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ABSTRACT:

Before modern earth observation techniques came into being, historical maps are almost the exclusive source to retrieve geo-spatial
information on Earth. In recent years, the use of deep learning for historical map processing has gained popularity to replace tedious
manual labor. However, neural networks, often referred to as “black boxes”, usually generate predictions not well calibrated for
indicating if the predictions are trustworthy. Considering the diversity in designs and the graphic defects of scanned historical
maps, uncertainty estimates can benefit us in deciding when and how to trust the extracted information. In this paper, we compare
the effectiveness of different uncertainty indicators for segmenting hydrological features from scanned historical maps. Those
uncertainty indicators can be categorized into two major types, namely aleatoric uncertainty (uncertainty in the observations) and
epistemic uncertainty (uncertainty in the model). Specifically, we compare their effectiveness in indicating erroneous predictions,

detecting noisy and out-of-distribution designs, and refining segmentation in a two-stage architecture.

1. INTRODUCTION

Historical maps serve as useful and almost unique resources to
depict geo-spatial phenomena on Earth before modern earth ob-
servation techniques came into being. Tremendous scanned his-
torical maps with diverse designs, scales, and different graphic
qualities require automatic, generic, and robust methods. In re-
cent years, deep learning methods have been leveraged to seg-
ment features from scanned historical maps (Uhl et al., 2017;
Uhl et al., 2018, 2020; Heitzler and Hurni, 2020) and have
shown promising results. However, neural networks, often re-
ferred to as ’black boxes”, usually generate predictions not well
calibrated for indicating if and when the predictions are trust-
worthy. As historical maps inevitably have graphic defects and
diversity in designs, uncertainty estimates can benefit research-
ers in deciding when and how to trust the extracted information.
Two major types of uncertainty have been studied in the field of
computer vision (Kendall and Gal, 2017), namely aleatoric un-
certainty and epistemic uncertainty. Aleatoric uncertainty cap-
tures noise inherent in the data (e.g., map noise from the ori-
ginal painting, aging effect, and the scanning process). This
uncertainty is inevitable and cannot be reduced with more train-
ing data collected. Epistemic uncertainty, also known as model
uncertainty, describes the imperfectness in model parameters,
which can be reduced with more training data collected.

For historical map segmentation, Wu et al. (2022) incorporated
the concepts of Bayesian deep learning to model uncertainty in-
herent in historical maps. In this paper, we have a closer look at
both aleatoric and epistemic uncertainty through three types of
uncertainty indicators, with hydrological features as the focus.
Specifically, we test the effectiveness of those types of uncer-
tainty in indicating erroneous predictions, capturing noisy and
out-of-distribution designs, and improving segmentation results
in a two-stage architecture. The method we propose is agnostic
to specific deep learning architectures and the framework can
be applied to other uncertainty estimation techniques. Also,
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despite that historical maps are our focus, our methodology is
general enough for other applications.

2. RELATED WORK

With the advances of computer vision, deep-learning-based
map processing methods are becoming increasingly popular for
segmenting buidings (Uhl et al., 2017; Uhl et al., 2018, 2020;
Heitzler and Hurni, 2020) and hydrological features (Wu et al.,
2022). The network architectures alter from LeNet (Uhl et al.,
2017; Uhl et al., 2018, 2020), to U-Net (Heitzler and Hurni,
2020), and to ASPP-integrated U-Net (Wu et al., 2022) which
incorporates multi-scale contexts.

