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ABSTRACT: 
 
The COVID-19 epidemic has posed a grave threat to human life. The stay-at-home quarantine is an effective method of minimizing 
physical contact and the risk of COVID-19 transmission. However, the supply of living materials (such as meat, vegetables, grain, and 
oil) has become a great challenge as residents' activities have been restricted. In this paper, we present a spatial analysis framework for 
the supply of living materials during COVID-19 outbreak by coupling an infectious disease model with geographic information system 
(GIS). First, a virus spreading spatial simulation model is developed by combining cellular automata (CA) and Susceptible-Exposed-
Infected-Recovered-Death (SEIRD) to estimate COVID-19's spreading under various scenarios. Second, the demand and supply of 
living materials in the impacted residents are calculated. Finally, the imbalance of the supply and demand of the living materials is 
assessed. We conduct experiments in Shenzhen. The experimental results show that localities with supply-demand mismatches are 
primarily concentrated in the southwest of Bao'an District, the southern of Longhua District, and Longgang District. Additionally, the 
spatial distribution of the mismatch level between supply and demand for living materials in Shenzhen exhibits a significant 
agglomeration effect, manifested as "low-low" and "high-high" agglomeration. The spatial agglomeration effect of material mismatch 
has increased with the spread of the epidemic. These results support the prevention and control of the COVID-19 spreading.  
 
 

1.  INTRODUCTION 

Since the outbreak of the COVID-19, it has caused serious 
disasters to the worldwide health and economy. According to 
World Health Organization (WHO) statistics, the number of 
deaths caused by COVID-19 is 1.9 million in 2020 and 3.5 
million in 2021. At present, the COVID-19 epidemic is still 
raging around the world. Epidemic prevention and control 
remains the top priority. Keeping a healthy social distance is the 
key to epidemic prevention and control (Ma et al., 2020), which 
can effectively prevent the spread of the virus. But a series of 
epidemic control measures such as stay-at-home and the 
limitation of small supermarkets will affect the supply of 
people's living materials (such as meat, vegetables, grain, and oil) 
and bring great inconvenience to our life. The provision of basic 
living material is critical for inhabitants' survival during the 
COVID-19 outbreak. For example, previous study has shown 
that strict social distancing is the key to reducing the number of 
infections in Wuhan and Hubei (Firozjaei et al., 2021). After the 
outbreak of the epidemic, relevant departments organized 
emergency supply guarantees based on ultra-normal demand, 
coordinating the resources of all parties to increase the supply of 
living materials. 
 
It is necessary to forecast the future epidemic condition in 
advance and then adopt effective controlling measures for living 
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material supply. In 1927, Kermack et al., (1927) established the 
classic Susceptible-Infected-Recovered (SIR) infectious disease 
model, they divided the research subjects into several different 
groups, including susceptible, infected and cured. The series of 
previous basic studies laid the foundation for the subsequent 
development of infectious disease models, and then many 
scholars began to enrich and propose new infectious disease 
models, i.e., the Susceptible-Exposed-Infected-Recovered 
(SEIR) model, etc (Lahrouz et al., 2013). With the development 
of computing technology, the simulation model based on cellular 
automata (CA) is possible. Among various mathematical 
methods for describing the spread of infectious diseases, CA 
makes it possible to explicitly simulate both the spatial and 
temporal evolution of epidemics with intuitive local rules. In the 
field of infectious disease research, the combination of CA and 
classical infectious disease models has become a new research 
direction in the field of infectious diseases (White et al., 2007).  
 
During the global fight against the COVID-19 epidemic, 
scholars have also conducted extensive researches on epidemic 
spread and trend prediction using infectious disease models. In 
2021, Ala’raj et al.(2021) used public data to study the properties 
associated with the COVID-19 pandemic to develop a dynamic 
hybrid model based on Susceptible-Exposed- Infected-
Recovered-Death(SEIRD) and ascertainment rate with 
automatically selected parameters. Götz et al.(2020) presented 
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an extended SEIRD model to describe the disease dynamics in 
Germany. Annas et al.(2020) constructed the SEIR model for 
COVID-19, and their simulation results showed that the vaccine 
can accelerate COVID-19 healing and maximum isolation can 
slow the spread of COVID-19. Yang et al.(2020) used the SEIR 
model to predict that the domestic epidemic will peak in late 
February, 2020. By combining CA and classical differential 
equations, Schimit et al.(2021) described a SEIR model 
integrating the probabilistic CA and ordinary differential 
equations for the transmission of COVID-19. Cavalcante et 
al.(2021) applied the obtained parameters to the CA model. 
These studies are proved to represent an essential tool in 
predicting the spread of the virus in confined spaces with random 
movements of people. 
 
