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ABSTRACT: 

 

The recent advancement of simulation modeling to represent phenomena in three spatial dimensions (3D) requires the development 

of techniques that will allow comparison of the modeling outputs in multiple dimensions. However, many existing techniques for 

map comparison in two spatial dimensions (2D) have been developed from non-spatial method such Cohen’s Kappa. These 

techniques are not yet fully extended to deal with 3D map data or simulation outcomes. Therefore, the main objective of this study is 

to investigate the use of the 3D Accuracy and 3D Cohen’s Kappa coefficients to compare simulation model outputs in 3D. An 

existing agent-based model (ABM) of forest-fire smoke propagation was used to generate multiple scenarios for the purpose of 

comparing 3D simulation outputs. The results for 3D Accuracy and 3D Cohen’s Kappa produces meaningful values when comparing 

several scenarios with different 3D ABM outputs. This study emphasizes the need for the development of more advanced simulation 

output comparison techniques that operate in 3D and potentially over time (4D). 

 

1. INTRODUCTION 

The multidimensional characteristics of geospatial phenomena 

and the increase in three-dimensional (3D) and four-

dimensional (4D) simulation modeling (Eshraghi et al. 2012; 

Gobron et al. 2011; Jjumba and Dragićević 2015; Narteau et al. 

2009) indicates the necessity to develop improved methods for 

simulation model output comparisons. With spatial analysis and 

modeling approaches advancing from two-dimensional (2D) 

into 3D space, and even 4D with space-time considerations, the 

methods required for map comparisons must evolve with this 

advance into 3D and 4D. However, non-spatial techniques from 

concepts independent of the spatial dimensions can be applied 

to spatial scenarios including 3D and 4D. Potentially, the most 

common map comparison method is the simple overall map 

accuracy where two maps are compared cell-by-cell to calculate 

the percent agreement (Van Genderen et al. 1978). Accuracy 

does not account for chance agreement in its calculation where 

the two maps being compared have some degree of similarity 

expected due to the randomness of cell values. Cohen’s Kappa 

coefficient (Cohen 1960, 1968), or simply Kappa, was 

developed to account for the chance agreement between two 

datasets although it was originally developed for the field of 

psychology. Previous to the Kappa, the mathematically identical 

Heidke Skill Score was developed for meteorology (Heidke 

1926). However, Kappa is the commonly used name in Remote 

Sensing and GIScience studies when dealing with image or map 

comparisons. Since its development, Kappa has been widely 

adopted for use in remote sensing (Congalton and Mead 1986; 

Hudson 1987) and raster GIS for the purpose of comparison of 

raster-based images using paired cells, also known as pixels or 

raster, from two images or GIS data layers representing maps. 

The Kappa coefficient has been further enhanced to multiple 

variants such as Fleiss’ Kappa (Fleiss 1971) which has seen use 

in the comparison of more than two maps (Rogers et al. 2014), 

Fuzzy Kappa which introduces spatial fuzzy logic into the 

calculation of Kappa (Hagen 2003), and many others 

specifically for land-use change comparisons including Kappa 

Histogram, Kappa Location, Kappa Simulation, Kappa 

Transition, and Kappa Transition Location (van Vliet et al. 

2011). The hierarchy of the various Kappa variants are shown in  

 

 

 

Figure 1. Hierarchy of Kappa approaches originating from 

Cohen’s Kappa 
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Figure 1 and includes new generations of metrics, 3D Kappa, 

3D Fuzzy Kappa and 4D Fuzzy Kappa. The techniques used by 

2D map comparison methods such as Fuzzy Kappa are 

incompatible with 3D applications and therefore require major 

redevelopment before they can be used for comparisons of 

simulation outcomes in multiple spatial dimensions.  
 

Both accuracy and Kappa measures are used for the comparison 

of 3D maps, typically generated from LiDAR data (Roberts et 

al. 2019; Wang et al. 2018) however were not as yet applied for 

the needs of geosimulation modeling. Therefore, the main 

objective of this study is to compare the similarity of 3D 

simulation modeling outcomes using 3D Accuracy and 3D 

Kappa, and then to theoretically extend the analysis towards 

possible spatial extension of Kappa to 3D and 4D metrics. A 

previously developed 4D agent-based model (ABM) for forest 

fire smoke propagation (Smith and Dragićević 2019) was used 

to generate the simulation outcomes used as a case study for 

comparison of 3D  simulation outcomes using 3D Accuracy and 

3D Kappa measures. 