To provide a quality indicator to calibrate the network’s pre-
dictions, two types of segmentation uncertainty are modelled
under the concept of Bayesian deep learning, namely aleatoric
uncertainty (data-dependent) and epistemic uncertainty (model-
dependent). Aleatoric uncertainty has been modelled by either
a probabilistic distribution (Kendall and Gal, 2017; Cipolla et
al., 2018; Gurevich and Stuke, 2018) to calibrate the prediction
probability or an interpolation degree between the targeted and
the predicted distributions (DeVries and Taylor, 2018a,b; Wu et
al., 2022). Epistemic uncertainty has been modelled by either
using Monte-Carlo dropout to sample the neural network para-
meters (Kendall and Gal, 2017; DeVries and Taylor, 2018b) or
using an ensemble of neural networks trained independently
with random initializations (Lang et al., 2022; Lakshminaray-
anan et al., 2016). The second option is computationally more
efficient and tends to have better performances in practice (Lak-
shminarayanan et al., 2016). However, since both sampling
and assembling models often are time-consuming and resource-
intensive, modelling aleatoric uncertainty is more computation-
ally efficient than modelling epistemic uncertainty in general.
In previous works, DeVries and Taylor (2018b) compared dif-
ferent types of uncertainty mentioned above for segmenting
skin lesions and investigated their effectiveness in predicting
the segmentation quality. Our work compares the effectiveness
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of different uncertainty indicators for segmenting scanned his-
torical maps. We have a closer look at their effectiveness in
three aspects both qualitatively and quantitatively. Instead of
using uncertainty to predict the segmentation quality, we pro-
pose a novel two-stage architecture to use the estimated uncer-
tainty to refine segmentation results.

3. METHOD

The proposed two-stage architecture is depicted in Figure 1.
The first stage is a normal semantic segmentation task. The
network takes an input image and outputs a segmentation map.
We apply the ASPP-integrated U-Net proposed by Wu et al.
(2022), which adds an atrous spatial pyramid pooling (ASPP)
block (Chen et al., 2017) after the backbone of a normal U-Net
(Ronneberger et al., 2015), to segment four hydrological classes
- streams, wetlands, rivers and lakes. We use Sigmoid activa-
tion at the end to obtain segmentation probability. To produce
uncertainty maps, we investigate three methods: prediction en-
tropy, learned confidence estimates and ensemble variance. The
first two captures aleatoric uncertainty while the last one indic-
ates epistesmic uncertainty. In the second stage, the output seg-
mentation map, uncertainty map together with the input image
from the first stage are fed into a refinement network to gen-
erate a refined segmentation map. Both stages share the same
network architecture.

3.1 Prediction Entropy

The first uncertainty estimation technique we investigate is
the prediction entropy. As our model outputs a soft score
(probability) between O and 1, we can directly calculate
the entropy of the predicted probability. The entropy, as a
common uncertainty indicator, can be obtained for free from
any classification network without introducing additional
parameters. Since our model allows multi-class prediction, we
calculate entropy per class instead of averaging it across class
dimensions:

cij = —pijlogpi; (D

for the prediction p;; of class j at the pixel 4.
3.2 Learned Confidence Estimates

The second technique we investigate is Learned Confidence
Estimates (LCE) proposed by DeVries and Taylor (2018a,b),
which is an effective method to generate pixel-wise confid-
ence/uncertainty maps for segmentation. The network learns to
produce an additional uncertainty map beside the segmentation
map. The uncertainty estimation is encouraged as a calibration
mask that controls the interpolation degree between the pre-
dicted and the targeted prediction:

’
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where o;; is the predicted uncertainty, p;; is the segmentation
probability and y;; is the binary ground truth. When the net-
work is highly uncertain about the results (o;; — 1), it will
receive the correct label (p;j — ;) to avoid penalizing the un-
certain cases. A log penalty is added to prevent the model from
always predicting high uncertainty scores.

