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ABSTRACT: 
 
Complex interaction between emissions, meteorology and atmospheric chemistry makes accurate predictions of particulate pollution 
difficult. Advanced data mining techniques can dig out potential laws from massive data, providing new possibilities for  understanding 
the evolution and causes of particulate pollution. Based on the Granger method and block modeling analysis, this study explored the 
spillover effects of hourly PM2.5 to determine the specific role (i.e., overflow, bilateral, inflow and limited inflow) of each city in Hubei, 
China. The results suggest that the northern and central cities with high level PM concentration in Hubei have a significant spillover 
effect, while the eastern and southern cities generally play a role as the sink of pollutant. 
 
 

1. INTRODUCTION 

With dramatic urbanization and industrialization over the past 
decades, large amounts of particulate matter (PM) have been 
discharged into the atmosphere, causing outbreaks of choking 
smog and haze. PM, especially PM2.5 (particles with aerodynamic 
diameters ≤ 2.5 μm), has been proved to have a significant 
impact on climate systems and human health (Croft et al., 2020; 
Manisalidis et al., 2020), and draws public concern. Despite a 
series of emission reduction measures taken by the Chinese 
government and some success achieved, the average PM 
concentration level is still higher than the health standards of the 
World Health Organization, especially in the plains and basins of 
central and eastern China. In addition to anthropogenic emissions, 
particulate pollution is influenced by many factors, such as 
meteorology and atmospheric chemistry. The disturbance and 
interaction of these factors make it difficult to figure out the 
spatial distribution changes and evolutionary mechanisms of 
pollution outbreaks (Li et al., 2020).  
 
Statistical algorithms and atmospheric numerical models are 
commonly used to analysing PM pollution. For example, G. Xu 
et al. (2020) investigated the relationship between PM2.5 and 
factors such as weather, underlying surface and socioeconomic 
conditions based on multivariate analysis of variance in the 
Yangtze River Delta (YRD), and they found that underlying 
surface had a significant effect on the distribution of PM2.5. Mao 
et al. (2020) explored the influence of regional transmission on 
PM2.5 pollution in Wuhan by quantifying the correlation of PM2.5 
in the city and its surrounding four directions (within 10 degrees). 
While simple statistical analysis can provide an indication of the 
underlying spread mechanisms of particulate pollution, the 
causality in the process still remains undetermined. The 
traditional numerical model can be used to figure the 
spatiotemporal distribution and evolution of pollutants, but due 
to the initial field and emission inventory errors, the model results 
are uncertain (Hong et al., 2022).  

                                                                 
*  Corresponding author 
 

 
Advanced data mining techniques can dig out potential laws from 
massive data, thus providing new possibilities for understanding 
the causes and evolution of particulate pollution.  Ma et al. (2019) 
analysed spatial patterns of haze pollution in the YRD region 
based on the improved output density model, and suggested a 
significant PM spillover effect from the urban agglomeration to 
surrounding areas. Zhang et al. (2020) further examined the PM 
spillover effects in Cheng-Yu urban agglomeration based on the 
Granger causality test, and suggested that the spatial spillover 
effects were more instructive in explaining the formation and 
transmission of aerosol pollution than the simple geographic 
proximity.  
 
This study aims to explore the PM spatiotemporal associations 
among cities in Hubei, a key province in Central China. 
Compared with other urban agglomerations (e.g., BTH and YRD) 
which are often focused on in China, few studies have been 
pursued to understand spatiotemporal associations of particulate 
pollution in Central China, one of the most important economic 
and industrial regions in the country. More importantly, this 
region is the north-south (east-west) passage of the East Asian 
monsoon across mainland China, and the terrain here is very 
complex. The interaction between anthropogenic emissions, 
large-scale pollution transport and local climate change makes 
the pollution pattern shows significant compound characteristics 
(Xu et al., 2017). By introducing data mining theory, we hope to 
develop a new method to further explore the intercity 
spatiotemporal associations of pollutants in Hubei and 
understand the causes of regional pollution, so as to cross-verify 
and complement the results of atmospheric models and jointly 
serve the prevention and control of regional air pollution. 
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2. DATA AND METHOD 

