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ABSTRACT: 

This study examines the emblematic case of a test room and its relation to digital modelling. This space is the result of a multi-

optimization process that has been physically built for the verification of the initial hypotheses. As a result, it is actually a Physical 

Twin, designed to be transformable by removing a wall. The same space, on the other hand, has become useful for testing the Digital 

Twin logic by associating a BIM model with a dynamic representation of the data captured by the sensors. The representation is thus 

placed at the core of this cyclic phase between reality and representation, with the goal of validating the proposed theories through 

empirical practice, improving digital computational ability, and identifying pathways for monitoring space's interactions with the 

environment and those who live in it. 

1. INTRODUCTION

The modern definition of Digital Twin is a conceptual and 

substantive extension of the importance of digital models, which 

are "mirror images" (Batty, 2018) of experiences occurring in 

physical space that are transferred to the virtual world to ensure 

new management systems. In the ever-expanding theme of 

digitization (Mitchell, 1995; Lenka et al., 2016), which is 

inherent in the fourth industrial revolution (Kamarul Bahrin et 

al., 2016; Schwab, 2016) and thanks to IoT sensors (Gubbi et al., 

2013; Xu et al., 2014), anything that can be monitored in physical 

space can be translated into virtual, multifaceted space (Iansiti 

and Lakhani, 2015) where data can be converted into information 

and computational power can be used to simulate the many 

aspects of shape. 

This topic, which began with Nasa (Glaessgen and Stargel, 

2012), has a wide range of applications in the construction 

industry, especially in energy analysis and monitoring (Marszal 

et al., 2011; Shi and Yang, 2013). According to the directives 

2010/31/EU e 2018/844/EU (‘Directive 2010/31/EU of the 

European Parliament and of the Council of 19 May 2010 on the 

energy performance of buildings’, 2010; ‘Directive (EU) 

2018/844 of the European Parliament and of the Council of 30 

May 2018 amending Directive 2010/31/EU on the energy 

performance of buildings and Directive 2012/27/EU on energy 

efficiency’, 2018), in order to minimize energy usage and 

increase overall building energy quality, new buildings in Europe 

must meet nZEB standards (Rodriguez-Ubinas et al., 2014), as 

buildings are responsible for 40% of CO2 emissions and energy 

consumption (Tian et al., 2018). The efficiency of a building is a 

significant requirement of today's market, which is rediscovering 

the importance of wooden structures for these reasons (Hoadley, 

2000; O’Connor and Dangerfield, 2004; Wood handbook - Wood 

as an engineering material, 2010; Cabeza et al., 2013; Holstov 

et al., 2017).  

Thanks to manufacturing processes (Oxman and Oxman, 2010; 

Gramazio et al., 2014; Wood et al., 2016a, 2016b; Falamarzi and 

Correa Zuluaga, 2019) that are linked to mass customization 
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(Pine and Slessor, 1999; Anderson, 2002; Kolarevic, 2015; 

Paoletti, 2017; Bianconi et al., 2019), wood design is 

enhanced by the digital (Bianconi and Filippucci, 2019a). Wood 

is a natural and smart material (Ugolev, 2014), that can be 

transformed by digital processes (Menges, 2009; Menges et al., 

2017; Willmann et al., 2017). The use of generative logics 

(Schumacher, 2011; Bianconi and Filippucci, 2017; Chen and 

Sass, 2017) in conjunction with Artificial Intelligence (Bianconi 

and Filippucci, 2019b) to create form-finding processes 

(Bergmann and Hildebrand, 2015; Weinand, 2016; Hemmerling 

and Cocchiarella, 2018) that define the best solutions is 

particularly interesting. 