3.3 Ensemble Variance

The third technique we investigate is the ensemble variance
(Lang et al., 2022; Lakshminarayanan et al., 2016). We train
several models independently with random initializations,
regarding each model as a randomly-sampled distribution of
the ensemble parameters. The variance of the ensemble can
represent the uncertainty in model parameters:
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3.4 Effectiveness of Uncertainty Indicators

We test the effectiveness of the uncertainty indicators in the fol-
lowing three aspects:

e We test if the estimated uncertainty can indicate erroneous
predictions based on the assumption that a well-calibrated
uncertainty indicator should capture untrustworthy predic-
tions. Specifically, we observe the change of accuracy
after filtering out/dilating/eroding uncertain pixels. We be-
lieve that the remaining relatively more confident pixels
will have higher prediction accuracy. For dilation, we treat
all uncertain predictions as 1 while for erosion, we reduce
all uncertain predictions to 0, to test if the uncertainty in-
dicator is biased towards negative or positive predictions.

e We test if the estimated uncertainty can identify noisy and
out-of-distribution inputs, assuming that a functional un-
certainty indicator should identify peculiar situations. We
compare the difference of uncertainty levels between nor-
mal map sheets (used for training) with the noisiest map
sheets and different map designs.

e We test if the estimated uncertainty can aid the refinement
network to improve the raw predictions. We suppose that
the highly structured and meaningful uncertainty indicator
can help the model make reasonable decisions regarding
when and how to trust the raw predictions.

3.5 Evaluation Metrics

We evaluate prediction accuracy using four common metrics -
dice coefficient, F1 score, precision, and recall. For line fea-
tures, their metrics can be sensitive to small width changes of
the thin structures. In our ground truth, we give streams (line
vectors) a fixed buffer width on average before rasterizing them
to pixel-level annotations. However, as the width of streams al-
ters, a fixed-width can lead to mismatches between predictions
and ground truth annotations. Therefore, we skeletonize both
predicted and annotated streams into centerlines and calculate
the metrics by relaxing the notions in a buffered distance sim-
ilar to the approaches described by Mosinska et al. (2018) and
Wegner et al. (2013) for road extraction. Predicted centerline
pixels are regarded as true positives (TP) if they lie in a buffer of
the ground-truth centerline and false positives (FP) otherwise.
Ground-truth centerline pixels are regarded as false negatives
(FN) if they don’t lie in a buffer of the predicted centerline.
The variant recall 775 and precision 77+ are similar
to the completeness and correctness in the works of Mosinska
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Figure 1. Our proposed two-stage architecture. In stage (a), a segmentation network (an ASPP-integrated U-Net) takes an input image
and outputs a segmentation map. An uncertainty map is either output additionally by the network or calculated directly out of the
segmentation map. In stage (b), a refinement network takes the segmentation map, uncertainty map and the input image from (a) to
generate a refined prediction map. The network architecture stays the same.
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Figure 2. Calculating evaluation metrics for line features. We
skeletonize both predictions and ground truth and calculate the
metrics in a buffered distance. Predicted centerline pixels ypred
are regarded as true positives TP if they lie in a buffer of ground

truth y and false positives FP otherwise. Ground-truth centerline

pixels are regarded as false negatives FN if they don’t lie in a

buffer of the predicted centerline ypreq.

et al. (2018) and Wegner et al. (2013). Then we obtain the
F1 score by 2 x precisionxrecall g the dice coefficient, we
! X precision—+recall X X K

count intersections by the number of predicted centerline pixels
Ypred that lie in a buffer yy. s ser of the ground-truth centerline
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4. EXPERIMENTAL RESULTS AND DISCUSSIONS

4.1 Experimental Data and Settings

In our experiment, we use the scanned Topographic Atlas
of Switzerland (”Siegfried map”) that was published between
1870 and 1949, and then scanned and stored in a digital archive
by the Federal Office of Topography (Swisstopo). Our training
data contains 439 map sheets of scale 1:25000 around the year
1880, each of which is 7000 pixels wide and 4800 pixels high.
We divide the map sheets into training (80%), validation (10%),
and testing (10%) and sample them into small training tiles of
256 x 256 pixels.

For stage (a) in Figure 1, we trained seven models independ-
ently for 100 epochs with a patience of 25 epochs for early stop-
ping. We use the Adam optimizer with an initial learning rate

of 0.001 and decrease it by 10% after each epoch. For stage
(b), we trained the models for only 50 epochs with the same
optimizer and learning rate.