2.1 Study Area 

Hubei Province is located in the central part of China, with a 
developed economy, convenient transportation, and uneven 
population distribution. The terrain in this region is an incomplete 
basin that rises on three sides, is low and flat in the middle, and 
is notched in the north and open to the south (Figure 1). 
Specifically, Hubei Province is surrounded by the mountains 
such as Wudang, Wushan, Tongbai, Dabie and Mufu in the west, 
north and east, respectively. There are the Dahong Mountains in 
the north-central part and Jianghan Plain in the south-central part. 
Most of Hubei has a subtropical monsoon climate except for the 
high mountain areas, with four distinct seasons and an annual 
average temperature of 15~17℃. Due to the developed water 
system (e.g., the Yangtze River and the Han River) and dense 
lakes in this region, the humidity is relatively high throughout the 
year, with annual precipitation of 860~2100 mm (Zang et al., 
2021). These unique terrain and climate conditions make cause 
analysis and spread estimate of particulate pollution in Hubei 
very difficult (Feng et al., 2019). 
 

 
Figure 1. (a) Location of Hubei in China; (b) distribution of PM 
monitoring sites. The red circles denote national observation sites, 
while the green ones denote provincial observation sites. The 
mountains are marked by gray triangles. 
 
2.2 Data and processing 

Hourly PM2.5 and PM10 data used in this study are ground-based 
observations derived from 55 national sites 
(http://www.cnemc.cn/zzjj/jcwl/dqjcwl/) and 21 provincial sites, 
covering all 17 cities in Hubei Province (Figure 1). Wind-field 
and topographic data were used as auxiliary in this study to 
analyze the transport potential of pollutants. Among them, hourly 
wind speed at 2 m height (WS, including meridional and zonal 
winds, unit: m/s) was obtained from ERA-5 reanalysis dataset, 
released by the European Centre for Medium-Range Weather 
Forecasts (https://cds.climate.copernicus.eu/). The digital 
elevation model produced by the United States Geological 
Survey (https://www.usgs.gov/) was used describe the relief of 
the terrain. All data cover the period from March 1, 2018 to 
February 28, 2019. 
 
All data containing negative values due to instrument faults or 
other reasons were removed. Cubic spline interpolation was 
performed on null values (including missing or removed records) 
to obtain the continuous hourly observations at each site. Due to 
the small amount of null data (accounting for 4% of the total data), 
the interpolation algorithm will not have a significant impact on 
the time series of PM2.5, as shown in Table 1. The standard 
deviation of data before and after interpolation is basically 
unchanged. Finally, the hourly PM2.5 concentration of each city 
was obtained by calculating the simple average of all 
observations in the corresponding city.  
 
 

Table 1. Statistical characteristics of PM2.5 in each city before 
and after interpolation. 
City Mean 

(μg/m3) 
Standard 
deviation 

Extreme Deletion 
rate  

Enshi 33.84 
(33.86) 

4.69 
(4.71) 

109 
(104) 

5.14% 

Ezhou 44.93 
(45.78) 

5.46 
(5.49) 

258 
(258) 

5.42% 

Huanggang 38.34 
(38.78) 

5.07 
(6.84) 

153 
(155) 

0.02% 

Huangshi 42.02 
(42.7) 

5.13 
(5.16) 

176 
(175) 

5.65% 

Jingmen 61.12 
(60.05) 

7.19 
(7.10) 

1173 
(1025) 

5.87% 

Jingzhou 48.16 
(48.02) 

5.64 
(5.64) 

341 
(329) 

5.50% 

Qianjiang 45.48 
(45.49) 

6.11 
(6.11) 

503 
(503) 

0.02% 

Shennongjia 18.12 
(18.12) 

3.96 
(3.96) 

5 
(5) 

0.00% 

Shiyan 42.2 
(41.84) 

5.51 
(5.52) 

230 
(229) 

5.01% 

Suizhou 45.9 
(45.77) 

5.7 
(5.71) 

373 
(346) 

5.45% 

Tianmen 44.34 
(44.36) 

6.22 
(6.22) 

477 
(477) 

0.05% 

Wuhan 47.62 
(48.39) 

5.73 
(5.76) 

405 
(401) 

6.00% 

Xiangyang 65.45 
(62.97) 

7.66 
(7.35) 

