
COMPARISON OF SELECTED AUGMENTED REALITY FRAMEWORKS FOR
INTEGRATION IN GEOGRAPHIC CITIZEN SCIENCE PROJECTS

C. Berger 1*, M. Gerke1

1 Institute of Geodesy and Photogrammetry, Technische Universität Braunschweig, Germany – (cosima.berger, m.gerke)@tu-bs.de

Commission IV, WG IV/4

KEY WORDS: augmented reality, geographic citizen science, mobile application, mobile development, AR implementation,
location-based tracking

ABSTRACT:

Augmented reality (AR) offers functionalities that can be beneficial for citizen science (CS) projects. Especially location-based
approaches have potential for geographically oriented CS projects, as objects can be placed based on geographic coordinates. Since
choosing a suitable AR framework for integration into a CS project can be challenging, this paper gives an overview of the common
AR frameworks and takes a closer look at three selected ones that are particularly suitable for CS projects (AR.js, AR Foundation,
and ViroReact). Prototypes were implemented for the selected frameworks to investigate which framework is best suited for specific
use cases. Marker-based tracking approaches, image recognition and location-based placement were considered. The results show
that the framework AR.js is particularly suitable for marker-based tracking with very simple markers and therefore represents a good
entry point for CS projects to integrate initial AR functionality into their project. AR Foundation and ViroReact, on the other hand,
are faster and more reliable with the detection of more complex markers. The location-based approach can be implemented with all
three frameworks, but the precision of the placement of the objects strongly depends on the accuracy of the sensors of the mobile
device.

* Corresponding author

1. INTRODUCTION

Augmented reality (AR) is becoming increasingly attractive in
industry, education, and science. AR aims to enhance the real
world by displaying artificial objects on a digital screen. In a
realistic AR solution, computer-generated objects blend
perfectly into the user’s environment, creating the illusion that
the objects are truly tangible (Milgram and Kishino, 1994). In
science, this presents new opportunities, as data can be
presented in a way that is more understandable and
approachable for non-professionals. Therefore, AR can be
especially of interest in the field of citizen science (CS), as the
concept of CS thrives on the idea of involving non-
professionals into scientific projects. Thus, AR can be a
valuable tool to open new possibilities in data visualisation and
collection in CS projects.

With the support of mobile AR applications that can be run on
regular smartphones, data already collected in a CS project can
be presented to participants in an engaging and interactive way.
By integrating the data as objects directly into the participant's
surrounding, the participant can explore the data and view it
from all sides by physically moving around it. In this way, AR
can help participants to better understand complex subjects, as
the data is presented in a visual and almost tangible way. But of
course, the advantages of AR are not limited to data
visualisation. AR can also be used to support and guide the
participant of a CS project during data collection. For example,
AR can be used to indicate the exact position where the
participant should stand to collect new data. This can be
particularly helpful for taking photos at various times that all

show the same part of a landscape from the same angle (Albers
et al., 2017).

AR is already being used in some CS projects, but is still in its
infancy. However, some successful examples of the use of AR
can be found, especially in geographically oriented CS projects
(Sermet et al., 2018, Sansom et al., 2016). Geographic citizen
science (GCS) projects are characterised by the fact that the
collected data have additional spatial information attached to
them. When using a mobile application in the project, the
spatial information can be collected with the help of the
integrated GPS sensor of the phone. In an AR solution, the
same sensor can help to place objects at defined geographic
positions by following a location-based tracking approach.

The benefits of AR in CS projects are evident, but
implementing a mobile AR application is still challenging.
Since many AR frameworks already exist, it is difficult to
choose the one that best fits the requirements and constraints of
a project. The wide range of available AR frameworks can seem
overwhelming at first. However, it is important to be deliberate,
as the choice of the AR framework is an important step in the
implementation process and can have an impact on the overall
success of the project.

This paper aims to give an overview of the currently available
AR frameworks and to recommend which ones are particularly
suitable for the use in GCS projects. Therefore, typical
requirements for an AR framework to be used in a GCS project
are firstly defined to identify the most suitable AR frameworks.
Then, a small selection of promising frameworks is compared in
terms of their characteristics and usability. To provide a

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2022
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-223-2022 | © Author(s) 2022. CC BY 4.0 License.

223

meaningful comparison, prototypes are implemented based on
these frameworks to explore their functionality in practice. The
comparison is intended to support future project managers of
GCS projects in choosing a suitable AR framework.

