 

labels the wall candidates and edges separating the regions with 

different labels are extruded to build the 3D model which is 

enriched by doors and windows. 

 

A shape grammar based approach is introduced in (Tran, 

Khoshelham, Kealy, et al., 2019). Based on the assumption that 

most indoor environments belong to a regular Manhattan world, 

a shape grammar for the generation of navigable spaces and 

building elements is proposed which can manage the 

incompleteness of the data. One important step for completing 

the topology (connectivity) is detecting the doors which is done 

manually. (Mura et al., 2016) employ a set of point clouds with 

known view-points (with at least one location per room) and use 

visibility clustering method to estimate the room shapes. 

Detection of structural elements (floor, ceiling, walls) and 

separating them from furniture is performed by analyzing the 

adjacency graph of co-planar points. This approach needs an 

interactive refinement step to correct the wrong results which are 

mainly originated from missing data. An indoor 3D modelling 

framework is presented in (Ikehata & Yan, 2015) which 

reconstructs indoor scenes using a structured model from 

panorama RGBD images. The data is captured with a camera and 

a depth sensor mounted on a motorized sensor. The geometry of 

structural elements is presented via the scene graph. For 

manipulating the scene graph a new grammar is defined. The 

grammar transformation rules are sequentially applied to recover 

the indoor geometry. Geometric representations and 

reconstruction algorithms are chosen based on  various 

applications like scene visualization, automated floor plan 

generation, tunable reconstruction, and scan to BIM. 

 

3. METHODOLOGY 

In this paper, we propose a data-driven approach to reconstruct a 

3D model of indoor space of the buildings using point clouds. 

The proposed approach works directly on point clouds and no 

assumption about the sensor is considered. Moreover, the 

position of the sensor or trajectory of the mobile laser scanner are 

not used in any step. Furthermore, our approach does not rely on 

Manhattan-world assumptions. The proposed approach is 

appropriate for typical buildings that ceilings and floors are 

planar intersecting the vertical walls. The main steps of the 

proposed approach are illustrated in Figure 1.  

 

 

Figure 1: Main steps of the proposed approach. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2021 
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-267-2021 | © Author(s) 2021. CC BY 4.0 License.

 
268



 

  

    
a b c d 

Figure 2: synthetic dataset. a) 3D model which is used for generating the point cloud, b) segmentation result, c) 𝛼-shape, d) 

Reconstructed 3D model. 

We generated a simple and clutter-free synthetic dataset for 

calibration of the proposed approach and will use it in this 

section for visualizing some steps of the proposed approach. 

This dataset consists of 3 rooms (Figure 2a) with overall 

dimension of 6m in width, 15.4m in length and 3 m in height. 

For the sake of better visualization, we do not show the ceiling 

in (Figure 2).  

 

Firstly, normal vectors of the points are computed based on a 

local surface fitting approach. For normal estimation we use a 

quite large radius to have less noisy normal on the flat surfaces 

at the cost of noisy normal vectors close to the borders of the 

surfaces. However, after initial plane fitting, we will analyze 

these points again to assign the most of them to the correct 

segments and will update the planes. Next, by considering the 

conceptual knowledge about the building that floor and ceiling 

contain a lot of points, we filter the points which correspond 

to the picks of Z histogram of the point clouds as ceiling and 

floor points. Due to high redundancy of point clouds, the 

correctness of this assignment is not critical, while wrongly 

assigned points will be later ignored using robust estimation of 

the floor and ceiling planes using RANSAC. After separating 

floor and ceiling, a clustering is employed based on the 

absolute values of the normal vectors in order to assign each 

point to a segment (Figure 2b).  

 

In the initial modelling phase, a generalized RANSAC 

estimator called MLESAC algorithm (Torr & Zisserman, 

2000) is employed to eliminate the effect of possible noise in 

the points assigned to each planar segment. Moreover, in order 

to avoid missing any relevant plane, outliers of the MLESAC 

are checked again, iteratively. If enough number of the outliers 

constitute a plane which span the whole story height, another 

plane will be assigned to them. 

 

After segmentation, points on planar surfaces are mostly 

separated from non-planar objects and clutters. The next step 

is constructing an adjacency graph of the segments, to find the 

neighboring segments. In order to decrease the computational 

cost of the adjacency graph construction, we do not utilize the 

point clouds directly. Instead, using 𝛼-shape method from 

computational geometry just the points which are close to the 

boundaries of segments are considered. 𝛼-shape is a 

generalization of the convex hull and a sub-graph of the 

Delaunay triangulation which is applied in various fields. It is 

a set of piecewise linear simple curves which is used for shape 

reconstruction from a dense unorganized set of data points. 