1276 
(1119) 

5.09% 

Xianning 36.8 
(37.15) 

4.9 
(4.94) 

165 
(164) 

5.30% 

Xiantao 49.57 
(49.7) 

6.1 
(6.1) 

495 
(495) 

0.45% 

Xiaogan 43.64 
(44.1) 

5.34 
(5.38) 

213 
(213) 

5.48% 

Yichang 55.14 
(55.51) 

6.81 
(6.86) 

930 
(921) 

5.33% 

Note：The term of “Mean” represents the average of PM2.5 
concentration; “Standard deviation” represent the standard 
deviation of PM2.5 concentration; “Extreme” means sample size 
with PM2.5 greater than 115 μg/m³; “Deletion rate” means the rate 
of missing data. The values in brackets are pre-treated data 
characteristics, and the data outside the brackets are post-treated 
data. 
 
2.3 Algorithm 

The Granger method and block modeling analysis were used to 
explore the spillover effects of hourly PM to determine the 
specific role of each city. The methodology is shown in Figure 2. 
 

 
Figure 2. Analysis framework of intercity OVERFLOW effect 
of PM2.5. 
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2.3.1 Spillover effect analysis based on the Granger causality 
test 
Granger causality is one popular method that infers causal 
influences between events based on temporal precedence 
(Granger, 1969, 1980). This analytical tool is bases on the vector 
auto regressions (VAR) theory, and has been widely used in 
economic (Ike et al., 2020; Salahuddin et al., 2018), 
environmental pollution (Runge et al., 2019), climate change 
(Papagiannopoulou et al., 2016) and other fields (Risser & 
Wehner, 2017). Different from correlation analysis, the 
construction of Granger network is directional and can provide 
causality relation between factors, which is named as spillover 
effect (L. Xu et al., 2020). The spillover effect is actually a 
manifestation of spatial dependence, referring to the impact of a 
spatial unit on its surroundings. Here we constructed a PM2.5 
Granger network with each city described as a network node. If 
there is a PM spillover effect from X to Y (denoted by X → Y), 
the PM concentration fluctuation in City X can be used to predict 
subsequent fluctuations of PM concentration in City Y, i.e., 
pollution in X is the (part) cause of that in Y.  The VAR model 
can be expressed as follows: 
 

𝑋௧ ൌ 𝛽ଵ,଴ ൅෍𝛽ଵ,௜𝑋௧ି௜

௡

௜ୀଵ
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௡

௝ୀଵ

൅ 𝜇ଵ,௧ ሺ1ሻ 

𝑌௧ ൌ 𝛽ଶ,଴ ൅෍𝛽ଶ,௜𝑌௧ି௜

௠

௜ୀଵ

൅෍𝜃௝𝑋௧ି௝

௠

௝ୀଵ

൅ 𝜇ଶ,௧ ሺ2ሻ 

 
Where X୲ and Y୲ are the PM concentrations of City X and City Y 
at t time; β, γ, θ are the fitted coefficients. The parameters m, n 
are the forward time window, determined by the AIC (Akaike 
information criterion) principle, and here we set them as 1, 
consistent with Zhang et al. (2020); μଵ,୲ , μଶ,୲  are random 
disturbance terms. By checking whether the fitted parameters 
(i.e., 𝛾,𝜃 ) of 𝑌௧ି௝  and 𝑋௧ି௝  are zero or not, the PM2.5 spatial 
relationship between City X and City Y can be determined (Table 
2). 
 

Table 2. Criteria used for Granger causality test when the 
forward time window = 1 (Zhang et al., 2020). 

Null 
hypot
hesis 

Result 
Null 

hypot
hesis 

Result 
Relatio
nship 

Type (X 
perspec

tive) 

𝛾 ൌ 0 
Reject

ed 
𝜃 ൌ 0 

Accept
ed 

X ← Y 
Receivi

ng 

𝛾 ൌ 0 
Accept

ed 
𝜃 ൌ 0 

Reject
ed 

X → Y Sending 

𝛾 ൌ 0 
Reject

ed 
𝜃 ൌ 0 

Reject
ed 

X ↔ Y 
Two-
way 

𝛾 ൌ 0 
Accept

ed 
𝜃 ൌ 0 

Accept
ed 

No / 

 