The spread of the epidemic affects people's living. From the 
spatial perspective, Geographic Information System (GIS) can 
be used to study the supply of urban public services such as 
living materials supply. Charreire et al. (2010) reviewed the 
literature and summarized two different spatial methods for 
detecting people's material security using GIS. Density method 
used the buffer function or spatial clustering to quantify food 
store availability. Whereas the proximity method assesses the 
distance to a food store by measuring distance or travel time. 
LeClair et al. (2014) examined the food availability in 
Bridgeport, Connecticut by using GIS mapping and field 
observations. The results showed that the resulting maps output 
from GIS can mine general food accessibility issues. Apparicio 
et al., (2007) presented the hierarchical cluster analysis to 
identify food supply and demand in Montreal. Three methods 
measuring supermarket accessibility are used, including the 
proximity, the diversity and the volatility in food and price. The 
spatial analysis method can effectively capture the geographical 
isolation between the supply side and the demand side (Zhao et 
al., 2021). These studies demonstrate the ability of spatial 
analysis rooted in GIS for the mismatch of the demand and the 
supply. 
 
However, under the epidemic situation, the management and 
control policies of the residential area will greatly affect the 
residents to obtain the living materials, i.e., meat, rice, water, etc. 
With the development the COVID-19, more and more people 
may be infected. The area affected by the the controlling and 
prevention measures may be large, the associated living 
materials would increase. Therefore, it is necessary to 
investigate the mismatch between the demand and the supply of 
the COVID-19. Coupling the CA-based spatial simulation for 
the COVID-19, this paper employs spatial analysis to assess the 
mismatch of living material supply and demand., The results will 
benefit the controlling and prevention of COVID-19. 
 
The remainder of this paper is as following: Section 2 introduces 
the presented method. Section 3 describe the study area and data. 
Section 4 reports the results and analysis the mismatch of the 
living material demand and supply in multiple scenarios. Section 
5 concludes this research and outlook future work. 
 

2.  METHODOLOGY 

2.1 Overall Framework 

This study presents the spatial analysis framework for evaluating 
the mismatch of the living material demand and supply for the 
controlling and prevention of the COVID-19. Figure 1 shows the 
workflow of the presented framework. First, the COVID-19 
epidemic situation is spatially simulated using the CA-based 
SEIRD model. Spatial distribution of the infected cases will be 

obtained. Then, the demand of living materials are estimated by 
using the residential building data. At the same time, the supply 
degree are calculated through service area analysis using the data 
including supermarkets and road networks. Thus, the gap 
between the demand and the supply could be detected. Then, the 
mismatch level of the demand and the supply in the city will be 
spatially analyzed.  
 

 
Figure 1.  The workflow of the presented framework 

 
2.2 Spatial simulation of the COVID-19 spreading 

2.2.1 The basic SEIRD model  
 
The SEIRD model can clearly describe the logical relationship 
of virus transmission and can predict the trend of the outbreak 
more accurately. Figure 2 shows the virus infection process. It 
divides the total population into susceptible persons S 
(Susceptible), latent persons E (Exposed), infected persons I 
(Infected), cured persons R (Recovered) and dead persons D 
(Death). 
 

 
 

Figure 2.  SEIRD model propagation mechanism 
 
𝑆𝑆(𝑡𝑡) , 𝐸𝐸(𝑡𝑡) , 𝐼𝐼(𝑡𝑡) , 𝑅𝑅(𝑡𝑡) , 𝐷𝐷(𝑡𝑡)  respectively represent the 
number of susceptible, latent, infected, cured, and dead persons 
at time 𝑡𝑡. The total number of people in the model is 𝑁𝑁, then: 
 

𝑆𝑆(𝑡𝑡) + 𝐸𝐸(𝑡𝑡) + 𝐼𝐼(𝑡𝑡) + 𝑅𝑅(𝑡𝑡) + 𝐷𝐷(𝑡𝑡) = 𝑁𝑁        (1) 
 

Symbol Annotation 
𝑁𝑁 total number of people 

𝛽𝛽1 = 𝑐𝑐𝜌𝜌1 transmission rate of infected persons 
𝛽𝛽2 = 𝑐𝑐𝜌𝜌2 latent transmission rate 

𝑐𝑐 contact rate 

𝜌𝜌1  infection probability of the person 
contacting the infected cases 

𝜌𝜌2 probability of contact with the latent 
person being infected 

1/𝛼𝛼 incubation period 
1/𝛾𝛾 rehabilitation period 
𝜅𝜅 mortality 

Table 1.  The mathematic symbols and the annotations in 
SEIRD model 
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The SEIRD model makes the following assumptions: 
(1) The number of total populations is constant. The model does 
not consider the possible population change such as migration, 
birth, death, and so on. 
(2) The model does not consider demographic elements, that is, 
the birth rate and death rate of the population do not exist in the 
model; 
(3) The population contacts in the model is all complete contacts. 
 