These concepts are then coupled with the BIM approach, which 

is a further transformation in design logic aimed at managing 

knowledge in the same environment. This is essentially a cultural 

as well as a technological revolution (Eastman, 2011). The 

requirement to use BIM was only recently introduced into Italian 

law (Ministerial Decree 560/2017). A key date on this road can 

be found in the year 2002, when Autodesk released a White Paper 

in which the term "Building Information Modeling" was used for 

the first time. Even though there are still many gaps to fill (Dainty 

et al., 2015), the advantages of BIM are moving various figures 

involved in building processes (Smith, 2014) thanks to its 

obvious benefits (Khanzode et al., 2008; Barlish and Sullivan, 

2012; Bryde et al., 2013). As a result, BIM is a Virtual 

Environment Platform (VMP) capable of storing, processing, and 

mapping various types of data (Zheng et al., 2019).  

The research is being conducted in this field as part of a 

collaboration between the Department of Civil and 

Environmental Engineering and Abitare+, a local innovative 

wood construction start-up, with the aim of triggering product 

and service innovation. The research begins with the 

development of generative models with the goal of multi-

optimizing the form, energy consumptions, structure, and cost of 

wooden houses, and it ends with the integration of BIM models.  
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2. BACKGROUND 

The analysis of generative models is followed by a proposal for 

an integrated mass customization-based design and 

manufacturing process, aimed primarily at wood construction 

technicians and specialists but also useful as a dissemination tool 

for students and researchers. First of all, the research aims to 

provide personalized housing designs (Bianconi et al., 2019), 

identifying a range of design solutions that ensure genetic 

algorithms are used to adapt and optimize the architectural 

model. The design concept is focused on the analysis of local 

codes and X-Lam and Platform-Frame building systems with the 

goal of reducing waste and optimizing the construction process. 

Energy consumption, thermal and visual comfort, as well as 

price, were evaluated with the construction company and through 

iterative processes. The results of this first study, which began 

with the selection of solutions available to the company, have 

prompted a closer examination of each element that makes up the 

building envelope. 

The focus of the investigation then shifted to improving the 

energy efficiency of wooden structures that had previously been 

customized to meet the location's specific requirements. The aim 

in this case is to use generative design tools to optimize the 

preliminary cost and efficiency of wood walls for X-Lam and 

Platform-Frame structures, with the goal of comparing the actual 

performance of the built solutions (Seccaroni and Pelliccia, 

2019). As a result, the described workflow begins with the 

implementation of generative algorithms that return thermal 

transmittance, decrement factor, time shift, costs, and verify the 

absence of interstitial condensation while varying the wall 

materials and thicknesses from time to time (Rossi and Rocco, 

2014; Aste et al., 2015) (Fig. 1). The selected parameters can be 

processed in a multi-optimization path based on evolutionary 

algorithms (Diakaki et al., 2008), in which more than 5000 

possible material and thickness combinations have been 

automatically analyzed. The best solutions can thus be selected, 

identifying the Pareto front (Wright et al., 2002; Wang et al., 

2005) in which the combinations simultaneously present optimal 

values of the various parameters that determine the wall’s 

behavior in summer and winter, as well as the overall cost (Fig. 

2). 

Through the construction of a test room, the study shifted 

then from virtual to physical: this is an abstracted representation 

of a wooden house reduced to the size of a paradigmatic space. 

 

 

3. RESEARCH OBJECTIVES 

The research's background demonstrates how the model's basis is 

digital representation. In this case, the logics inherent in the 

Figure 2. The multi-parametric wall optimization allows the 

selection of different wall configurations. 

Figure 1. The algorithm combines different materials and thicknesses and evaluates the energy performance of the walls. 
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Digital Twin find an interesting inversion, where reality derives 

from representation, rather than the opposite. As a result, the 

process can be divided into three phases: simulation and multi-

parametric optimization of building performance, construction of 

the test room and data collection, and implementation of the 

Digital Twin for real-time data exchange. 

Therefore, the aim of this study is to examine the relationship 

between digital and physical in an experimental process whose 

phases are linked to specific issues. First, it is interesting to 

investigate the aspects that arise in the implementation of the 

Physical Twin, a generic dwelling abstraction. Second, the study 

focuses on the development of the Digital Twin, which extends 

beyond the generative model to include data collected in the real 

world and represented in the model. As a result, evaluating data 

collection in combination with the monitoring tools installed in 

the test room becomes a key element, and their analysis and 

management within the BIM environment is the final step of the 

experimental process. 