Specifically, we define the null hypothesis as that X and Y are 
independent, so the corresponding coefficients (i.e., 𝛾,𝜃 ) are 
assumed to be zero. If the null hypothesis is rejected at a preset 
significance level (in this study, we adopted the significance level 
of 0.01), then a Granger causality between the variables would 
be determined. From the perspective of City X, the relationship 
between City X and City Y can be divided into sending 
relationship, receiving relationship or two-way relationships 
depending on the different results of the Granger causality test. 
For example, when the null hypothesis of X is accepted (i.e., all 
𝛾 values are 0) but the null hypothesis of Y is rejected (i.e., not 
all 𝜃 values are 0), we can say there is a sending relationship from 
City X to City Y. 
 
2.3.2 City role determination based on Block modelling  
Block modelling was adopted to identify the role of each city in 
regional PM pollution, based on the Granger causality results. 
This method interprets network characteristics by clustering 
(White et al., 1976; Wolfe, 1995), and it can be conducted by the 
CONCOR (CONvergence of iterated CORrelations) algorithm. 
The core idea of CONCOR algorithm is block segmentation 
based on convergence of iterative correlation among related data 
(Breiger et al., 1975). More details can be referred to Su and Yu 
(2019) and Zhang et al. (2020). The network nodes would 
automatically be divided into several blocks, and then block types 
could be identified according to the connections inside and 
outside the blocks (Lv et al., 2019; Su & Yu, 2019; Wang et al., 
2018). 
 
In this study, we predefined four types of connections (i.e., 
overflow, bilateral, inflow and limited inflow) to depict regional 
PM pollution evolution. The overflow blocks have more sending 
relationships to other blocks than receiving relationships from 
others. When sending relationships is 2.5 times or more than 
receiving relationships in a city, it will be classified as the 
overflow block. Bilateral block sends comparable number of 
relationships to other blocks as they receive from others. The 
inflow and limited inflow blocks receive more relationships from 
other blocks than they send, and the former has more receiving 
relationships. 
 

3. RESULTS AND DICUSSIONS 

3.1 Intercity spillover relationship pattern in PM pollution 

The annual and seasonal average PM concentration of each city 
in Hubei Province is presented in Figure 3. Xiangyang, a city on 
the northern border of the province, is the most polluted area with 
an annual average PM2.5 (PM10) concentration of 65.45 (98.56) 
μg/m3. The three central cities of Jingmen, Yichang, and Xiantao 
are the second most polluted areas in the province, with annual 
average PM2.5 (PM10) of 61.12 (85.21), 55.14 (82.96), 49.57 
(89.26) μg/m3, respectively. Shennongjia has the lowest pollution 
levels (average PM2.5 = 18.12 μg/m3; PM10 = 34.84 μg/m3) due to 
low anthropogenic emissions and high forest coverage. Figure 
3(c) and Figure 3(d) indictes that Xiangyang is also the city with 
the most frequent extreme pollution incidents, followed by 
Jingmen and Yichang. The particulate pollution in Hubei 
Province is dominated by fine particles, and the ratio of 
PM2.5/PM10 in each city is more than 0.55, except for 
Shennongjia. There are significant seasonal differences in PM 
pollution, with the most serious pollution in winter, followed by 
spring, autumn and summer. Therefore, the study focuses on the 
spatiotemporal association rules of PM2.5 pollution during 
wintertime. 
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Figure 3. Variation characteristics of PM concentration in Hubei 
from 2018/3/1 to 2019/2/28: (a) average PM2.5 concentration; (b) 
average PM10 concentration; (c) frequency of extreme PM2.5 
pollution (defined as PM2.5 ≥  115 μg/m3); (d) frequency of 
extreme PM10 pollution (defined as PM10 ≥ 250 μg/m3). 
 

Table 3. The results of PM2.5 in winter Granger causual 
network centrality degree. 