Based on the virus spreading mechanism in Figure 2, the SEIRD 
model is constructed with following differential equation: 
 

⎩
⎪
⎪
⎨

⎪
⎪
⎧

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛽𝛽1𝑆𝑆𝑆𝑆
𝑁𝑁

− 𝛽𝛽2𝐸𝐸𝐸𝐸
𝑁𝑁

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛽𝛽1𝑆𝑆𝑆𝑆
𝑁𝑁

− 𝛽𝛽2𝐸𝐸𝐸𝐸
𝑁𝑁

− 𝛼𝛼𝛼𝛼
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛼𝛼𝛼𝛼 − 𝛾𝛾𝛾𝛾 − 𝜅𝜅𝜅𝜅
𝑑𝑑𝑅𝑅
𝑑𝑑𝑑𝑑

= 𝛾𝛾𝛾𝛾
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜅𝜅𝜅𝜅

                            (2) 

 
2.2.2 CA-based SEIRD model 
 
Traditional differential equation based SEIRD models have 
several limitations: they are dependent on initial values; they do 
not have subjective dynamics to describe complex stochastic 
behaviors. The integration of CA and differential equation-based 
SEIRD model can describe the complex stochastic behaviors of 
various populations and display the epidemic transmission at 
different time steps.  
 
CA simulates the future spatial conditions according to the 
conditions and the evolution rules Specifically, the basic unit 
named cell will convert from its current state to another state 
according to the neighbourhood conversion rules. We use the 
Moore-type cell neighbors with a radius of 1, as figure 3 shows. 
In the SEIRD model, 𝛽𝛽1 and 𝛽𝛽2 represent the transmission rate 
of infected and latent persons; therefore, they are as the 
neighbourhood conversion rules in CA. For example, the 
susceptible cell will convert to latent state with the probability 
of 𝛽𝛽1 when it contacts the infected cells. Similarly, the 
susceptible cell will convert to latent with the probability of 𝛽𝛽2 
when it contacts the latent cells. In addition, 𝛼𝛼 represents the 
ratio of latent persons to infected, it means the latent cell will 
convert to infected at the ratio of 𝛼𝛼. Besides,𝛾𝛾represents the 
probability of the infected person recovering, and the infected 
cell will convert to cured with the probability of 𝛾𝛾. Finally, 𝜅𝜅 
represents the death rate of the infected person, and the infected 
cell will convert to dead with the probability of 𝜅𝜅.  
 
In summary, the following CA model is constructed for the 
SEIRD: 
1. Cell 
A cell is the basic unit of a CA model and is distributed over the 
study area.  
2.Cell space 
The simulation space is two-dimensional, which is comprised of 
totally 𝑛𝑛 ∗ 𝑚𝑚, cells.  
3. Cell state 
𝑆𝑆𝑖𝑖𝑖𝑖𝑡𝑡  indicates the state of the cells l with coordinates(𝑖𝑖, 𝑗𝑗) at time 
𝑡𝑡. The cell space state can be expressed as: 
 

𝑆𝑆(𝑡𝑡) = �𝑆𝑆11𝑡𝑡 , 𝑆𝑆12𝑡𝑡 , … , 𝑆𝑆21𝑡𝑡 , 𝑆𝑆22𝑡𝑡 , … , 𝑆𝑆𝑖𝑖𝑖𝑖𝑡𝑡 �𝑖𝑖, 𝑗𝑗 ∈ 𝑛𝑛                       (3) 
 
 

Each cell in the model has five possible cellular states: 
 

𝑆𝑆𝑖𝑖𝑖𝑖𝑡𝑡 = {0,1,2,3,4} 𝑖𝑖, 𝑗𝑗 ∈ 𝑛𝑛                (4) 
 

Among them, 0 represents that the cell is in the susceptible state, 
while the 1, 2, 3, and 4 respectively represent the latent, infected, 
cured, and dead state. 
 
While the initial state of a traditional CA model is given 
randomly, in this study, the spatial distribution of the reported 
COVID-19 cases can be used as the initial state. 
 

 
Figure 3.  Moore-type cell neighbors 

 
4. Neighbourhood conversion rules 
CA adopts periodic boundary conditions. In the initial state, all 
cells’ state is set as 𝑆𝑆𝑖𝑖𝑖𝑖𝑡𝑡 = 0 Then, the cells which are infected 
are set as 𝑆𝑆𝑖𝑖𝑖𝑖𝑡𝑡 = 2  From time 𝑡𝑡 = 0, all cells update their state 
according to the following neighbourhood conversion rules with 
a discrete time step until simulation ends: 
 
① When 𝑆𝑆𝑖𝑖𝑖𝑖𝑡𝑡 = 0 , the cell in (𝑖𝑖, 𝑗𝑗)  is susceptible, and 

calculate its adjacency matrix 𝐻𝐻 according to its 
neighborhood cells: 

 