2. RELATED WORK

Augmented reality extends the real world for a mobile user by
displaying virtual, computer-generated objects on the device’s
display (Chatzopoulos et al., 2017). In comparison with virtual
reality, the user does not completely immerse into a virtual
world, but is still experiencing his real surrounding. Augmented
reality only aims to enhance the world the user is already seeing
and does not completely reconstitute it (Carmigniani et al.
2011). Due to the improved performance of mobile devices in
recent years, AR can now be experienced on common
smartphones (Hasler et al., 2020). This means that with the right
mobile application, AR can be easily accessed by ordinary
citizens.

A key challenge of AR is that the computer-generated objects
must be placed in correspondence to the real environment.
Objects should stay aligned and anchored to the real world even
when the user moves the mobile device (Rabbi and Ullah,
2013). This challenge can also be observed in the context of AR
used in CS projects. A simple possibility is to use either marker
tracking or an image recognition approach. The mobile
application recognises a marker/image, which is placed in the
participant’s environment, with the help of the camera and
displays a predefined object at that location. If the user moves
around the marker/image, the model remains anchored and can
be viewed from all sides. The major disadvantage of this
method is that the participant's environment must be prepared
with markers/images beforehand (Chatzopoulos et al., 2017;
Rabbi and Ullah, 2013), which is not always possible in CS
projects. Location-based tracking, on the other hand, works via
the positional sensors of the mobile device. Objects are placed
in the user's environment on the basis of geographical
coordinates, without the scene having to be prepared with
markers in advance. This approach is therefore an attractive
option for large-scale GCS projects, where a preparation of the
entire area would not be feasible.

CS projects can and are already taking advantage of this
possibility by integrating AR into their data collection or
visualisation process. Particularly in GCS projects, interesting
opportunities can be identified for AR to enhance the data
collection. For example, Sermet et al. (2018) show that AR can
be used to maintain power lines by proposing an approach
where power line sag is monitored with the support of citizens
who are using an AR application on their own smartphone.
Another example is the Fireballs in the Sky application, which
enables the user to recreate a fireball sighting by using the
camera of their smartphone. Through the AR implementation,
the user can easily pinpoint the altitude and the azimuth of the
fireball sighting and send this information together with a
location to the project’s database (Sansom et al., 2016). The
study by Albers et al. (2017) describes an approach that can be
used to navigate participants of a project through an AR
component to a specific location to take a photo with a
predefined orientation. This approach demonstrates how AR
can be used interactively to obtain photo series with well-
comparable and analysable images.

Comparative studies that examine the functionalities of AR
frameworks have already been conducted. Amin and Govilkar

(2015) discussed the advantages and limitations of selected AR
software development kits (SDKs) and predict that AR will play
a greater role in the future. Other comparisons are more focused
on the specific field in which the AR framework is to be used.
For instance, Herpich et al. (2017) compared multiple AR
frameworks concerning their usability in educational
applications. Closely related to the topic of the paper is the
comparison by Burkard et al. (2007), who examine existing AR
frameworks regarding their usability in location-based mobile
applications. However, a comparison of AR frameworks with
the intention of using one in a GCS projects was not found
during the research for this paper.

3. METHODOLOGY

3.1 Requirements towards an AR framework

Before implementing a mobile application, it should be
determined which functional and non-functional requirements
are imposed on it. The functional requirements describe which
functionalities should be included in a software product, while
the non-functional requirements describe the performance or
quality with which these functionalities should be achieved. For
example, a functional requirement for a mobile AR application
could be that a marker should be recognised and as a result a 3D
object is rendered in the scene. A non-functional requirement,
on the other hand, would be that the marker should be detected
within 3 seconds, regardless of the used mobile device. The
functional requirements for a mobile application to be used in a
(G)CS project will vary greatly depending on the project. This
depends on the activities the user is to perform with the app. For
the non-functional requirements, it is easier to identify
similarities between distinct projects.

For instance, the majority of projects aim to attract a large and
diverse group of participants (Wiggins, 2013). This is only
possible if the mobile application integrated into the project can
be used on a wide range of smartphones. An application that
supports only one operating system will exclude a sizable group
of potential participants. A mobile application that is used in a
CS project should therefore preferably support all of the
common platforms (Android, iOS, and possibly also Windows).
In addition, costs often play a major role in CS projects. In
particular, small CS projects may only have a limited budget, so
the choice of a development framework should not generate any
additional costs. Open source products offer an attractive
alternative to commercial products, since apart from the cost
factor, the code is also freely accessible and can be adapted and
extended specifically for the project. However, open source
projects always carry the risk that maintenance will be
discontinued and that additional resources and expertise are
required during implementation (Wiggins, 2013).