This path is therefore proposed as a useful technique for 

validating simulation results and evaluating the model's 

reliability. It also establishes a cyclical framework of digital and 

interactive knowledge exchange to refine models and introduce 

new facility management logic. 

4. EXPERIMENTATION 

4.1 Construction of the test room (Physical Twin) 

The test room is a 20-square-meter single-story temporary 

pavilion with a 25-centimeter thick base slab and a 2.4-meter 

average height. The test room has two fully opaque walls and two 

glass openings in the east and south directions to optimize the 

climatic impact. The north wall was built to be removable and 

replaceable so that various stratigraphies could be checked, as 

well as the type of structure (Fig. 3).  Its specific conformation, 

in fact, allows it to be replaced with X-Lam panels instead of the 

prefabricated panels that constitute the Platform-Frame structure. 

In this first phase of the research, all four walls were built using 

Platform-Frame. Starting with the evolutionary algorithms' 

optimized solutions, a first wall was built in the test room, 

consisting of an 11 cm rockwool external insulation, 1.5 cm 

marine plywood, 12 cm glasswool between the structural 

elements and 5 cm glasswool behind the plasterboard. The 

algorithm calculated a transmittance of 0.131 W/sqmK for this 

wall.  

The single-pitch ventilated roof has an inclination of 10° and it is 

made of glulam wood beams and 2.3 cm thick planking. Around 

15 square meters of thin-film photovoltaic panels with storage 

batteries ensure the heat pump's function, which is needed for 

cooling and heating in order to simulate typical indoor winter and 

summer thermo-hygrometric conditions (Fig. 4). 

4.2 Data collection 

Several sensors and instruments have been installed in the test 

room to monitor the parameters required to characterize the wall's 

efficiency. Both internally and externally, thermocouples are 

used to measure air and wall temperatures. The thermal 

transmittance U of walls is measured using fluxmeters. 

Temperature and humidity probes test the indoor and outdoor 

air's temperature and relative humidity. The S.A.L.E. monitoring 

system allows for on-site monitoring of the wood's moisture 

content, identifying any irregularities that may lead to 

biodegradation. Wireless sensors and tools for collecting, storing, 

and managing alert messages are used in the monitoring. 

All sensors are visible and removable (Fig. 5). 

The north-facing wall is tested because it is not directly exposed 

to solar radiation, which would influence the results, whereas the 

east-facing wall was also tracked as a reference. Monitoring was 

conducted through the previously described sensors during the 

summer period. The acquired data were used to determine the 

transmittance in situ, which was compared to the one simulated 

by the algorithm, according to UNI ISO 9869 (‘ISO 9869-1:2014 

Thermal insulation — Building elements — In-situ measurement 

of thermal resistance and thermal transmittance — Part 1: Heat 

flow meter method’, 2014), which states that the thermal 

resistance can be calculated from the ratio between the 

summation of the surface temperature difference between outside 

and inside with the summation of the thermal fluxes (Eq. 1). 

� =
∑ (����	��
�)
�
��

∑ ��
�
��

 (1) 

where  Tsij = internal surface temperature obtained from the j-

th measurement 

Tsej = external surface temperature obtained from the j-

th measurement 

 q = heat flux obtained from the j-th measurement 

from which the conductance L can be found (Eq. 2): 

Figure 4. The completed test room. 

Figure 3. Different construction phases of the test room. 
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Thermal transmittance is calculated by taking into account air 

temperatures as well as internal and external surface resistances 

(Eq. 3): 

� =
∑ ��
�
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��

 (3) 

where  Tij = internal temperature obtained from the j-th 

measurement 

 Tej = external temperature obtained from the j-th 

measurement 

The measurements were taken over four days in July, with 

reasonably significant daily variations in the outdoor temperature 

(between 44 and 20 °C) and night time values never dropping 

below the indoor temperature (constant at 20 °C), resulting in a 

sufficiently high temperature gradient. 