4.2 Uncertainty Maps

We visualize different uncertainty maps in Figure 3 for qual-
itative comparisons. As different uncertainty is yielded in dif-
ferent numerical ranges, for better visualization, we discretize
uncertainty by their quantiles. Since the majority of maps does
not contain hydrological features and tend to have uncertainty
values approximately 0, we clip out those values first before
we obtain the 60% (Q1), 80% (Q2) and 90% (Q3) quantiles
of uncertainty. We visualize the resulting 10%, 20% and 40%
most uncertain pixels. From Figure 3 we can see, all three types
of uncertainty are able to indicate uncertainty in normal object
boundaries (e.g. streams, rivers). This is within our expect-
ation because the object borders tend to have less discrimin-
ative information and possibly aliasing effects from scanning.
For features without explicit boundaries (i.e. wetlands), LCE
and variance displays a wider band of uncertainty than entropy,
including the blank area between two wetlands. We find that
variance and LCE are better at identifying erroneous predic-
tions influenced by input noise (e.g. noisy strokes (b), scanning
artifacts (c)) than entropy. Variance is relatively more sensitive
to input noise than LCE, showing high uncertainty regardless
if the segmentation errs. All of three uncertainty indicators can
recognize exotic/out-of-distribution inputs (d) that are from a
totally different map series. Now we are going to check the
difference between their effectiveness quantitatively.

4.3 Uncertainty Indicators for Erroneous Predictions

To quantitatively investigate the capacity of these indicators
for erroneous predictions, we filter/dilate/erode the 10%, 20%,
and 40% most uncertain pixels by each indicator and observe
changes of accuracy. We regard every uncertain pixel as pos-
itive for dilation and negative for erosion to gain more insights
into whether the uncertainty indicator is biased towards positive
or negative predictions. Figure 4 shows an example of erosion
and dilation using the ensemble variance.

From Table 1 we can see, after filtering out uncertain pixels, the
accuracy metrics improve for all three uncertainty indicators,
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Dice F1 Precision Recall
Operation | Uncertainty - 10% 20%  40% - 10% 20%  40% - 10% 20%  40% - 10%  20%  40%
Entropy 0.829 0.899 0.902 0905 | 0.871 0.930 0.932 0.935 | 0.829 0.878 0.881 0.887 | 0.917 0.988 0.989 0.989
Filter Variance 0.829 0.892 0.926 0926 | 0.871 0918 0938 0.938 | 0.829 0911 0952 0968 | 0917 0.924 0925 0.910
LCE 0.829 0.883 0.898 0.904 | 0.871 0911 0919 0918 | 0.829 0.905 0.927 0.948 | 0917 0917 0912 0.890
Entropy 0.829 0.838 0.838 0.830 | 0.871 0.877 0.877 0.870 | 0.829 0.832 0.830 0.822 | 0917 0.928 0.929 0.924
Dilation Variance 0.829 0.820 0.804 0.795 | 0.871 0.864 0.853 0.847 | 0.829 0.799 0.778 0.764 | 0917 0.940 0.945 0.950
LCE 0.829 0.838 0.838 0.830 | 0.871 0.877 0.877 0.870 | 0.829 0.831 0.830 0.822 | 0917 0.929 0.929 0.924
Entropy 0.829 0.848 0.846 0.845 | 0.871 0.885 0.8834 0.880 | 0.829 0.878 0.881 0.887 | 0.917 0.892 0.887 0.872
Erosion Variance 0.829 0.852 0.875 0.846 | 0.871 0.886 0.897 0.871 | 0.829 0911 0.952 0.968 | 0917 0.862 0.848 0.792
LCE 0.829 0.845 0.841 0.810 | 0.871 0.878 0.868 0.831 | 0.829 0.905 0.927 0.948 | 0917 0.853 0.817 0.740