𝐻𝐻 = �
𝑆𝑆𝑖𝑖−1,𝑗𝑗−1
𝑡𝑡    𝑆𝑆𝑖𝑖−1,𝑗𝑗

𝑡𝑡    𝑆𝑆𝑖𝑖−1,𝑗𝑗+1
𝑡𝑡

𝑆𝑆𝑖𝑖,𝑗𝑗−1𝑡𝑡    𝑆𝑆𝑖𝑖,𝑗𝑗𝑡𝑡    𝑆𝑆𝑖𝑖,𝑗𝑗+1𝑡𝑡

𝑆𝑆𝑖𝑖+1,𝑗𝑗−1
𝑡𝑡    𝑆𝑆𝑖𝑖+1,𝑗𝑗

𝑡𝑡    𝑆𝑆𝑖𝑖+1,𝑗𝑗+1
𝑡𝑡

�           (5) 

 
Therefore, the number of neighborhood cells with 

state 𝑆𝑆 of 1 and 2 is counted respectively, and the former 
represents the number of latent people using 𝑀𝑀𝑖𝑖𝑖𝑖(𝑡𝑡)  to 
indicate and the latter means the number of infected people 
representing by Nij(t). If there are multiple infected or 
latent persons in the neighborhood, 𝑃𝑃𝑖𝑖𝑖𝑖 indicates whether 
the cell (𝑖𝑖, 𝑗𝑗) is infected: 
 

𝑃𝑃𝑖𝑖𝑖𝑖 = 1 − (1 − 𝛽𝛽1)𝑀𝑀𝑖𝑖𝑖𝑖(𝑡𝑡)(1 − 𝛽𝛽2)𝑁𝑁𝑖𝑖𝑖𝑖(𝑡𝑡)       (6) 
 

If there are infected people in the neighborhood cells, the 
infected probability of the cell is 𝛽𝛽1. If there are lurks in 
the neighborhood, the corresponding probability is 𝛽𝛽2. As 
known from formula (6), the infection probability of cells 
is directly proportional to the number of infected and latent 
persons in their neighbors. If infected, it becomes latent 
and its cellular state at next time 𝑡𝑡 + 1 is 𝑆𝑆𝑖𝑖𝑗𝑗𝑡𝑡+1 = 1. 
 

② When 𝑆𝑆𝑖𝑖𝑗𝑗𝑡𝑡 = 1 , the cell is latent and remains with the 
infectious risk. As table 1 shows, 1/𝛼𝛼 indictaes it is in the 
incubation period. If  𝑡𝑡𝑒𝑒 < 1/𝛼𝛼，it is still in incubation 
period; if 𝑡𝑡𝑒𝑒 > 1/𝛼𝛼, cells become infected. The rules are 
as follows: 

 

Sijt+1 = �
1，te < 1

𝛼𝛼

2，te > 1
𝛼𝛼

                (7) 
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③ When 𝑆𝑆𝑖𝑖𝑗𝑗𝑡𝑡 = 2, the cell is infected. According to table 1, 
1/𝛾𝛾  represents the rehabilitation period. If 𝑡𝑡𝑖𝑖 < 1/𝛾𝛾， 
The cells are still with the infection state; if 𝑡𝑡𝑖𝑖 > 1/𝛾𝛾， 
the cell has exceeded the recovery period, and it is 
converted to the dead with the probability of 𝜅𝜅 . The 
remaining cells become cured and gain permanent immune 
ability, and no longer participate in the transmission 
process. The rules are as follows: 

 

Sijt+1 =

⎩
⎪
⎨

⎪
⎧ 2，ti < 1

𝛾𝛾

3，ti > 1
𝛾𝛾

 and be cured

4，ti > 1
𝛾𝛾

 and die

           (8) 

 
④ When 𝑆𝑆𝑖𝑖𝑗𝑗𝑡𝑡 = 3 , the cells are cured. They have obtained 

permanent immunity and will not be infected again. The 
cellular state remained 𝑆𝑆𝑖𝑖𝑗𝑗𝑡𝑡+1 = 3 until simulation ends. 
 

⑤ When 𝑆𝑆𝑖𝑖𝑗𝑗𝑡𝑡 = 4 , the cell is dead. The cell state remains 
𝑆𝑆𝑖𝑖𝑗𝑗𝑡𝑡 = 4 until simulation ends. 

 
Besides the Neighbourhood conversion rules, the mobility 
description in CA is also an important factor for the simulation. 
Without considering the external intervention measures, the 
residents should move randomly within the neighborhoods. 
Therefore, the model adopts the random moving operation.  
 
5.Time 
The model takes the day as the basic temporal unit, that is, one 
day is the minimum temporal interval for the epidemic spread 
and evolution. In addition, the holding time of each cell state 
should be counted, and the cell latency time is recorded as 𝑡𝑡𝑒𝑒. 
The time of cellular infection was recorded as 𝑡𝑡𝑖𝑖. 
 