City Outdegree Indegree 

Enshi  0 5 

Ezhou 5 13 

Huanggang 5 9 

Huangshi 4 12 

Jingmen 14 2 

Jingzhou 8 9 

Qianjiang 8 13 

Shennongjia 1 7 

Shiyan 5 5 

Suizhou 12 3 

Tianmen 9 8 

Wuhan 10 6 

Xiangyang 13 1 

Xianning 6 13 

Xiantao 9 7 

Xiaogan 14 4 

Yichang 5 11 

 
Figure 4(a) shows the topology diagram of PM2.5 spatial spillover 
network in Hubei during winter. The colour represents the 
number of relationships (including sending and receiving 
relationships) related to the target city, which has also been 
counted in Table 3. There are 128 relationships in the whole 
network. Qianjiang has the largest number of relationships, 
including 8 sending relations and 13 receiving ones, while PM2.5 
in Enshi has the weakest correlation with other cities, and only 
five links were extracted. The spillover network implies that the 
intercity association of PM2.5 mainly occurs among the central 
and eastern cities. 
 
Clustering characteristics of the spillover network were further 
explored, as shown in Figure 4(b) and Table 4. All 17 cities in 
Hubei Province were divided into four types of blocks (i.e., 
overflow, bilateral, inflow and limited inflow), according to the 
difference of number of sending and receiving relationships in 
each city. To be specific, Xiangyang, Jingmen, Suizhou, Xiaogan 
and Wuhan are divided into the overflow block, where there are 

63 sending relationships and only 16 receiving ones. The five 
cities are distributed in northern and central Hubei Province. 
There also are five cities in the inflow block, including Qianjiang, 
Huanggang, Ezhou, Xianning and Huangshi. Except for 
Qianjiang in the central part, the cities are located in the eastern 
part of Hubei province. For the bilateral block, the number of 
sending relationships is almost equal to the number of receiving 
relationships (23 vs. 20), and except for Shiyan, Tianmen and 
Xiantao are surrounded by other cities, having a lot of PM two-
way interaction with other cities. The remaining four cities (Enshi, 
Shennongjia, Yichang and Jingzhou) are classified as the limited 
inflow block. 
 

 
Figure 4. City role determination in regional PM2.5 pollution: (a) 
topology of spillover effects in each city; (b) block type 
classification. In subplot (a), the abbreviation of ES, EZ, HG, HS, 
JM, JZ, QJ, SNJ, SY, SZ, TM, WH, XY, XN, XT, XG, YC 
represents Enshi, Ezhou, Huanggang, Huangshi, Jingmen, 
Jingzhou, Qianjiang, Shennongjia, Shiyan, Suizhou, Tianmen, 
Wuhan, Xiangyang, Xianning, Xiantao, Xiaogan, Yichang, 
respectively; the color represents the number of relationships 
established in the corresponding city and the arrow represents 
relationship among cities. In subplot (b), the arrow represents 
wind vector. 
 
Table 4. Statistics of spatial relationships in PM2.5 spillover 
network. 

Block 
type 

Num. 
of 

cities 

Receiving 
relationship 

Sending 
relationship 

inter. exter. inter. exter. 

Overflow 5 9 7 9 54 

Bilateral 3 2 18 2 21 

Inflow 5 18 42 18 10 

Limited 
Inflow 

4 4 28 4 10 

Note: The term of “Num.” means Number; The “inter.” means 
“internal”, i.e., relationships between cities inside of one block; 
The “exter.” means “external”, i.e., relationships between cities 
outside of one block. 
 
Figure 5 shows the receiving and sending relationships of PM2.5 
in four typical cities under different block types. As a member of 
the overflow block, Xiangyang is characterized significantly by 
the outward output of PM2.5. It has established 13 relationships 
with other cities in Hubei Province, 12 of which are sending 
relationships and 1 is a two-way relationship. Tianmen is located 
in the center of Hubei Province, and the number of sending and 
receiving relationships in the city is almost the same (6 v.s. 5). 
Notably, the receiving relationships are established between 
Tianmen and its northern cities, and the sending relationships are 
established between the city and its downwind southern cities. In 
all 10 relationships in Huanggang, the number of receiving and 
sending relationships are 5 and 1, respectively, reflecting the 
typical characteristics of the inflow block. Although the number 
of receiving relationships is also much larger than that of sending 
relationships in Yichang, considering the spillover effect of the 
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city on other cities, Yichang is still assigned to the limited inflow 
block finally. 