Table 1. Uncertainty indicators for erroneous predictions. We test the segmentation accuracy after filtering out the most 10%, 20% and
40% pixels and dilating/eroding these uncertain pixels.
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Figure 3. Comparison of different uncertainty indicators. Color
bars are presented at the bottom. (a) shows an example where a
river is partially misclassified as a lake. (b) and (c) present cases
where the prediction accuracy suffers due to noisy strokes (b) for
streams and scanning artifacts (c) for wetlands. (d) is an
out-of-distribution example where the design varies from the
training map sheets.

(e)

()

Figure 4. Examples of using the ensemble variance to erode and
dilate features. From (a) to (f) are input, ground truth,
prediction, variance, dilated prediction and eroded prediction.
For each class, we regard uncertain pixels as negative for erosion
and positive for dilation.

which implies their general correlation with erroneous predic-
tions. Interestingly, the accuracy has merely a slight increase
after filtering more than 20% top uncertain pixels for all these
indicators. This implies that erroneous predictions are more
likely to accumulate in the 20% most uncertain pixels (even
10% for entropy and LCE).

Accuracy increases after dilating uncertain pixels for entropy
and variance while it decreases for variance. This indicates that
high variance is likely to correspond more to true negatives than
false negatives while the opposite is true for entropy and LCE.
The improved accuracy after erosion demonstrates that all three
indicators capture more false positives than true positives (ex-
cept LCE for the top 20% — 40% uncertain pixels). The accur-
acy metrics alter more after erosion than dilation for all three
indicators. This shows that all of them are rather biased towards
positive predictions than negative ones.

4.4 Uncertainty Indicators
Distribution Data

for Noisy and Out-of-

As mentioned before, the graphic flaws and design diversity
characterizing scanned historical maps can influence the ex-
traction results. To test the effectiveness of those uncertainty
indicators for noisy data, we select ten most noisy map sheets
with scanning artifacts 5(a), noisy strokes 5(b) and painting
flaws 5(c). For exotic(out-of-distribution) data, we select ten
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Figure 5. Examples of noisy ad out-of-distribution data. Noisy
examples include scanning artifacts (a), noisy strokes (b) and
painting errors (c). (d) (e) (f) show examples of different designs
for lakes of Siegfried maps (25k), Siegfried maps (50k), and old
national maps (25k), respectively.

map sheets from other different map series - five from Siegfried
maps of 1:50k and five from old national maps of 1:25k.
While Siegfried maps of 1:25k mainly cover the Swiss plat-
eau, Siegfried maps of 1:50k mainly cover the Swiss Alps
and their designs can vary from 1:25k. Figure 5(e) shows
an example of Siegfried of 1:50k where the lakes are painted
green. Starting from the middle 20th century, national maps of
Switzerland were implemented and replaced the previous map
series (Dufour and Siegfried maps) with a new design schema.
The maps we select are old national maps of 1:25k published
between 1958 and 1990. Figure 5(f) shows an example of old
national maps of 1:25k where the symbolization varies from
Siegfried maps 5(a) — 5(d).

We randomly select ten sheets from Siegfried maps of 1:25k in
the testing areas as “normal” data of which the distribution is
similar to the training data (i.e. produced at similar years with
the same design schema). We produce both segmentation and
uncertainty maps for those selected map sheets and calculate
the ratio between the sum of uncertainty values and the sum
of prediction probabilities to normalize the uncertainty w.r.t the
object content per map sheet. A higher ratio represents a larger
uncertainty level proportionally.

As we can see from Figure 6, numerically LCE is the largest
while entropy is the smallest. Nevertheless, all of them present
a clear distinction between the normal designs, noisy designs,
and out-of-distribution designs. LCE can capture the most sig-
nificant difference between the normal data and noisy/out-of-
distribution data. Generally speaking, the uncertainty level
of noisy in-distribution designs is higher than normal in-
distribution designs but lower than out-of-distribution designs.