 

2. METHODOLOGY 

Similar to the resel or raster concept in 2D GIS (Tobler 1995), 

voxels are the smallest representation of 3D space, divided into 

a regular 3D lattice, typically forming cubes (Greene 1989; 

Jjumba and Dragićević 2016). Similar to raster GIS data layer, 

representing array of equal-size uniform square cells, a voxel 

data layer represents the equal-size cubes. Each voxel contains a 

value, such as a class, that represents an attribute characterizing 

the 3D space that the voxel occupies, empty voxels must be 

represented by null values. In this study the 3D Kappa approach 

(Smith and Dragićević in press) has been used to compare 

simulation outcomes in 3D. The 3D Accuracy and 3D Kappa 

measures are designed for use with voxel representation of 

model simulation outputs. The 3D Accuracy is calculated by 

comparing two voxel datasets voxel-by-voxel and calculating 

the proportion of agreement between the pairs of voxels. The 

name 3D Accuracy is given to distinguish it from the cell-by-

cell methods used by Accuracy in 2D map comparison. Cohen’s 

Kappa is extended to be applied to the 3D voxel datasets 

through 3D Kappa (K3D) and can be defined by the following 

equation: 

 

𝐾3𝐷 =
𝑃𝑜 − 𝑃𝑒
1 − 𝑃𝑒

  1  

 
 

where Po represents the observed proportion of agreement, or 

observed similarity, among voxels in two 3D maps or 

simulation outcomes S, and Pe represents the expected 

proportion of agreement, or expected similarity, if voxel classes 

were assigned randomly to the voxels of both datasets. Po is 

equal to the 3D Accuracy of the two voxel datasets. The 

expected similarity Pe is defined by: 

 

𝑃𝑒 =  𝑃𝑖𝐴 ∗ 𝑃𝑖𝐵

𝑛

𝑖=0

 2  

 
 

where PiA and PiB represent the proportion of class i in 

simulation outcome SA and outcome SB respectively, for all n 

classes in the two 3D maps or simulation outcomes. To 

implement both 3D Accuracy and 3D Kappa for the 3D 

modeling outputs, a custom program in Python 2.7 was 

developed. This program accepts two voxel datasets converted 

into 3D arrays of the same extent. It synchronously iterates over 

each entry of the arrays, recording relevant information, 

including the counts of each class per array, the number of 

matches, and the total number of voxels with data. Equations (1) 

and (2) are calculated and 3D Kappa is returned alongside Po as 

3D Accuracy. 

 

This research study uses an existing ABM to simulate the 

propagation of forest fire smoke (Smith and Dragićević 2019) 

based on a hypothetical fire. The ABM operates with two 

primary agent types - fire agents and smoke agents. The fire 

agents represent fire locations, and they emit smoke agents at a 

predetermined rate that represent smoke in the atmosphere. 

Smoke agents move using two methods, the first being carried 

by the wind, and the second through diffusion to increase 

dispersion. The local terrain acts as a lower limit for the 

elevation of smoke agents as they travel over, around, and 

through mountains and valleys. The simulation outcomes are 

voxelized, creating voxels with values representing the number 

of agents they contain, thus the concentration of smoke.  

 

3. IMPLEMENTATION 

The study area is located in British Columbia (BC), Canada, 

where fire and smoke are represented as agents as they move 

through the mountains using wind patterns and terrain. The 3D 

spatial extent of the study area is 96km x 45km x 10km with a 

southwest corner located at 70 Mile House, BC and a northeast 

corner of approximately 5km northeast of Mahood Lake, where 

the Murtle River joins the Clearwater River. The study area is 

approximately 100km north of Kamloops, BC. The simulation 

uses a hypothetical forest fire started on August 10th, 2017 on 

the west coast of BC and burns for a total of 15 days. The model 

simulation outputs are obtained in voxel data format with the 

locations of smoke agents and at a voxel of resolution of 1km. 

The ABM simulates the concentration of smoke agents that are 

represented with five voxel classes. Voxel classes were 

determined by the number of smoke agents in each voxel based 

on the information from the Government of BC Air Quality 

Health Index (Government of British Columbia 2020). Class 0 

represents no smoke when voxels contain no smoke agents. 

Class 1 represents low smoke with 1-3 smoke agents, Class 2 

represents moderate smoke with 4-6 smoke agents, Class 3 

represents high smoke with 7-10 smoke agents, and Class 4 

represents very high smoke with more than 10 smoke agents in 

the voxel. 