This paper focuses on AR frameworks that are open source or
freely usable, despite the limitations of open source projects
mentioned above. Additionally, only AR frameworks that
enable cross-platform implementation are considered. Of
course, this is only a very small selection of requirements, but
since these two can be identified in many CS projects, it is a
good basis for a first comparison.

3.2 Available AR frameworks

A selection of currently available AR frameworks is shown in
Table 1. It lists open source, freely available and proprietary
frameworks. For the open source solutions, all source code is

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2022
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-223-2022 | © Author(s) 2022. CC BY 4.0 License.

224

Name Provider Open Source Platforms Website / Documentation
ARCore Google Yes

(Apache License)
Android, iOS (limited) https://developers.google.com/ar

AR
Foundation

Unity No
(Unity Companion
License)

Android, iOS https://unity.com/unity/features/arfoundat
ion

AR.js AR.js Org
Community

Yes
(MIT License)

all phones with WebGL
and WebRTC

https://ar-js-org.github.io/AR.js-Docs/

ARKit Apple Inc. No iOS, iPadOS https://developer.apple.com/augmented-
reality/arkit/

ARToolKit /
artoolkitX

artoolkitX team Yes
(GNU Lesser
General Public
License version 3.0)

Android, iOS, Linux,
macOS, Windows

http://www.artoolkitx.org/

Kudan AR
SDK

XLsoft
Corporation

No Android, iOS https://www.xlsoft.com/en/products/kuda
n/ar-sdk.html

ViroReact ViroMedia / Viro
Community

Yes (MIT License) Android, iOS https://viro-community.readme.io/

Vuforia PTC Inc. No Android, iOS, Lumin
OS, Windows

https://www.ptc.com/en/products/vuforia

Wikitude Wikitude GmbH No Android, iOS, Windows https://www.wikitude.com/

Table 1. A selection of currently available AR frameworks / SDKs / platforms

publicly available and can be modified. Some freely available
frameworks do not share the source code, but the solutions can
be integrated into the own software at no additional cost. For
the proprietary AR frameworks, on the other hand, a license
must be purchased. Since the availability of different AR
frameworks is tremendous, the list does not claim to be
complete. However, it already shows which options there are
regarding the choice of an AR framework and how difficult it
can be to select a suitable one for a specific CS project.

Google’s ARCore and Apple’s ARKit SDKs are the main tools
to implement AR applications on Android and iOS devices. The
SDKs are already integrated in a multitude of newer devices and
provide important AR functionalities like plane detection,
image/motion tracking, face detection, and light estimation
(Oufqir et al. 2020).

AR.js is a completely web-based solution and can be easily
integrated into existing web applications (AR.js Org, 2022).
ViroReact is based on the React Native framework and is
therefore strongly influenced by web-based concepts (Viro
Community, 2022). Both solutions are open source and enable
cross-platform implementation.

Wikitude, Vuforia, and Kudan AR SDK are popular
commercial solutions to implement cross-platform AR
applications. They are not open source or free to use; therefore,
a license needs to be acquired upon integrating them into an
application. All three offer a Unity game engine plugin to
enable cross-platform implementation. AR Foundation and
artoolkitX follow a similar approach, but unlike the previously
mentioned, both are freely usable.

Three frameworks were selected for detailed comparison based
on the previously discussed requirements. The selected AR
frameworks are AR Foundation, AR.js and ViroReact. All three
enable cross-platform implementation and are also freely
usable. In the case of AR.js and ViroReact, it is even possible to
access the source code in order to better understand and, if
necessary, adapt individual functions. The framework

artoolkitX was also initially considered, but since the
documentation and additional support are rather limited, the
framework was not selected for the more detailed comparison.
However, based on the previously defined requirements, it
would also be suitable for the use in a CS project.

3.3 Prototype implementation

Prototypes were implemented for the three selected AR
frameworks (AR Foundation, AR.js, ViroReact). In the process,
different tracking techniques were examined to draw
conclusions about which AR framework is suitable for specific
use cases in (G)CS projects. The tracking techniques considered
are two vision-based approaches (marker-based and image
recognition) and one sensor-based approach (location-based).