This method depends on the parameter α, which defines 

a generalized disk of radius √𝛼 . This disk is used to carve out 

the object, which is formed from points to end up with the 

boundary points (Asaeedi et al., 2017; Edelsbrunner, 2010). 

The 𝛼-shape of the synthetic dataset is depicted in (Figure 2c). 

After constructing the adjacency graph of the segments, all 

triple neighboring planes are intersected in order to generate 

the corners. Topological connections of the corners, edges, and 

faces are considered to shape the 3D model. Analytical 

intersection of the planes which are robustly estimated using 

MLESAC provides quite accurate corner points. 

 

Various methods are employed in the literature for 

representation of 3D models, each offering specific 

advantages and suffering from some disadvantages. The most 

commonly used approaches include Boolean models, a.k.a 

Constructive Solid Geometry (CSG), boundary representation 

(B-Rep), and cellular decomposition. In this research, we use 

the mainstream B-Rep model which consists of 3 major 

entities, namely vertices, edges, and faces and is used by most 

of reconstruction approaches (Lucía Díaz-Vilariño et al., 2015; 

Malihi, Valadan Zoej, & Hahn, 2018; Sanchez & Zakhor, 

2012; Tran, Khoshelham, Kealy, et al., 2019). B-rep vertices 

form the basis of its geometry. Starting from the points, the 

structure is strictly hierarchical. The points which are 

computed by intersecting triple neighbor planes are considered 

as vertices of the 3D model. An edge is defined by the pointers 

to two vertices, and faces are given by the edges that form the 

boundary. Edges and faces tables are constructed based on 

segmentation results and some heuristics. For instance, 

vertices of wall with the same height could build a horizontal 

edge. Also, the vertices with just vertical difference make a 

vertical edge. Additionally, the edges in the same segment 

construct a face. B-rep model of the synthetic dataset in 

illustrated in Figure 2d.  

 

In order to find some of the topological problems of the initial 

3D model, we use adjacency graph of the reconstructed planes 

(Figure 3a). 

 
 

  
a b 

 

c 

Figure 3: Adjacency graph of the planes of the 3D model. 

a) in ideal case (like Figure 2d) and having floor plane node, 

b) without floor plane node, c) one example of the possible 

problems i.e. one plane is missing. 
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Each node of the graph correspond to a plane in the 3D model 

and each edge shows the connection between the planes that 

means those nodes are neighbors and we used their 

intersection to compute the nodes of the B-rep model. This 

graph provides valuable information which can be used to 

check the consistency of the reconstructed planes and also 

finding the possible problems in the 3D model. If the 3D 

reconstruction is perfect, we should have some closed parts in 

the graph which represent the rooms (Figure 3b) and corridors. 

 

If the doors are open, all nodes should be connected to the floor 

node and removing floor plane node ideally results in some 

closed loops (Figure 3b). If by any reason (e.g. clutter, 

occlusion, etc.) one of the planes is missing, it could be 

inferred by analyzing the adjacency graph, in most cases. We 

illustrated this situation in (Figure 3c) where from the graph 

we can understand that nodes A and B (which are connected 

just to 2 neighboring nodes) have a problem and need more 

analysis to find the missing plane. Also closed loop which 

correspond to small spaces could be used to generalize the 

model to the specific level of details. It should be accentuated 

that this adjacency graph in the current form does not provide 

geometric information. Our synthetic dataset was clutter-free 

and all planes are detected (Figure 3). However, we use the 

adjacency graph of the reconstructed structural elements of the 

building in our experiment on real dataset in the next section 

to refine the initial 3D model which is affected by clutters. 

 

4. EXPERIMENTS 

In order to evaluate the effectiveness of the proposed 

approach, we use one of the datasets from ISPRS benchmark 

on indoor modelling (Khoshelham et al., 2020) which is 

explained in the following sections.  

 

4.1 ISPRS UoM (University of Melbourne) dataset 

The proposed approach is applied on UoM dataset from ISPRS 

benchmark dataset (Khoshelham et al., 2020) which contains 

the point cloud of a building of the University of Melbourne, 

Australia (Figure 4).  

 

This dataset with partial deviation from Manhattan-World 

configuration comprises six rooms and one corridor. The 

ceiling has different heights in three parts (see Figure 5). This 

point cloud is captured using Zeb-1 handheld laser scanner. 

The dataset also contains stairs. There are 13.9 × 106 points 

in this point cloud with the average points spacing of 0.6 cm. 

and there are clutters mostly due to the presence of several 

pieces of furniture.  

 

 

 

 

 

 
 

 2D View 3D view 

   

Figure 4: ISPRS UoM dataset. For the sake of visualization, ceiling points are not visualized in the first row 
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As described in section 1, the first step is to separate the ceiling 

and floor points from the rest of the point cloud. As it is 

illustrated in Figure 5, this dataset has multi-level ceiling and 

in order to reconstruct a correct 3D model, these parts should 

be considered separately. 