2.3 Analysis on supply and demand of residents' living 
materials 

2.3.1 Demand degree of residents' living materials 
 
With CA, we can get the spatial spread of the virus in multiple 
scenarios as the COVID-19 would infect many people. The 
demand for living materials in these restricted buildings mainly 
depends on its resident population. In this study, the population 
is estimated according to the building data and the total 
population. The calculation formula is: 
 

𝑃𝑃𝑖𝑖′ = 𝑆𝑆𝑖𝑖𝐿𝐿𝑖𝑖
∑ 𝑆𝑆𝑛𝑛𝐿𝐿𝑛𝑛𝑚𝑚
𝑛𝑛=1

∗ 𝑃𝑃T                (9) 
 

Where    𝑃𝑃𝑖𝑖′ = the estimated population of the building 𝑖𝑖 
                   𝑆𝑆𝑖𝑖 = the floor area of the building 𝑖𝑖 
                    𝐿𝐿𝑖𝑖 = the floor of the building 𝑖𝑖 
                   𝑚𝑚 = the total number of buildings 

𝑃𝑃T = the total population of study area 
 
For the cell, we estimate its population as below: 
 

𝑝𝑝𝑗𝑗 = ∑ 𝑃𝑃𝑖𝑖′ℎ
𝑖𝑖=1                    (10) 

Where    𝑝𝑝𝑗𝑗   = the estimated population of the cell 𝑗𝑗 
          ℎ  = the total number of buildings belonging to the 

cell 𝑗𝑗 
 
We calculate the total living material demand with the estimated 
population. Generally, an adult need vegetable, fruit, meat, 

cereals, oils, eggs, and other daily necessities. Table 2 shows the 
quantity of basic living materials. Hence, the total demand of the 
cell can be estimated as Eq (11): 

 
Type Quantity (g) 

vegetable and fruit 600 
meat 125 

Cereals and oils 340 
Eggs  37.5 

Daily Necessities 250 
Table 2.  Average daily living needs of an adult 

 
 𝐷𝐷𝑗𝑗 = 𝑝𝑝𝑗𝑗 ∗ 𝐾𝐾                 (11) 

Where    𝐷𝐷𝑗𝑗 = the material demand of the cell 𝑗𝑗 
                     𝐾𝐾  = the total daily living needs of an adult 
 
2.3.2 Supply degree of residents' living materials 
 
The living materials will be transported from supermarkets to the 
residential buildings. We assume that large supermarkets are 
considered as the supply source of living materials. Here, we 
classify the supply level of the supermarket to the surrounding 
areas based on the walking time to the supermarket. 
 

Walking time from 
supermarket (t) Supply level Weight (ε) 

t<5 min Strong (ⅰ) 0.4 
5 min<t<10 min Slightly strong (Ⅱ) 0.3 
10 min<t<20 min Slightly weak (ⅲ) 0.2 
20 min<t<30 min Weak (ⅳ) 0.1 
Table 3.  Classification of supermarket supply level to 

surrounding areas 
 
The supply degree of each cell is calculated according to its 
covered times by all supermarkets with different supply levels: 
 

S𝑗𝑗 = 𝜀𝜀Ⅰ ∗ TimesⅠ + 𝜀𝜀Ⅱ ∗ TimesⅡ 
+𝜀𝜀Ⅲ ∗ TimesⅢ + 𝜀𝜀Ⅳ ∗ TimesⅣ       (12) 

Where  𝑆𝑆𝑗𝑗 = the material supply degree of the cell 𝑗𝑗 
𝜀𝜀Ⅰ、𝜀𝜀Ⅱ、𝜀𝜀Ⅲ、𝜀𝜀Ⅳ = the weights of different grades in Table 3 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇Ⅰ、𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇Ⅱ、𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇Ⅲ、𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇Ⅳ= the number of times 

that the every building belonging to the cell 𝑗𝑗 
is covered by guarantee areas at every levels 

 
2.3.3 Mismatch degree of supply and demand of residents' 
living materials 
 
When residents inside the building, which impacted by a 
reported case, are asked to stay at home, people are not free to 
go out and buy their daily necessities, so they have to rely on 
government departments to send living materials from nearby 
large supermarkets to the residential buildings. Thus there may 
be mismatch between demand and supply, that is, the demand 
for residents' living materials may not satisfied due to the limited 
supply ability. This study defines δ  to reflect the degree of 
mismatch between supply and demand: 
 

δ𝑗𝑗 =
D𝑗𝑗
𝑆𝑆𝑗𝑗

                      (13) 
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2.3.4 Spatial distribution pattern of mismatch degree of 
supply and demand of living materials 
 
In order to reveal the spatial pattern of the mismatch degree of 
supply and demand of residents' living materials, we use the 
software Geoda. The spatial weight matrix is constructed with 
the INVERT_DISTANCE method. Moran's I index is calculated 
and analyzed in combination with Moran scatter diagram and 
Lisa agglomeration diagram to detect the spatial agglomeration 
of the mismatch between supply and demand of living materials. 
 