 

Three sets of comparisons were made between different output 

times and settings of the agent-based model. The first set of 

comparisons is composed of four simulation outcomes to allow 

for six comparisons (Figure 2). The study area contains smoke 

on August 23rd at 3pm, 13 days and 15 hours into the 

simulation. The model is run twice to retrieve two simulation 

outcomes, Simulation 1 and Simulation 2. The model also has 

an option for the forest fire to move under the influence of the 

wind and is used to retrieve Simulation 3. A second output time 

was selected for Simulation 4 on the 7th day, or 0:00am on 

August 17th, 2017 when smoke was also found to be present in 

the study area for Simulation 4. Comparison 1 is between 

Simulation 1 and Simulation 2 of the static fire scenarios, where 

both simulations use the same initial conditions but different 

automatically generated random seeds that define the set of 

random values used. This comparison is used to assess the 

differences caused by the randomness in the model. The 

randomness originates from two sources, one is the random 

diffusion of smoke and the other is due to the random order of 

the agents’ movement. Comparison 2 is between Simulation 1 
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Figure 2. Agent-based model forest-fire smoke propagation 

simulation outcomes in voxel data format used for six 

comparisons. 

 

 

and Simulation 3 using the scenario with a fire that moves over 

space-time through the landscape of the study area. Comparison 

3 is between Simulation 1 and Simulation 4 which is obtained 

from the alternate time step assuming the 3D terrain is identical, 

but the smoke will have experienced different wind conditions. 

Comparisons 4, 5, and 6 are between all other possible 

combinations of these four simulation outcomes. 

 

Smoke is present in the study area for an additional 9 hours after 

the output time used for Simulation 1, and a total of eight  ABM 

simulation outputs have been generated from the two runs and 

presented on Figure 3. The four outputs of one run of the model 

are compared against the outputs of the second run, where the 

first outputs are Simulation 1 and Simulation 2 from the first set 

of comparisons. The 16 comparisons between these two sets of 

four simulation outputs make up the second set of comparisons. 

These comparisons are done to investigate a use case of 3D 

Kappa for comparing simulations to temporally match patterns 

from two simulations. 

 

The third and final set of simulation outcome comparisons is 

performed to explore the sensitivity analysis of the diffusion 

rate of the smoke of the agent-based model. The distance used 

by the diffusion process is multiplied by the diffusion factor 

(DF), where DF = 2 is the most similar to the calibrated DF of 

the model. Six levels of diffusion are used and results in DF1, 

DF4, DF8, DF12, DF16, and DF20. This analysis will help 

assess the impact of the diffusion factor, for the selected 

simulation runs. Due to the required computer processing time 

of the model only one run for each diffusion factor was 

completed. 

 

4. RESULTS AND DISCUSSION 

The obtained results in Table 1 show the 3D Accuracy and 3D 

Kappa values for the first set of comparisons. Due to the large 

number of voxels with no smoke in the outputs, the accuracy 

typically receives high values. The only comparison to receive a 

moderate or better 3D Kappa value is Comparison 1, between 

the two runs with the same initial conditions. This comparison 

was expected to receive much higher 3D Kappa values due to 

the very similar appearance of the smoke patterns. However, the 

3D Accuracy of this comparison is only slightly higher than 

Comparisons 3 and 5 which obtained the lowest 3D Kappa 

values. These two Comparisons involve Simulation 4 which 

along with Comparison 6 achieve the lowest three 3D Kappa 

values and with exception of Comparison 1, the highest 3D 

Accuracy values. This is due to the large number of voxels with 

no smoke in Simulation 4, more than the other simulations. 

 

Comparison Simulations 3D Accuracy 3D Kappa 

C1 S1 S2 0.96 0.53 

C2 S1 S3 0.87 0.15 

C3 S1 S4 0.95 0.01 

C4 S2 S3 0.89 0.15 

C5 S2 S4 0.95 0.00 

C6 S3 S4 0.90 0.03 

 

Table 1. Values obtained for 3D Accuracy and 3D Kappa for 

the six comparisons of the forest fire smoke propagation ABM 

simulation outputs. 

 

The randomness incorporated in the ABM creates the 

differences between Simulation 1 and Simulation 2 presenting 

itself partially in the form of randomly distributed voxels within  
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Figure 3. Simulation outputs S1 and S2 at initial stage and after three hours, six hours, and nine hours of smoke 

propagation. 
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the 3D space (Figure 4). While this can make two 3D maps 

appear visually similar, few of these voxels with smoke in one 

map agree with their counterpart in the other. This leads to 

noticeably lower 3D Kappa values than expected and slightly 

lower 3D Accuracy values. In 2D spatial analysis techniques, a 

moving window is often used to incorporate nearby cells into 

the analysis of the central cell. Situations like this could be more 

accurately assessed if this type of moving window analysis 

could be developed into a more advanced 3D map comparison 

method. Using a moving 3D window, nearby voxels could be 

used to partially substitute the agreement between two 

disagreeing voxels. A similar technique with the moving 

window was adopted for the calculation of Fuzzy Kappa (Hagen 

2003) in 2D and can allow for further expansion into 3D Fuzzy 

Kappa to accommodate the benefits of the use of 3D window 

space. 