 

 
a 

 
b 

Figure 5: Separating the ceiling and floor. a) Top-view of 

the multi-level ceiling’s point, b) Histogram of the Z 

coordinates 

 

The result of the segmentation of the point cloud is depicted in 

Figure 6c. After finding the neighbouring segment, MLESAC 

is utilized for robust plane-fitting. The intersection of each pair 

of these planes and the plane of the floor and ceilings provide 

an initial 3D model which is illustrated in  Figure 6b. 

 
After constructing the initial 3D model, we generate the 

adjacency graph of the intersecting planes. In Figure 6c, the 

2D view of the initial model is represented. Each plane is 

attributed with an ID which is used in generating and analyzing 

the adjacency graph of the intersecting planes (Figure 6d). As 

it could be seen in Figure 6, there are some imperfection in the 

model which we try to resolve them using the graph. As 

described earlier , each node of the graph correspond to a plane 

in the 3D model and each edge shows the connection between 

the planes that means those nodes are neighbors and we used 

their intersection to compute the nodes of the B-rep model. 

 

Generally, each plane should be connected to four other planes 

(i.e. ceiling, floor and two other neighbouring planes) and each 

closed space (rooms and corridors) should form a closed loop.   

It can be seen in Figure 6 that there are some clusters which 

correspond to the closed spaces (rooms and one corridor) in 

the dataset. Moreover, three clusters are closed loops and three 

clusters are open. These open parts of the graphs provide 

valuable information about the missing planes in the 3D 

model. We use the follwing rules on the adjacency graph to 

refine the reconstructed model: 
 

 
a 

 
b 

 
c 

 
d 

Figure 6: Initial reconstructed model. a) segmentation, b) 

initial 3D model, c) reconstructed planes attributed by IDs, 

d) Adjacency graph of the planes (without floor and ceiling) 

 

1- Corresponding planes of the all single nodes and single 

edges should be removed from the 3D model.  

2- Corresponding planes of the all single edges attached to 

a closed loop are overshoots and should be deleted. 

Floor 

Multi-level ceiling 

Colors in Figure 5a  
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3- Each closed loop which the area of its corresponding 

planes is smaller than a threshold (2m×2m), should be 

removed.  

4- If there is a non-closed part in the graph, the free node 

(which is just connected to one neighbouring node) 

should be analyzed for possible connection to the other 

nodes. For this connection, one remaining segment (a 

segment which its plane is not available in the 

reconstructed model), should support the connection. It 

should be mentioned that we add an attribute to the 

interpreted surfaces which indicates whether the 

surface is estimated from data (visible) or interpreted 

from graph analysis (interpreted). This information 

might be later used for further verifications. 

Apllying the above mentioned rules to the adjacency graph of 

the planes, provides a water-tight and topologically correct 

reconstruction which is illustrated in Figure 7a.  

  

 
a 

 
b 

 
c 

Figure 7: Reconstructed water-tight and topologically 

correct 3D model. a) 3D view, b) Top-view (reconstructed 

planes with IDs), c) adjacency graph of the planes 

As it is visible in Figure 7a, the proposed graph analysis 

approach makes it possible that indoor space is decomposed to 

room cells. Each closed loop in the graph resembles a room (or 

other closed spaces like corridor) and could be visualized in 

different colors. The topology of reconstructed model is very 

useful in many applications like indoor location-based services 

and emergency response. 

 

4.2 Evaluation 

Comparing our final 3D model (Figure 7) and the ground truth 

model (Figure 4), the qualitative assessment of the results 

reveals that most parts of interior spaces of the building are 

reconstructed and included in the final 3D model. Partial 

deviation of the dataset from Manhattan-world layout is also 

correctly detected and the corresponding planes are 

reconstructed. One small room is missing because of high 

occlusion on one of the walls which leads to missing the 

connection with neighboring walls. Also, a wall in lower left 

part of Figure 7b is not reconstructed with the right angle. 

From topological point of view, the proposed approach for 

analyzing the adjacency graph of the planes for consistency 

check and model refinement, provides a correct topology of 

the reconstructed rooms which could be used in many 

applications. In order to better visualize the quality of the 

generated mode, the overlay of the point cloud on 

reconstructed model is shown in Figure 8. 

 

 
Figure 8: Overlay of the points on the reconstructed model  

 

Accordingly, the parts wherein the color of the model (here 

yellow) is dominant a small bias might exist between the 

model and the point cloud. This happens, e.g., in the large front 

wall polygon in Figure 8. Remaining polygons are relatively 

reconstructed in almost high quality as the contrast between 

the points and corresponding polygons are almost uniform. 