1)  global spatial autocorrelation 
Global spatial autocorrelation indicates the overall spatial 
divergence and aggregation characteristics of the mismatch 
degree of material supply and demand in the study area. If 𝑛𝑛 
represents the total number of samples of a variable and 𝑥𝑥𝑖𝑖 is 
the observed value of the variable at the location or spatial unit 
𝑖𝑖, the global Moran's I index of the variable is as follows: 
 

𝐼𝐼 =
𝑛𝑛∑ ∑ 𝑊𝑊𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖−𝑥̅𝑥)�𝑥𝑥𝑗𝑗−𝑥̅𝑥�𝑛𝑛

𝑗𝑗=1
𝑛𝑛
𝑖𝑖=1

∑ ∑ 𝑊𝑊𝑖𝑖𝑖𝑖 ∑ (𝑥𝑥𝑖𝑖−𝑥̅𝑥)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1

(𝑖𝑖 ≠ 𝑗𝑗)         (14) 

Where 𝑥𝑥𝑖𝑖  = the observed value of area 𝑖𝑖 
              𝑊𝑊𝑖𝑖𝑖𝑖  = the spatial weight matrix 
 
The value range of Moran's I index lies in the range [- 1, 1]. A 
value less than 0 indicates negative correlation, while a value 
greater than 0 indicates positive correlation, and equal to 0 
indicates that each spatial object unit in the study area is 
independent of each other. The closer the 𝐼𝐼 value is to 1, the 
more significant the agglomeration effect of an attribute in the 
spatial distribution of the object is; The closer the 𝐼𝐼 value is to 
- 1, the more significant the spatial tendency distribution of an 
attribute of the object is. 
 
2)  local spatial autocorrelation 
Local spatial autocorrelation reveals the spatial correlation 
patterns of mismatch degrees of supply and demand of living 
materials in spatially adjacent regions. The local Moran's I index 
is used to measure whether there is high or low value local spatial 
agglomeration in the region. 𝐼𝐼𝑖𝑖 is the local Moran's I index of a 
region 𝑖𝑖. The specific formula is as follows: 
 

𝐼𝐼𝑖𝑖 = (𝑥𝑥𝑖𝑖−𝑥̅𝑥)
1
𝑛𝑛
∑ (𝑥𝑥𝑖𝑖−𝑥̅𝑥)2𝑛𝑛
𝑖𝑖=1

∑ 𝑊𝑊𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖 − 𝑥̅𝑥), 𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗          (15) 

 
According to local spatial autocorrelation, the study area can be 
divided into five types: high-high aggregation, low-low 
aggregation, low-high aggregation, high-high aggregation and 
no obvious aggregation. 
 
 

3.  STUDY AREA AND DATA 

The research is conducted in Shenzhen, China. Shenzhen is 
located in the south of China and is a special economic zone, a 
center of science and technology innovation in China. It has ten 
administrative districts, with a total area of 1997.47 square 
kilometers and a population of 17,560,610,000. On January 19, 
2020, the first confirmed case of COVID-19 appeared in 
Shenzhen. On February 7, 2020, Shenzhen Epidemic Prevention 
and Control Command issued an announcement that residential 
buildings with confirmed cases were to be placed under hard 
quarantine for 14 days. 
 

 
 
 

Figure 4.  Data used in the study 
 

The research data includes the road network data, COVID-19 
case data, large supermarket POI data and residential building 
data. The road network data comes from OpenStreetMap. The 
data of COVID-19 cases are from the Shenzhen Municipal 
Health Commission, and their longitude and latitude are 
obtained through API from AutoNavi. Large supermarket data is 
obtained through the API interface provided by AutoNavi. When 
residents inside the building are asked to segregate at home, 
large chain supermarkets provide living materials for the 
buildings. The main supermarkets include the Wal Mart, 
Vanguard, Renrenle, etc. Residential building data is also 
obtained through the AutoNav API interface. It possesses 
various attributes of name, bottom area, floor, etc. 
 

4.  RESULTS AND DISCUSSION 

To simulate the COVID-19 spreading of different scenarios, the 
CA-based SEIRD model is implemented. The supply and 
demand of living materials for residents' daily life under 
different scenarios is analyzed. 
 