As a result of the acquisitions, the following parameters have 

been obtained: 

Thermal resistance: R= 5.233 mqK/W 

Conductance: L= 0.191 W/mqK 

Thermal transmittance: U= 0.185 W/mqK 

The transmittance measurement should be adjusted by a 10% 

percentage error due to direct measurement. Furthermore, the 

specified thermal conductivity values, which were used in the 

algorithm's calculation, are accurate for test conditions at 10 °C. 

On the basis of these considerations and the required corrections, 

it can be assumed that real behaviour closely matches that 

obtained from the simulations. 

4.3 Realization of the Digital Twin  

The information is returned from the built to the digital in the 

final section of the study, in order to build a real-time monitoring 

system of what is happening within the test room and integrate 

that data into the model, creating a digital twin in the BIM 

environment. In fact, the test room has been remodelled in 

Revit As-Built, with symbolic elements placed to indicate the 

location of the specific sensors in the test room that perform real-

time monitoring. Special families have been used for this 

purpose, through the "Generic Models" family, whose instances 

have been modelled by spheres. Different colored spheres are 

correlated with parameters and details that can be seen remotely 

in space in real time. Depending on the type of sensor, four 

different sphere types have been created: air temperature (blue 

spheres), wall temperature (red spheres), thermal flux (orange 

spheres), and wood moisture (brown spheres). After that, the 

different instances were connected to the .csv files that are 

continuously updated based on the measurement interval set 

(generally every 60 seconds). Each instance has been placed near 

the wall where the sensor it represents is actually located, and the 

Figure 5. Plan view with the different sensors positioned in the test room. 
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relation between the different instances and the corresponding 

.csv files can be seen through the abacus of the sensors (Fig. 6). 

The benefit of automatically collecting the real data measured by 

the sensors is then combined with the ability to track 

temperatures, flows, and humidity values punctually in space and 

time through their real-time visualization, which can be accessed 

remotely. Another factor is the ability to send the data obtained 

in the Digital Twin back into the initial algorithm used to 

simulate the energy output of the various walls: this exchange is 

useful to refine the algorithm's measurement method in order to 

make the preliminary step simulation even more precise (Fig. 7). 

 

 

5. CONCLUSIONS 

The developed research emphasizes the importance of 

representation in digital modelling, with particular attention to 

the digitization process and the convergence of various aspects 

of the form into virtual computational tools. Models gather and 

analyze data and information through interconnected and 

interdisciplinary routes in order to transform it into knowledge. 

Because of its transdisciplinary nature, representation becomes 

the language of knowledge incorporation, introducing its own 

field of experimental and heuristic intervention, with paths that 

must be validated. 

The relationships between virtual and physical space provide a 

complex view of procedures that become cyclical. In fact, the 

approach starts from the algorithms of parametric multi-

optimization of the walls to determine combinations of materials 

and thicknesses in relation to costs and performances. These 

simulated features must then be validated using sensors, whose 

data are sent back into the models to verify initial assumptions. 

This approach enhances the very role of the model in its 

relationship with information: data is managed and visualized, 

Figure 6. The different spheres have been positioned and colored according to the corresponding sensors in the test room. 

Figure 7. The process begins with a digital simulation that 

leads the development of the Physical Twin. The data 

obtained from the real model's sensors are sent to the Digital 

Twin, which allows the initial algorithm to be refined. 
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but it can also be used to dynamically and accurately explain 

what is happening in reality. It is then simple to link the data to 

alarms and home automation systems, which can then be used to 

turn on/off cooling or heating, for example. Even at this early 

stage, the Digital Twin appears to be useful in simulating and 

predicting future behavior, optimizing resource and time usage, 

and generally improving management efficiency. In this way, an 

information ecosystem is generated, which creates knowledge 

and provides data for different purposes, depending on particular 

interests. The resulting process aids in the structure of resilient 

processes to anticipate, respond, and react to what, due to its 

complexity, can only be controlled by digital and understood by 

design. 
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