 

For quantitative evaluation of the geometric quality of 

reconstructed water-tight 3D model we use the Boolean and 

entity-based completeness, correctness metrics as well as 

accuracy metric. Completeness is measured as the ratio of 

“reconstructed references” to the number of all reference 

surfaces. “Reconstructed references” indicates the number of 

all the planes in the reference model 𝑅 that lie in the buffer 𝑏 

around the planes of the reconstructed model 𝑆. The 

completeness is defined as: 

 

𝐶𝑜𝑚𝑝 =
Reconstructed references

Cardinality of the reference planes
 (1) 

 

Similarly, the correctness is measured as the ratio of “matched 

reconstructions” to the number of all surfaces which exist in 

our final 3D model. “Matched reconstructions” indicates the 

number of all the planes in the reconstructed model that lie in 
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the buffer 𝑏 around the corresponding plane in the reference 

model. The correctness is defined as: 

 

𝐶𝑜𝑟𝑟 =
Matched reconstructions

Cardinality of the reconstruction planes
 (2) 

 

Another metric which is used in our experiment is accuracy 

which is defined in (Tran, Khoshelham, & Kealy, 2019) as the 

Euclidean distance between the dense points sampled from the 

reference model and the closest surface in the reconstructed 

model. Comparing to the point-point distance, this point-

surface approach mitigates the influence of the point density 

of the sampled model in the accuracy computation. However, 

existence of the missing planes and incorrectly added planes, 

affect the point to plane distance. Hence, in (Tran, 

Khoshelham, & Kealy, 2019) the accuracy is analyzed as a 

function of a cut-off distance 𝑟, where the point-surface 

distances larger than this cut-off value should be excluded 

from the computation. We follow the same approach to 

compute the median absolute distance to robustly estimate the 

accuracy of the reconstructed 3D model. 

  

In order to compute the completeness and correctness of our 

model for this dataset we considered a buffer size of 10 cm 

(𝑏=10). Accordingly, we achieved 77% completeness and 

53% correctness. For computing the accuracy, the cut-off 

distance of 10 cm (𝑟 = 10cm) is selected and therefore, the 

accuracy of the model considering the walls, ceiling and roof 

is computed as 1.7cm, and just for the wall surfaces accuracy 

value of 5cm is obtained. The main advantage of our approach 

is that employing adjacency graph of the planes, the topology 

of the reconstructed model is considered which also provides 

the water-tight 3D model with correct topology and separated 

rooms.  

 

Finally, it is worth mentioning that the accuracy of the ground 

truth 3D model depends on the accuracy of the data set which 

is used for manual 3D modelling. Therefore, if the ground truth 

is not produced from the same dataset, sensor error might also 

affect the quality of reconstructed 3D model. Moreover, the 

operators use their knowledge and experience to generate the 

3D reference model. 

 

 

5. CONCLUSION 

We introduced a 3D reconstruction modelling approach for 

indoor spaces. The Proposed approach is applied on synthetic 

and real dataset. It works directly on point clouds and no 

assumption about the sensor is considered. Moreover, the 

positions or trajectory of the sensor are not used in any step. 

Furthermore, our approach does not rely on Manhattan-world 

assumptions. Employing a clustering on normal vectors, the 

points are segmented and non-planar segments are excluded. 

Based on segmentation results, for each segment the 𝛼-shape 

is computed. The adjacency graph of all  𝛼-shapes is used to 

find the intersecting planes. Employing a B-rep approach, an 

initial 3D model is computed.  We believe that the 3D model 

at this step is not topologically consistent and needs more 

analysis to have a topologically correct and water-tight 3D 

model. Hence, adjacency graph of the planes which constitute 

the initial model is analyzed to refine the 3D model. The 

proposed approach is applied on synthetic and real dataset.  

 

As a plane-based approach, quality of our proposed method 

depends on plane detection quality which is mainly influenced 

by, e.g. clutters and occlusions. However, except for extreme 

cases like completely occluded wall or vertical planar clutters 

which span the whole story height, our approach is effective. 

The main limitation of the proposed approach, similar to the 

most other approaches (Kang et al., 2020), is that it is not 

applicable on buildings with curved walls  which makes a 

room for the future improvements.. Adding semantic 

information like doors and windows will also enrich the final 

model. The authors believe that modern construction 

technologies like additive manufacturing (Buswell et al., 

2020) which offer manufacturing of free form buildings’ 

component and do not hold various assumptions in current 3D 

reconstruction approaches (such as  planarity of the ceiling and 

walls and verticality of the walls) will bring many new 

challenges to 3D indoor modelling community. 
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