4.1 The COVID-19 spreading simulation results 

By fusing the infectious disease models of CA and SEIRD, we 
simulated the evolution of spatial transmission of COVID-19 at 
different levels. Figure 5 displays the simulation results. The 
pink areas indicate these cells will be affected when the 
proportions of infected areas reach 20%, 40%, 60%, and 80%. 
Compared with the four results in different infected proportions, 
it brings out a relatively similar evolutional trend in all regions: 
By increasing of the infected proportion from 20% to 80%, the 
affected buildings initially surge and then increase slowly later. 
Moreover, the main extending and spreading area is in the south 
of Shenzhen; whereas the unremarkable rise in the residual area. 
It mainly due to these areas are the most vigorous in Shenzhen, 
thus they undertake more people flow caused by colossal 
economical, entertainment and commuting behaviours. The 
frequent interaction provides suitable curriculum for epidemic 
virus spread. 
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Figure 5.  Simulation results of infectious diseases 
 

 
 

Figure 6.  Demand degree of residents' living materials under 
different extents of simulation 

 

 
 
Figure 7.  Supply degree of residents' living materials under 

different extents of simulation 
 
4.2 Supply and demand analysis of living materials 

4.2.1 Demand for living materials of residents 
 
With the residential building data, we achieve population 
estimation and thus calculate the demand for household goods 
per cell. Figure 6 indicates the changes in the degree of demand 
for residential living materials under different extents of virus 
spread simulation. At 20%, the total cell volume is 378 and the 
total demand is 4916.8 tons, in which the main affected buildings 
are mostly distributed in the south of Longhua District and the 
south of Nanshan District. At 40%, the total cell volume is 724 
and the total demand is 10229.2 tons. At this stage, with the 
spread of the virus, the affected buildings are more scattered. At 
the 60% level, the total cell is 1147, and the total demand is 
14750.45 tons, among which the demand for living materials in 
Futian District and Nanshan District is relatively high, and the 

frequent movement of population in these two administrative 
regions leads to a gradual increase in the number of cases in the 
simulated situation, and more residential buildings are required 
to be closed, and the demand for living materials from residents 
who cannot access freely increased. At 80% degree, the total cell 
amount was 1359 and total demand was 18,964.3 tons. Among 
the residents requiring home isolation, the demand for residential 
living materials was higher in the southern of Longhua District, 
the southern of Nanshan District, Futian District, and the central 
of Longgang District. In general, with the increase of infected 
population, the degree of residents' demand for household 
materials keeps changing spatially. In the early stage of the 
simulation, the main affected areas were administrative districts 
with a large population base, such as Longhua District and 
Longgang District. With the population movement, the virus 
gradually spreads, at which time cases start to appear in 
residential buildings in the most frequently populated areas, 
leading to the need for home isolation in these neighborhoods 
and a relative increase in their degree of demand for daily living 
needs. 
 
4.2.2  Supply of living materials for residents 
 
Figure 7 shows the changes in the degree of supply for 
residential living materials under different extents of virus 
spread simulation. Under the 20% degree, the number of 
buildings with restricted access is small at this time, and the 
stock of large supermarkets can meet the daily needs of these 
residents. Under the 40% and 60%, the number of cases 
gradually increases, the number of isolated residential buildings 
gradually increases, the scope of a certain number of 
supermarkets that need to supply supplies becomes larger, and 
the distribution of supermarkets is more sparse in the vicinity of 
some neighborhoods, such as the southern part of Longhua 
District and the central part of Longgang District. Under the 
simulation to 80% degree, almost all large supermarkets provide 
living materials for the closed residential buildings under the 
arrangement of government departments, and the degree of 
supply of living materials for the home isolated citizens in 
Nanshan District and Longgang District rise. 
 
4.2.3 Mismatch degree of supply and demand of residents' 
living materials 
 
When there is a confirmed case, the residential building in which 
it is located will be closed, other residents cannot go out, and 
their access to household goods is restricted, thus a mismatch 
between supply and demand for goods may arise. By calculating 
the demand and supply degrees as described above, we are able 
to calculate the degree of mismatch between supply and demand. 
Figure 8 shows the changes in the degree of demand-supply 
mismatch for residential living materials under different extents 
of virus spread simulation. At 20% level, the mismatch between 
supply and demand is mainly distributed in Longhua District, the 
more notable areas are its north and south, and some scattered 
places in Longgang District, where the population is more dense, 
and when there is a case, the relevant residential buildings are 
closed, and a large number of residents have to stay at home and 
cannot go out to purchase living supplies. The nearby 
supermarkets could not supply enough supplies to meet such a 
large demand. At 40% and 60% levels, the virus gradually 
spread and an imbalance in the supply and demand of household 
goods gradually emerged in Bao'an District. Bao'an District is 
the administrative district with the largest population living in 
Shenzhen, so in a simulated situation, once a resident is 
diagnosed, it is extremely easy to spread rapidly through crowd 
movement. This leads to an aggravation of the epidemic 
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situation and an increasing number of residential buildings 
which would be closed. At the simulation to 80% level, 
mismatch between supply and demand occurs at this time in 
Yantian District and Dapeng District, where large supermarkets 
are more sparsely distributed and the accessibility is relatively 
low, leading to a restricted supply. 
 