The AR Foundation prototype was implemented by using the
cross-platform game engine Unity. The AR Foundation package
does not implement any AR functionalities itself, but rather
provides an interface to use the native AR components on the
different target platforms. This allows a straightforward
implementation for Android and iOS, as only one application
needs to be written, which, depending on the target platform,
uses either ARCore or ARKit functionality in the background
(Unity Technologies, 2022).

In contrast, AR.js is a purely web-based framework and is
written entirely in JavaScript. An AR application implemented
with the AR.js framework can therefore be executed directly in
the browser, regardless of the target platform. The only
requirements are that WebGL and WebRTC must be supported,
which is already integrated in common mobile browsers. The
AR.js framework can therefore be easily used to add AR
functionality to an existing web-based application, since only
two JavaScript libraries need to be loaded (AR.js Org, 2022).

ViroReact is based on React Native and can be compiled for
both Android and iOS as target platforms. The framework can
be used for creating AR and VR applications. Similar to AR
Foundation, the native AR components ARCore and ARKit of

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2022
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-223-2022 | © Author(s) 2022. CC BY 4.0 License.

225

the target platforms are used in the background for the
implementation of AR functionality (Viro Community, 2022).

4. RESULTS & COMPARISON

The prototypes were tested on Android and iOS devices to
confirm the cross-platform functionality. For this purpose,
everyday smartphones were deliberately used rather than high-
end devices, as it can be assumed that devices of varying quality
will be used by participants of a CS project. On all devices, the
settings have been adjusted so that the best possible location
determination can be achieved. In total, three different devices
were used to test the prototypes: A Samsung Galaxy A51 device
with Android version 11, an older Samsung Galaxy S8 with
Android version 9, and an iPhone SE (1st Generation) with iOS
version 14.4 installed.

In the following, the results of the tests with the prototypes are
presented. The implementation differences between the selected
AR frameworks will be discussed, as well as the usability,
speed, and accuracy of the resulting application. The results
also indicate which AR Framework is best suited for each of the
three tracking techniques considered.

4.1 Marker-based tracking

Marker-based tracking is widely used in AR applications. The
user scans a marker with the mobile application and additional
content is displayed in the AR scene. Since the markers are kept
very simple, they can be detected particularly quickly. Due to its
ease of use, the method is also suitable for participants who
have no previous experience with AR. Marker-based tracking
should therefore not be ignored in the context of CS, because it
is the simplest and most straightforward way to integrate AR
functionality into a project.

Marker-based tracking was implemented for all three of the
selected frameworks and tested on the different devices.
Markers of varying complexity (see Figure 1b-d) were used to
display 3D objects in the AR scene. It is noticeable that the
AR.js framework explicitly differentiates between marker-based
tracking and image recognition during implementation. This is
reflected in the need to integrate individual libraries into the
prototypes for each of the two approaches. According to the
documentation, it is not possible to use both approaches within
one application. The implementation is therefore clearly
different from the implementation in the ViroReact and AR
Foundation frameworks. In these frameworks, the
implementation of the two vision-based approaches follows the
same principle, so there is no need to distinguish whether a
marker or a more complex image is to be used for tracking.

The documentations of all frameworks emphasise that the
quality of the markers (and images) plays a crucial role and
determines how quickly and reliably the marker is recognised.
For the tests three different marker types were used: Hiro
marker, barcode marker and pattern marker. The Hiro marker is
the default marker of the AR.js framework and can be seen in
Figure 1c. Barcode markers are automatically-generated matrix-
based markers. The dimensions of the matrix determine how
many codes can be used to generate the markers. A simple
example of a marker is shown in Figure 1d. It is a barcode
marker with the dimension 3x3 and the code 6. The pattern
marker, on the other hand, consists of a simple custom image
surrounded by a black border (Figure 1b). Regardless of

Figure 1. ARCore quality score for selected reference

images/markers

the marker type selected, all markers should always have a high
contrast, and therefore black and white markers are always a
good choice.

Figure 1 also shows the ARCore quality score for each
marker/image. The score indicates how suitable the
marker/image is for recognition with mobile devices that use
ARCore in the background. The higher the score is, the better
the recognition works. To achieve a high score, the image
should have a wide range of geometric features and contain as
few recurring patterns as possible. The score takes a value
between 0 and 100, whereby ARCore recommends a value of at
least 75 (Google Developers, 2022). The barcode marker is a
negative example of a well-chosen marker, since it contains so
few features that no ARCore quality score can be calculated.
The more complex image in Figure 1a, on the other hand, is
very suitable, which is reflected in a score of 100.