 

 
 

Figure 4. Randomly distributed smoke voxels highlighted in 

red from ABM outputs for simulation S1 and S2 

 

The values for 3D Accuracy and 3D Kappa for the second set of 

comparisons are presented in Table 2. Similar to the first set of 

comparisons, accuracy is very high, with the lowest value of 

0.86. The accuracy values of the comparisons of outputs of the 

same time step are typically the highest in their row and 

column, although by small differences. However, 3D Kappa 

produces greater differences between the comparisons of 

outputs of the same time step and all other comparisons. Neither 

3D Accuracy nor 3D Kappa include any time component that 

can incorporate differences in time to the comparison of data. 

 

Table 3 presents the values obtained for 3D Kappa for the third 

set of comparisons. These last comparisons are accomplished to 

investigate the effect of the rate of the smoke diffusion on the 

simulation outputs generated by the ABM. Similar to the other 

results, the 3D Accuracy values are very high, but were also 

very consistent with all values being 0.95-0.96. While the 3D 

Kappa values are also somewhat similar, they show a clearer 

trend. The larger the difference in DF, the lower the 3D Kappa 

values. Additionally, comparing simulation outputs with higher 

DF values is also associated with a lower 3D Kappa. This is 

most likely caused by the increased diffusion rate increasing the 

amount of randomness in smoke location in the model. Because 

3D Kappa has no spatial fuzziness unlike Fuzzy Kappa, it 

cannot account for the increasing amounts of randomness in 

smoke locations with higher diffusion factors. This indicates 

that more advanced 3D Kappa metrics have to be developed 

such as 3D and 4D Fuzzy Kappa to incorporate a variable 3D 

window size and 3D spatial autocorrelation to accommodate the 

variation of simulation outcomes in 3D and 4D space-time.  

 

3D Accuracy 

Time Steps S2 S2+3h S2+6h S2+9h 

S1 0.96 0.91 0.86 0.91 

S1+3h 0.92 0.94 0.87 0.90 

S1+6h 0.88 0.87 0.92 0.88 

S1+9h 0.91 0.88 0.86 0.96 

3D Kappa 

Time Steps S2 S2+3h S2+6h S2+9h 

S1 0.53 0.17 0.08 0.03 

S1+3h 0.17 0.49 0.10 0.01 

S1+6h 0.09 0.11 0.54 0.08 

S1+9h 0.02 0.00 0.08 0.60 

Table 2. Values obtained for 3D Accuracy and 3D Kappa for 

the 3D comparisons of four forest-fire smoke model simulation 

outputs for two runs S1 and S2. 

 

Simulation 

Outcomes DF1 DF4 DF8 DF12 DF16 DF20 

DF1 1.00 0.49 0.40 0.37 0.33 0.28 

DF4  1.00 0.46 0.42 0.39 0.35 

DF8   1.00 0.43 0.40 0.37 

DF12    1.00 0.39 0.36 

DF16     1.00 0.34 

DF20      1.00 

 

Table 3. Values obtained for 3D Kappa for the comparisons of 

the forest-fire smoke propagation model simulation outputs with 

varying diffusion rates (DF) 

 

5. CONCLUSIONS 

This research study extends two existing methods of Accuracy 

and Kappa measures into 3D by proposing 3D Accuracy and 3D 

Kappa for comparing model simulation outcomes in 3D space. 

Critics of Kappa typically have concerns with how chance is 

accounted for (Foody 2020; Pontius and Millones 2011), 

however for use in assessing models such as the one used in this 

study that have built-in randomness, this concern may be 

reduced. Kappa is also an often-required metric in many fields, 

such as remote sensing and GIS, and is applied despite the 

criticisms. While in this research study 3D Accuracy and 3D 

Kappa metrics show potential for use in comparison of model 

outputs dominated by a single voxel class, it also revealed a 

greater potential to expand these methods to account for spatial 

neighborhoods or spatial autocorrelation in 3D domain. The 

existing 2D Fuzzy Kappa method can be extended into 3D and 

even 4D Fuzzy Kappa counterparts to advance map and 

simulation outcome comparison into 3D and 4D while 

incorporating fuzzy logic (Smith and Dragićević in press). The 

proposed 3D Accuracy and 3D Kappa measures may be the first 

step towards enabling more comprehensive comparison 

methods of simulation outcomes and generated patterns in 3D. 
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While designed for 3D simulation outcomes and 3D map 

comparisons, such measures may also be useful to other fields, 

including 3D medical imaging, and in the training and 

comparison of predicted 3D AI-system behaviour with the real-

world data. Based on findings from this research study, further 

advance methods of 3D simulation outcomes and 3D pattern 

comparisons should be developed that facilitate the calibration 

and validation of simulation models such as 4D ABM or voxel 

automata operating in the 4D space-time domain. 
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