 
 

Figure 8.  Mismatch degree of supply and demand of 
residents' living materials under different extents of simulation 
 

No. Neighborhood’s 
name District 

1 Plum Blossom Villa Longhua 
2 St. Morris Longhua 
3 Taoyuan Residence Baoan 

4 Hongrongyuan One 
City Center Longhua 

5 Qunle Building Baoan 
6 Telford Garden Longgang 
7 Aegean Sea Yantian 
8 Shapu Second Village Baoan 
9 Lingjian New Village Dapeng 

10 Zhenye City Longhua 
Table 4.  The most mismatched 10 neighborhoods 

 
The above table shows the 10 neighborhoods in Shenzhen with 
the most supply-demand mismatch of living materials when the 
proportions of infected areas reach 80%. Among them, the total 
population of Taoyuanju and Meihua Villa are large, and the 
limited supplies in the vicinity cannot fully meet their living 
needs under the epidemic. However, such neighborhoods as 
Zhenye City, St. Morris, and Ling Scare New Village are small 
in size but far from supermarkets, and cannot be immediately 
resupplied when there is a shortage of living materials. In 
addition, there are also several neighborhoods such as Aegean 
Sea and Telford Garden, although they are located in areas with 
developed transportation and several large supermarket chains 
nearby, they are more populated and densely distributed, 
creating some competition for the limited living materials, thus 
leading to a shortage of supply in some places relatively far away 
from the supermarkets. 
 
4.2.4 Spatial distribution pattern of mismatch degree 
between supply and demand of residents' living materials 
 
1)  global spatial autocorrelation 
Through the spatial autocorrelation analysis of the mismatch 
degree of material supply and demand, it is found that the P 
values are all less than the significant level of 0.01 At the same 
time, the Moran's I index is greater than 0.5 and the Z score is 
far greater than 2.58, indicating that the spatial distribution of the 
mismatch degree of living material supply and demand shows a 
significant agglomeration effect. 

The number of infections at the initial stage of virus transmission 
was small. Confirmed cases in the simulated situation were more 
spatially dispersed. Hence, the characteristics of spatial 
clustering were not obvious. As the number of infected people 
increased, more and more cases appeared in residential buildings, 
which led to the related buildings being closed and managed. 
People's access to daily life materials was restricted, and material 
mismatch phenomenon appeared in these areas. The spread of 
the virus was more serious in crowded places, thus leading to the 
degree of material mismatch appearing more strongly in spatial 
agglomeration. 
 

Index Moran's I  Z-value P-value 
δ（20%） 0.692 26.381 0.00 
δ（40%） 0.748 27.787 0.00 
δ（60%） 0.743 27.334 0.00 
δ（80%） 0.769 27.991 0.00 
Table 5.  Moran's I value of mismatch degree of material 

supply and demand under different simulation degrees 
 
2)  local spatial autocorrelation 
 

 
Figure 9.  Lisa cluster of mismatch degree of living materials 

 

 
Figure 10.  Lisa significance of mismatch degree of living 

materials 
 

Lisa clustering map and significance map are used to study the 
instability of local space. Generally speaking, the local space of 
the mismatch degree of residents' living materials is mainly 
characterized by "low-low" agglomeration and "high-high" 
agglomeration. The agglomeration effect becomes more and 
more significant with the development of the epidemic spreading. 
Low-low clusters are mainly in Futian District, Luohu District 
and the south of Nanshan District. These areas have good 
material support and convenient transportation, which is 
convenient for residents to obtain materials. High-high clusters 
are mainly in the south of Longhua District and the north of 
Longgang District. These regions have a large population and a 
large demand for materials, but the material supply is 
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insufficient. They are cluster areas with weak material supply, 
which need to be paid special attention to. 

 
5.  CONCLUSIONS 

The outbreak of COVID-19 has seriously threatened people's 
lives and health. The guarantee of living materials is related to 
the basic life of hundreds of millions of people and is of great 
significance to the effective and orderly prevention and control 
of the epidemic. Through the integration of infectious disease 
model and spatial analysis, this paper studies the mismatch of 
supply and demand of living materials according to different 
epidemic simulation situations. From the perspective of the 
whole city, the residential buildings with unbalanced supply and 
demand are mostly distributed in the southwest of Bao'an 
District, the southern of Longhua District and Longgang District. 
Such as Plum Blossom Villa and St. Morris in Longhua District, 
Taoyuan Residence and Qunle Building in Bao'an District. In 
terms of the spatial agglomeration of spatial mismatch degree, 
generally speaking, the local space of the mismatch degree of 
residents' living materials in Shenzhen is mainly manifested in 
low-low agglomeration and high-high agglomeration. Low low 
clusters are mainly Futian District, Luohu District and the south 
of Nanshan District. High high clusters are mainly in the south 
of Longhua District and the north of Longgang District. The 
results provide useful insights into the optimization and 
adjustment of the spatial layout of living materials supplier under 
the fine epidemic prevention and control in Shenzhen. 
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