To find out which framework recognises the markers the fastest,
a test of all frameworks was performed with the different mobile
devices. The time between the moment when the marker is
completely in the camera’s view until the display of the 3D
model was measured. Since the time was measured manually,
the values do not reflect the exact time because the human
reaction time is included. However, since this reaction time is
included in all measured values, the numbers can certainly be
compared to get a first impression of the speed of the individual
frameworks. The first detection of the marker after opening the
application usually takes longer than the subsequent ones,
therefore the two cases were distinguished and measured
individually. The marker was always moved to a different
position in the scene before a subsequent detection. In order to
make the test as realistic as possible, a test person with only
limited prior experience in dealing with AR was chosen, since it
is to be expected that some participants in CS projects also have
never used AR on their own mobile device.

AR.js detects the markers quite fast and does not lose the
tracked object even when moving the smartphone (see Table 2).

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2022
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-223-2022 | © Author(s) 2022. CC BY 4.0 License.

226

 Marker-based Tracking

(average time until … detection)
Image Recognition

(average time until … detection)
Framework Mobile Device first subsequent first subsequent
AR.js Samsung Galaxy A51 2.21 s 2.01 s 7.25 s 3.11 s
 Samsung Galaxy S8 1.04 s 0.55 s 2.52 s 1.72 s
 iPhone SE 2.22 s 1.63 s 12.80 s 1.40 s
 Ø 1.82 s Ø 1.40 s Ø 7.52 s Ø 2.08 s
AR Foundation Samsung Galaxy A51 1.24 s 1.74 s 1.63 s 1.33 s
 Samsung Galaxy S8 1.01 s 0.90 s 0.85 s 0.84 s
 iPhone SE 1.25 s 2.78 s 1.55 s 1.63 s
 Ø 1.17 s Ø 1.81 s Ø 1.34 s Ø 1.27
ViroReact Samsung Galaxy A51 4.64 s 2.46 s 2.74 s 1.58 s
 Samsung Galaxy S8 2.76 s 2.45 s 2.66 s 1.89 s
 iPhone SE 3.23 s 1.76 s 1.09 s 1.30 s
 Ø 3.54 s Ø 2.22 s Ø 2.16 s Ø 1.59 s

Table 2. Comparison of the average time (in seconds) required by the frameworks to detect a marker or image and display the
corresponding 3D model

Figure 2. Examples of the results of the three different tracking techniques

The average time for all three devices is 1.82 seconds for the
first detection and 1.4 seconds for all subsequent detection. A
visual example of the marker-based approach with AR.js can be
seen in Figure 1a. Overall, it is surprising that the newest device
does not perform better than the older ones. The Samsung
Galaxy S8 delivers the best results for all three frameworks and
recognises the markers the fastest. The framework ViroReact
performs the weakest and takes the longest to display the 3D
objects in the scene. On average, it takes 3.54 seconds for the
first detection and 2.22 seconds for all subsequent ones. The
AR Foundation framework performs even better than AR.js.
Here, the objects were rendered so quickly that it was
sometimes difficult to measure the time meaningfully. With
AR.js and ViroReact, a trend can be observed that all
subsequent detections are significantly faster than the first one.
This trend cannot be seen with the AR Foundation framework,
but this may be because recognition is generally very fast. It
should be noted that the simple barcode marker only worked in
the web-based solution (AR.js) and on the iOS device, because
the marker’s ARCore quality score needs to be at least 0 to be
detected with Android devices.

The results show that marker-based tracking can be a good fit
for CS projects. Due to the fast and reliable recognition of the
markers, participants can learn the process quickly, and this
contributes to a good experience. However, since the lighting
conditions are crucial for the recognition of the markers, the

method should be used mainly indoors. For outdoor projects,
black and white markers are preferable because they have good
contrast and are better recognised than coloured markers.

4.2 Image recognition

Image recognition follows the same principle as marker-based
tracking. The only difference is that more complex images are
used to place the 3D objects into the scene. The advantage for
CS projects is that real images can be used instead of artificial
markers. For example, images already placed on an information
board, in a leaflet or on a website can be utilised to display
further information in the AR scene. The disadvantage is that it
can be challenging for the participant to detect the image with
their mobile device. Unlike marker-based tracking, it can be
difficult to find the correct angle and distance to recognise the
complex image. Furthermore, image recognition is more
influenced by lighting conditions, which, as mentioned before,
is strongly related to the colour representation.