 
Figure 5. PM2.5 overflow effects in four typical cities: (a) 
Xiangyang (Overflow type); (b) Tianmen (Bilateral type); (c) 
Huanggang (Inflow type); (d) Yichang (Limited inflow type). 
 

4. CONCLUSIONS 

This study aims to investigate the spatiotemporal associations of 
urban PM2.5 pollution based on data mining method. The major 
findings in this study is that PM pollution in Hubei shows 
significant spatio-temporal heterogeneity. Xiangyang, a city in 
northern part, is the most PM polluted area, especially during 
wintertime. The three central cities Jingmen, Yichang, and 
Xiantao are the second most polluted areas in the province. 
Shennongjia, due to the low emissions and large forest cover, has 
the lowest pollution level. In terms of the role of cities, 
Xiangyang, Jingmen, Wuhan and other central and northern cities 
are the overflow block cities, which shows that PM2.5 
concentration has a great influence on other cities, while Ezhou, 
Enshi, Qianjiang are considered as the inflow block cities 
because PM2.5 concentration is affected by other cities. 
 
Notably, the algorithms used in this study are mainly based on 
linear assumptions, but it does not mean that the impact of 
upstream pollutants on the downwind area is linear. On the 
contrary, due to the interaction of local meteorology and 
anthropogenic emissions, the final result should be nonlinear. We 
will further develop nonlinear Granger networks for multivariate 
co-analysis and, in conjunction with plume models, further 
analyse meteorological, chemical and emission contributions in 
pollution formation. 
 

REFERENCES 

Breiger, R.L., Boorman, S.A., Arabie, P., 1975: An algorithm for 
clustering relational data with applications to social network 
analysis and comparison with multidimensional scaling. J. Math. 
Psycho., 12(3), 328-383. 
 
Croft, D.P., Zhang, W., Lin, S., Thurston, S.W., Hopke, P.K., van 
Wijngaarden, E., Squizzato, S., Masiol, M., Utell, M.J., Rich, 
D.Q., 2020: Associations between Source-Specific Particulate 
Matter and Respiratory Infections in New York State Adults. 
Environ. Sci. Technol., 54(2), 975-984. 
 
Feng, Y., Ning, M., Lei, Y., Sun, Y., Liu, W., Wang, J., 2019: 
Defending blue sky in China: Effectiveness of the “Air Pollution 
Prevention and Control Action Plan” on air quality 
improvements from 2013 to 2017. J. Environ. Manage., 252, 
109603. 
 
Granger, C.W.J., 1969: Investigating Causal Relations by 
Econometric Models and Cross-spectral Methods. Econometrica, 
37(3), 424-438. 
 

Granger, C.W.J., 1980: Testing for causality: A personal 
viewpoint. J. Econ. Dyn. Control, 2, 329-352. 
 
Hong, J., Mao, F., Gong, W., Gan, Y., Zang, L., Quan, J., Chen, 
J., 2022: Assimilating Fengyun-4A observations to improve 
WRF-Chem PM2.5 predictions in China. Atmospheric Research, 
265. 
 
Ike, G.N., Usman, O., Alola, A.A., Sarkodie, S.A., 2020: 
Environmental quality effects of income, energy prices and trade: 
The role of renewable energy consumption in G-7 countries. Sci. 
Total Environ., 721, 137813. 
 
Li, M., Wang, L., Liu, J., Gao, W., Song, T., Sun, Y., Li, L., Li, 
X., Wang, Y., Liu, L., Daellenbach, K.R., Paasonen, P.J., 
Kerminen, V.-M., Kulmala, M., Wang, Y., 2020: Exploring the 
regional pollution characteristics and meteorological formation 
mechanism of PM2.5 in North China during 2013-2017. 
ENVIRONMENT INTERNATIONAL, 134. 
 
Lv, K., Feng, X., Kelly, S., Zhu, L., Deng, M., 2019: A study on 
embodied carbon transfer at the provincial level of China from a 
social network perspective. J. Cleaner Prod., 225, 1089-1104. 
 
Ma, R., Wang, C., Jin, Y., Zhou, X., 2019: Estimating the Effects 
of Economic Agglomeration on Haze Pollution in Yangtze River 
Delta China Using an Econometric Analysis. Sustainability, 
11(7), 1893. 
 