4.5 Uncertainty Indicators for Refining Segmentation

We assume that highly structured and meaningful uncertainty
indicators can help the network to learn when and how to trust
the prediction. We input either the calculated uncertainty (vari-
ance/entropy) or the learned uncertainty (LCE), together with
the input image and the segmentation map, to the refinement
network for a second-stage training. As we can see from Table
2, all three uncertainty indicators help to refine the predictions,
especially improving the precision significantly. Among the
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Figure 6. Comparison between indicated uncertainty levels. The

uncertainty is normalized by the content of segmented features.

The box plot shows the minimum, the maximum, quartiles and
the median.

Figure 7. Examples of similar symbolization between rivers (c)
and lakes (a) (b).

three indicators, LCE aids in refining predictions to the largest
degree. The epistemic uncertainty indicator (variance) does
not lead to a greater improvement than the aleatoric indicat-
ors (LCE and entropy). This is probably because, in our case,
uncertainty caused by the noise inherent in data has a more sys-
tematic influence on prediction than noise in model parameters.
Originally, wetlands and lakes have relatively poorer segment-
ation. All three uncertainty indicators perform well in refining
wetland segmentation, which is within our expectation as we
note that the majority of false-positive wetlands are caused by
map artifacts. However, the improvements for lakes are fairly
limited. This implies that poor segmentation of lakes might
not be simply explained by noise in data or model paramet-
ers. As pointed by Wu et al. (2022), inadequate contexts can
inhibit a model from making consistent predictions, especially
when similar symbolization exists for different feature classes,
as shown in Figure 7 for rivers (c) and lakes (a) (b). As most
studies about model-level uncertainty only focus on noise in
model parameters, the context-level uncertainty should be fur-
ther investigated.

4.6 Conclusions

In this work, we have investigated three types of uncertainty
indicators that capture aleatoric and epistemic uncertainty in
historical map segmentation — prediction entropy, model vari-
ance, and LCE. We found that these indicators generally corres-
pond to erroneous predictions and are biased towards positive
predictions (rather false positives) than negative ones. All three
indicators are able to distinguish noisy and out-of-distribution
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Dice Fl1 Precision Recall
Refine avg stream  wetland  river lake avg  stream wetland  river lake avg  stream wetland  river lake avg  stream wetland  river lake
0.829  0.942 0.752 0906 0.718 | 0.871 0.954 0.830 0912 0.783 | 0.829  0.940 0.747  0.895 0.734 | 0917 0.968 0.933 0929 0.838
Entropy | 0.843  0.965 0.789  0.893 0.726 | 0.878  0.963 0.853  0.899 0.792 | 0.872 0.967 0.808  0.873 0.841 | 0.884  0.958 0.902 0928 0.748
Variance | 0.843  0.965 0.793  0.890 0.721 | 0.876  0.963 0.857  0.897 0.786 | 0.850  0.969 0.810  0.866 0.757 | 0.903  0.956 0.910  0.930 0.816
LCE 0.858  0.965 0.840  0.894 0.731 | 0.886 0.963 0.883  0.900 0.795 | 0.864 0.967 0.855  0.876 0.759 | 0.908 0.958 0913 0925 0.834

Table 2. Refinement using different uncertainty indicators.

We calculate the dice, F1, precision, and recall to evaluate the accuracy in
our testing areas for four classes - stream, wetland, river, and lake, and their average accuracy.

designs clearly from normal designs. To test if the yielded un-
certainty is highly structured and meaningful, we have proposed
a two-stage network to use the uncertainty to refine raw predic-
tions (the second stage) from a normal segmentation network
(the first stage). The aid of ensemble variance that captures epi-
stemic uncertainty does not lead to a greater improvement than
the other two indicators for aleatoric uncertainty, possibly be-
cause noise in data dominates predictions more systematically
in our case. Among all three indicators, LCE shows the greatest
performance in the refinement task. However, none of the in-
dicators is able to capture the uncertainty in context. In the
future, we are going to investigate the impact of context-level
uncertainty on model performance.