Image recognition was implemented for all three frameworks.
Two complex images were used to test the approach. One shows
the earth and has an ARCore quality score of 100 (Figure 1a).
The other one shows a canal surrounded by colourful buildings.
The second image has an ARCore quality score of only 30 and
can be seen in Figure 2b. Selecting a suitable image is not an
easy task, so it is advisable to check the documentation

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2022
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-223-2022 | © Author(s) 2022. CC BY 4.0 License.

227

beforehand to determine which image properties are important.
The ARCore quality score can be used as a first reference value.

To test the approach, the same procedure as for marker-based
tracking was used. The measured times until the recognition of
the image and the display of the 3D model can be seen in Table
2. It is evident that the AR.js framework takes the longest to
recognise the complex images. On average, it takes 7.52
seconds for the first image recognition and 2.08 seconds for all
subsequent ones. Thus, the framework performs significantly
slower than the other two. AR Foundation recognises the
images the fastest. Occasionally, the image does not even have
to be completely in the camera's view to be recognised. It is also
noticeable that the AR Foundation framework works very
consistently with all test devices. The Samsung Galaxy S8 is
again slightly faster, but overall the experience is very good on
all devices. ViroReact delivers similarly fast results as AR
Foundation. Here, it is notable that the iPhone SE recognises
the images much faster than the Android devices. Regardless of
the framework and the device, it was observed that the image
showing the earth was always recognised somewhat quicker
than the second image. This confirms ARCore's
recommendation to carefully select an image with a high quality
score. Nevertheless, the second image was still reliably
recognised by the AR Foundation and ViroReact frameworks
despite the quality score of 30.

A comparison with marker-based tracking clearly shows that the
AR Foundation and ViroReact frameworks recognise more
complex markers/images much faster and reliably display the
3D object at the correct position even when the user moves the
mobile device quickly. AR.js, on the other hand, works best
with markers that are as simple as possible. The more complex
the marker/image becomes, the more patience and experience
the user needs to recognise it. The framework should therefore
not be used for complex images in CS projects, so that
participants do not abandon the AR experience due to
frustration.

4.3 Location-based tracking

The location-based approach probably represents the greatest
potential for GCS projects. Objects can be placed in the
participant's environment based on geographic coordinates,
allowing the project to cover a large area, in contrast to marker-
/image-based approaches. The approach is thus suitable, for
example, for guiding participants to a specific geographic
location, for displaying data already collected at that position,
or for giving participants further instructions once they have
reached the position. A conceivable example could be an
explanatory video that is shown to the participant in the AR
environment, while he simultaneously sees the real environment
in which the data is to be collected. The only prerequisite is that
the participant has a mobile device with a GPS sensor and
additional sensors to determine the device’s orientation.

In this study, simple 2D objects were placed in the AR scene
based on geographic coordinates. An example of the result can
be seen in Figure 2c. This simple approach gives a first
indication whether the frameworks allow placement in relation
to the geographic position of the participant. Generally, it can
be noted that positioning by means of geographic coordinates
can be implemented with all three frameworks. However, as
expected, the accuracy of the positioning depends heavily on
the sensors in the used mobile devices. It should therefore be
carefully examined by each GCS project whether the use of a

location-based tracking approaches is feasible and leads to the
desired results.

The AR.js framework directly integrates the functionality to
place objects based on geographic coordinates. The
documentation describes how the implementation can be carried
out. It should be noted that the documentation is very limited.
In addition, the libraries mentioned do not match those in the
referenced examples, which can cause confusion and
complicates the implementation. However, since AR.js is an
open source framework, it is of course always possible to check
the source code to clarify any ambiguities. Of the three AR
frameworks to be compared, AR.js is the only one that offers a
location-based approach out-of-the-box. It is therefore the
easiest solution to integrate a location-based approach into GCS
projects.

AR Foundation and ViroReact do not support this functionality
without further custom implementation. For both frameworks, a
script must be written that first accesses the current position of
the mobile device and then converts the geographic position of
the device and the object into a Cartesian reference system.
Only then can the objects be placed in the scene by calculating
the distance between the two points. Afterwards, the position of
the object in the scene should be adjusted using the compass
heading to account for the orientation of the mobile device.