Manisalidis, I., Stavropoulou, E., Stavropoulos, A., Bezirtzoglou, 
E., 2020: Environmental and Health Impacts of Air Pollution: A 
Review. Frontiers in Public Health, 8, 14. 
 
Mao, F., Zang, L., Wang, Z., Pan, Z., Zhu, B., Gong, W., 2020: 
Dominant synoptic patterns during wintertime and their impacts 
on aerosol pollution in Central China. Atmos. Res., 232, 104701. 
 
Papagiannopoulou, C., Miralles, D.G., Decubber, S., Demuzere, 
M., Verhoest, N.E.C., Dorigo, W.A., Waegeman, W., 2016: A 
non-linear Granger-causality framework to investigate climate–
vegetation dynamics. Geosci. Model Dev., 10, 1945-1960. 
 
Risser, M.D., Wehner, M.F., 2017: Attributable Human-Induced 
Changes in the Likelihood and Magnitude of the Observed 
Extreme Precipitation during Hurricane Harvey. Geophys. Res. 
Lett., 44(24), 12457-12464. 
 
Runge, J., Bathiany, S., Bollt, E., Camps-Valls, G., Coumou, D., 
Deyle, E., Glymour, C., Kretschmer, M., Mahecha, M.D., 
Muñoz-Marí, J., van Nes, E.H., Peters, J., Quax, R., Reichstein, 
M., Scheffer, M., Schölkopf, B., Spirtes, P., Sugihara, G., Sun, J., 
Zhang, K., Zscheischler, J., 2019: Inferring causation from time 
series in Earth system sciences. Nat. Commun., 10(1), 2553. 
 
Salahuddin, M., Alam, K., Ozturk, I., Sohag, K., 2018: The 
effects of electricity consumption, economic growth, financial 
development and foreign direct investment on CO2 emissions in 
Kuwait. Renew. Sust. Energ. Rev., 81, 2002-2010. 
 
Su, Y., Yu, Y.Q., 2019: Spatial association effect of regional 
pollution control. J. Cleaner Prod., 213, 540-552. 
 
Wang, F., Gao, M., Liu, J., Fan, W., 2018: The Spatial Network 
Structure of China’s Regional Carbon Emissions and Its Network 
Effect. Energies, 11, 2706. 
 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-171-2022 | © Author(s) 2022. CC BY 4.0 License.

 
175



 

White, H.C., Boorman, S.A., Breiger, R.L., 1976: Social 
Structure from Multiple Networks. I. Blockmodels of Roles and 
Positions. Am. J. Sociol., 81(4), 730-780. 
 
Wolfe, A.W., 1995: Social Network Analysis: Methods and 
Applications. Contemp. Sociol., 91(435), 219-220. 
 
Xu, G., Ren, X., Xiong, K., Li, L., Bi, X., Wu, Q., 2020: Analysis 
of the driving factors of PM2.5 concentration in the air: A case 
study of the Yangtze River Delta, China. Ecol. Indic., 110, 
105889. 
 
Xu, L., Batterman, S., Chen, F., Li, J., Zhong, X., Feng, Y., Rao, 
Q., Chen, F., 2017: Spatiotemporal characteristics of PM2.5 and 
PIV10 at urban and corresponding background sites in 23 cities 
in China. Sci. Total Environ., 599, 2074-2084. 
 
Xu, L., Zhong, X., Chen, F., Ye, R., Zhang, L., Wu, X., Deng, J., 
Li, J., Chen, F., 2020: Spatiotemporal disequilibrium and 
spillover effect of fine particulate matter across China. Sci. Total 
Environ., 704, 135422. 
 
Zang, L., Zhang, Y., Zhu, B., Mao, F., Zhang, Y., Wang, Z., 2021: 
Characteristics of water-soluble inorganic aerosol pollution and 
its meteorological response in Wuhan, Central China. Atmos. 
Pollut. Res., 12(3), 362-369. 
 
Zhang, D., Lu, Y., Tian, Y., 2020: Spatial Association Effect of 
Haze Pollution in Cheng-Yu Urban Agglomeration. Sci. Rep., 
10(1), 9753. 
 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-171-2022 | © Author(s) 2022. CC BY 4.0 License.

 
176