References

Chen, L., Papandreou, G., Schroff, F., Adam, H., 2017. Re-
thinking Atrous Convolution for Semantic Image Segmenta-
tion. arXiv:1706.0558.

Cipolla, R., Gal, Y., Kendall, A., 2018. Multi-task learning
using uncertainty to weigh losses for scene geometry and se-
mantics. Proceedings of the IEEE Conference on Computer Vis-
ion and Pattern Recognition (CVPR), 7482-7491.

DeVries, T., Taylor, G. W, 2018a. Learning Confid-
ence for Out-of-Distribution Detection in Neural Networks.
arXiv:1802.04865.

DeVries, T., Taylor, G. W, 2018b. Leveraging Un-
certainty Estimates for Predicting Segmentation Quality.
arXiv:1807.00502.

Gurevich, P, Stuke, H., 2018. Pairing an arbitrary regressor
with an artificial neural network estimating aleatoric uncer-
tainty. arXiv:1707.07287.

Heitzler, M., Hurni, L., 2020. Cartographic reconstruction of
building footprints from historical maps: A study on the Swiss
Siegfried map. Transactions in GIS, 24(2), 442-461.

Kendall, A., Gal, Y., 2017. What uncertainties do we need in
bayesian deep learning for computer vision? Proceedings of
the 31st International Conference on Neural Information Pro-
cessing Systems (NIPS), 5580-5590.

Lakshminarayanan, B., Pritzel, A., Blundell, C., 2016. Simple
and scalable predictive uncertainty estimation using deep en-
sembles. arXiv:1612.01474.

Lang, N., Kalischek, N., Armston, J., Schindler, K., Dubayah,
R., Wegner, J. D., 2022. Global canopy height regression and
uncertainty estimation from GEDI LIDAR waveforms with
deep ensembles. Remote Sensing of Environment, 268, 112760.

Mosinska, A., Marquez-Neila, P., Kozinski, M., Fua, P., 2018.
Beyond the pixel-wise loss for topology-aware delineation.
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 3136-3145.

Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: Convolu-
tional networks for biomedical image segmentation. Proceed-
ings of the International Conference on Medical Image Com-
puting and Computer-Assisted Intervention (MICCAI), 234—
241.

Uhnl, J. H, Leyk, S., Chiang, Y., Duan, W., Knoblock, C. A.,
2017. Extracting human settlement footprint from historical to-
pographic map series using context-based machine learning.
Proceedings of the 8th International Conference of Pattern Re-
cognition Systems (ICPRS), 1-6.

Uhnl, J. H., Leyk, S., Chiang, Y. Y., Duan, W., Knoblock,
C. A., 2018. Spatialising uncertainty in image segmentation us-
ing weakly supervised convolutional neural networks: A case
study from historical map processing. IET Image Processing,
12(11), 2084-2091.

Uhl, J. H, Leyk, S., Chiang, Y. Y., Duan, W., Knoblock, C. A.,
2020. Automated extraction of human settlement patterns from
historical topographic map series using weakly supervised con-
volutional neural networks. IEEE Access, 8, 6978-6996.

Wegner, J. D., Montoya-Zegarra, J. A., Schindler, K., 2013. A
higher-order crf model for road network extraction. Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, 1698-1705.

Wu, S., Heitzler, M., Hurni, L., 2022. Leveraging uncertainty
estimation and spatial pyramid pooling for extracting hydrolo-
gical features from scanned historical topographic maps. GIS-
cience & Remote Sensing, 59(1), 200-214.

This contribution has been peer-reviewed.

https://doi.org/10.5194/isprs-archives-XLI1-B4-2022-189-2022 | © Author(s) 2022. CC BY 4.0 License.

194