The prototype tests reveal that the location-based tracking
approach is error-prone for all three compared frameworks. The
distance of the placed objects in relation to the mobile device
depends on the accuracy of the geographical coordinates
determined by the GPS sensor. If the position is inaccurate, then
the objects will be placed too close or too far away. Therefore,
in order to increase the accuracy of the placement, the
positioning of the objects should be delayed until the values of
the GPS sensor have reached an acceptable accuracy level. The
acceptable level of accuracy depends heavily on the use case
and should be determined on an individual basis. If the AR
functionality is used to show a participant the position at which
new data should be collected, then an inaccuracy of a few
meters is of course more significant than if data that has already
been collected is to be visualised for other participants at its
approximate measurement location. During the practical tests
with the prototypes, an accuracy of 5-10 meters was observed.
Lower values are of course preferable, but they lead to a longer
waiting time for the participant until the objects are placed in
the AR scene.

The orientation and placement of the objects in relation to the
participant holding the mobile device is an even greater
challenge. In order for the objects to be displayed in the correct
position, it is not sufficient to only know the distance between
the mobile device and the geographical position. Rotation must
also be considered for the object to be placed on the correct side
of the participant. For this purpose, the position must be
corrected using the compass heading. The tests demonstrated
that the compass measurements of the three test devices are
rather inaccurate. By calibrating the compass beforehand, this
problem can be corrected to some extent, but the determination
of the orientation still remains imprecise and erratic. This
results in objects being placed at approximately the correct
distance from the mobile device, but not with the correct angle
compared to the orientation of the device. For the frameworks
that use ARKit in the background, the orientation does not have
to be determined separately when the application is used on iOS
devices. ARKit already integrates a setting that allows the

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2022
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-223-2022 | © Author(s) 2022. CC BY 4.0 License.

228

negative z-axis of the AR scene's coordinate system to
automatically align to the north. When testing the ViroReact
framework with the iPhone, it was observed that the placement
of the objects improved significantly when the above-mentioned
setting was applied and the orientation was not calculated via
the compass heading. Unfortunately, a comparable setting
currently does not exist for ARCore.

5. CONCLUSION

In conclusion, it can be observed that all three compared AR
frameworks have potential for integration in (G)CS projects, but
the choice of framework depends strongly on the functionality
to be implemented and the already existing technical
infrastructure. For projects that already offer a web-based
solution and plan to add simple marker-based AR functionality,
the AR.js framework is the right choice. The customisation
effort would be minimal and the AR functionality could add
significant value for participants. If more complex images are to
be used for tracking, then AR Foundation or ViroReact are a
better fit as the recognition of the images is much more reliable.
Without further customisation location-based tracking should
only be used for coarse positioning, for example, to show
participants in a GCS project the approximate position they
should move towards. To use the method for more targeted
purposes, the custom scripts would need to be extended and
refined.

Of course, the comparison presented has also its limitations. On
the one hand, the non-functional requirements should be
extended to enable a more precise selection of AR frameworks.
So far, only two basic requirements for the use of frameworks in
CS projects have been identified, which could lead to a lack of
consideration of other suitable AR frameworks. Of course, the
final choice of an AR framework strongly depends on the
individual requirements of a CS project. The comparison
presented here should only serve as an orientation and simplify
the selection process. On the other hand, the presented
functional approaches should be further deepened and tested.
The AR frameworks offer a wide range of possible applications
and the tracking methods compared represent only a fraction of
them. Therefore, these should be tested and analysed in more
detail to make recommendations as to which AR frameworks
are suitable for more individual functional requirements.
Furthermore, hardware aspects of the individual AR
frameworks should be evaluated, since, for example, power
consumption plays a significant role in AR applications.
Especially when applying the location-based approach, it
becomes clear that the constant request of the geographic
position has a strong impact on the power usage. This should be
examined and deepened in further studies.

The comparison of the AR frameworks and the subsequent tests
with the prototypes have also shown that the geographical
position, which is determined via the GPS receiver of everyday
mobile devices, might be too inaccurate for specific
applications. It remains to be seen whether the positioning
accuracy of everyday smartphones will improve in the future.
The announcement of a meter-level accuracy for Android
smartphones, realised by the partnership of Qualcomm and
Trimble (Qualcomm Technologies, Inc., 2022), is a step in the
right direction and can thus also have a positive effect on the
use of AR applications in GCS projects. Nevertheless, any GCS
project should thoroughly test whether the current accuracy of
the positioning is sufficient before integrating a location-based
AR component into the project. Including an AR component in

a (G)CS project should always have a clear benefit for the
participants and the project itself. The technology should only
be used if it advances the project.

REFERENCES

Albers, B., De Lange, N., Xu, S., 2017: Augmented citizen
science for environmental monitoring and education. Int. Arch.
Photogramm. Remote Sens. Spatial Inf. Sci, XLII-2/W7.
doi.org/10.5194/isprs-archives-XLII-2-W7-1-2017.

Amin, D., Govilkar, S., 2015: Comparative study of augmented
reality SDKs. International Journal on Computational Science
& Applications, 5(1), 11-26.

AR.js Org, 2022. Ar.js – Augmented Reality on the web. ar-js-
org.github.io/AR.js-Docs/ (23 March 2022).

Burkard, S., Fuchs-Kittowski, F., Himberger, S., Fischer, F.,
Pfennigschmidt, S., 2017: Mobile Location-Based Augmented
Reality Framework. 12th International Symposium on
Environmental Software Systems (ISESS), doi.org/10.1007/978-
3-319-89935-0_39.

Carmigniani, J., Furht, B., Anisetti, M., Ceravolo, P., Damiani,
E., Ivkovic, M., 2011: Augmented reality technologies, systems
and applications. Multimedia tools and applications, 51, 341–
377. doi.org/10.1007/s11042-010-0660-6.

Chatzopoulos, D., Bermejo, C., Huang, Z., Hui, P., 2017:
Mobile augmented reality survey: From where we are to where
we go. Ieee Access, 5, 6917–6950.
doi.org/10.1109/ACCESS.2017.2698164

Google Developers, 2022. ARCore – Add dimension to images.
developers.google.com/ar/develop/augmented-images (25.
March 2022).

Hasler, O., Blaser, S., Nebiker, S., 2020: Performance
Evaluation of a Mobile Mapping Application Using
Smartphones and Augmented Reality Frameworks. ISPRS
Annals of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, 2, 741-747. dx.doi.org/10.5194/isprs-
annals-V-2-2020-741-2020

Herpich, F., Guarese, R. L. M., Tarouco, L. M. R., 2017:
Comparative Analysis of Augmented Reality Frameworks
Aimed at the Development of Educational Applications.
Creative Education, 8, 1433-1451.
dx.doi.org/10.4236/ce.2017.89101.

Milgram, P., Kishino, F., 1994: A taxonomy of mixed reality
visual displays. IEICE Transactions on Information and
Systems, 77(12), 1321–1329.

Oufqir, Z., El Abderrahmani, A., Satori, K., 2020: ARKit and
ARCore in serve to augmented reality. 2020 International
Conference on Intelligent Systems and Computer Vision (ISCV).
doi.org/10.1109/ISCV49265.2020.9204243.

Qualcomm Technologies, Inc., 2022. Qualcomm and Trimble
Introduce Meter-Level Location Accuracy for Smartphones.
www.qualcomm.com/news/releases/2022/03/22/qualcomm-and-
trimble-introduce-meter-level-location-accuracy-smartphones
(28 March 2022).

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2022
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-223-2022 | © Author(s) 2022. CC BY 4.0 License.

229

Rabbi, I., Ullah, S., 2013: A survey on augmented reality
challenges and tracking. ACTA GRAPHICA Journal for
Printing Science and Graphic Communications, 24 (1-2), 29-
46.

Sansom, E., Ridgewell, J., Bland, P., Paxman, J., 2016: Meteor
reporting made easy – The Fireballs in the Sky smartphone app.
Proceedings of the International Meteor Conference (IMC),
267-270.

Sermet, M.Y., Demir, I., Kucuksari, S., 2018: Overhead power
line sag monitoring through augmented reality. 2018 North
American Power Symposium (NAPS).
doi.org/10.1109/NAPS.2018.8600565.

Unity Technologies, 2022. AR Foundation.
unity.com/unity/features/arfoundation (25 March 2022).

Viro Community, 2022. ViroReact - Overview. viro-
community.readme.io/docs (23 March 2022).

Wiggins, A., 2013: Free as in puppies: compensating for ICT
constraints in citizen science. Proceedings of the 2013
conference on Computer supported cooperative work, 1469-
1480. dx.doi.org/10.1145/2441776.2441942.

APPENDIX

The source code of the prototypes is available in the following
GitLab repository and can be cloned and adapted for own
projects: https://git.rz.tu-bs.de/users/cosima.berger/projects.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2022
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-223-2022 | © Author(s) 2022. CC BY 4.0 License.

230

