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ABSTRACT: 
 
Augmented reality (AR) offers functionalities that can be beneficial for citizen science (CS) projects. Especially location-based 
approaches have potential for geographically oriented CS projects, as objects can be placed based on geographic coordinates. Since 
choosing a suitable AR framework for integration into a CS project can be challenging, this paper gives an overview of the common 
AR frameworks and takes a closer look at three selected ones that are particularly suitable for CS projects (AR.js, AR Foundation, 
and ViroReact). Prototypes were implemented for the selected frameworks to investigate which framework is best suited for specific 
use cases. Marker-based tracking approaches, image recognition and location-based placement were considered. The results show 
that the framework AR.js is particularly suitable for marker-based tracking with very simple markers and therefore represents a good 
entry point for CS projects to integrate initial AR functionality into their project. AR Foundation and ViroReact, on the other hand, 
are faster and more reliable with the detection of more complex markers. The location-based approach can be implemented with all 
three frameworks, but the precision of the placement of the objects strongly depends on the accuracy of the sensors of the mobile 
device. 
 
 

                                                                 
*  Corresponding author 
 

1. INTRODUCTION 

Augmented reality (AR) is becoming increasingly attractive in 
industry, education, and science. AR aims to enhance the real 
world by displaying artificial objects on a digital screen. In a 
realistic AR solution, computer-generated objects blend 
perfectly into the user’s environment, creating the illusion that 
the objects are truly tangible (Milgram and Kishino, 1994). In 
science, this presents new opportunities, as data can be 
presented in a way that is more understandable and 
approachable for non-professionals. Therefore, AR can be 
especially of interest in the field of citizen science (CS), as the 
concept of CS thrives on the idea of involving non-
professionals into scientific projects. Thus, AR can be a 
valuable tool to open new possibilities in data visualisation and 
collection in CS projects. 
 
With the support of mobile AR applications that can be run on 
regular smartphones, data already collected in a CS project can 
be presented to participants in an engaging and interactive way. 
By integrating the data as objects directly into the participant's 
surrounding, the participant can explore the data and view it 
from all sides by physically moving around it. In this way, AR 
can help participants to better understand complex subjects, as 
the data is presented in a visual and almost tangible way. But of 
course, the advantages of AR are not limited to data 
visualisation. AR can also be used to support and guide the 
participant of a CS project during data collection. For example, 
AR can be used to indicate the exact position where the 
participant should stand to collect new data. This can be 
particularly helpful for taking photos at various times that all 

show the same part of a landscape from the same angle (Albers 
et al., 2017). 
 
AR is already being used in some CS projects, but is still in its 
infancy. However, some successful examples of the use of AR 
can be found, especially in geographically oriented CS projects 
(Sermet et al., 2018, Sansom et al., 2016). Geographic citizen 
science (GCS) projects are characterised by the fact that the 
collected data have additional spatial information attached to 
them. When using a mobile application in the project, the 
spatial information can be collected with the help of the 
integrated GPS sensor of the phone. In an AR solution, the 
same sensor can help to place objects at defined geographic 
positions by following a location-based tracking approach.  
 
The benefits of AR in CS projects are evident, but 
implementing a mobile AR application is still challenging.  
Since many AR frameworks already exist, it is difficult to 
choose the one that best fits the requirements and constraints of 
a project. The wide range of available AR frameworks can seem 
overwhelming at first. However, it is important to be deliberate, 
as the choice of the AR framework is an important step in the 
implementation process and can have an impact on the overall 
success of the project. 
 
This paper aims to give an overview of the currently available 
AR frameworks and to recommend which ones are particularly 
suitable for the use in GCS projects. Therefore, typical 
requirements for an AR framework to be used in a GCS project 
are firstly defined to identify the most suitable AR frameworks. 
Then, a small selection of promising frameworks is compared in 
terms of their characteristics and usability. To provide a 
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meaningful comparison, prototypes are implemented based on 
these frameworks to explore their functionality in practice. The 
comparison is intended to support future project managers of 
GCS projects in choosing a suitable AR framework. 
 

2. RELATED WORK 

Augmented reality extends the real world for a mobile user by 
displaying virtual, computer-generated objects on the device’s 
display (Chatzopoulos et al., 2017). In comparison with virtual 
reality, the user does not completely immerse into a virtual 
world, but is still experiencing his real surrounding. Augmented 
reality only aims to enhance the world the user is already seeing 
and does not completely reconstitute it (Carmigniani et al. 
2011). Due to the improved performance of mobile devices in 
recent years, AR can now be experienced on common 
smartphones (Hasler et al., 2020). This means that with the right 
mobile application, AR can be easily accessed by ordinary 
citizens. 
 
A key challenge of AR is that the computer-generated objects 
must be placed in correspondence to the real environment. 
Objects should stay aligned and anchored to the real world even 
when the user moves the mobile device (Rabbi and Ullah, 
2013). This challenge can also be observed in the context of AR 
used in CS projects. A simple possibility is to use either marker 
tracking or an image recognition approach. The mobile 
application recognises a marker/image, which is placed in the 
participant’s environment, with the help of the camera and 
displays a predefined object at that location. If the user moves 
around the marker/image, the model remains anchored and can 
be viewed from all sides. The major disadvantage of this 
method is that the participant's environment must be prepared 
with markers/images beforehand (Chatzopoulos et al., 2017; 
Rabbi and Ullah, 2013), which is not always possible in CS 
projects. Location-based tracking, on the other hand, works via 
the positional sensors of the mobile device. Objects are placed 
in the user's environment on the basis of geographical 
coordinates, without the scene having to be prepared with 
markers in advance. This approach is therefore an attractive 
option for large-scale GCS projects, where a preparation of the 
entire area would not be feasible. 
 
CS projects can and are already taking advantage of this 
possibility by integrating AR into their data collection or 
visualisation process. Particularly in GCS projects, interesting 
opportunities can be identified for AR to enhance the data 
collection. For example, Sermet et al. (2018) show that AR can 
be used to maintain power lines by proposing an approach 
where power line sag is monitored with the support of citizens 
who are using an AR application on their own smartphone. 
Another example is the Fireballs in the Sky application, which 
enables the user to recreate a fireball sighting by using the 
camera of their smartphone. Through the AR implementation, 
the user can easily pinpoint the altitude and the azimuth of the 
fireball sighting and send this information together with a 
location to the project’s database (Sansom et al., 2016). The 
study by Albers et al. (2017) describes an approach that can be 
used to navigate participants of a project through an AR 
component to a specific location to take a photo with a 
predefined orientation. This approach demonstrates how AR 
can be used interactively to obtain photo series with well-
comparable and analysable images. 
 
Comparative studies that examine the functionalities of AR 
frameworks have already been conducted. Amin and Govilkar 

(2015) discussed the advantages and limitations of selected AR 
software development kits (SDKs) and predict that AR will play 
a greater role in the future. Other comparisons are more focused 
on the specific field in which the AR framework is to be used. 
For instance, Herpich et al. (2017) compared multiple AR 
frameworks concerning their usability in educational 
applications. Closely related to the topic of the paper is the 
comparison by Burkard et al. (2007), who examine existing AR 
frameworks regarding their usability in location-based mobile 
applications. However, a comparison of AR frameworks with 
the intention of using one in a GCS projects was not found 
during the research for this paper. 
 

3. METHODOLOGY 

3.1 Requirements towards an AR framework 

Before implementing a mobile application, it should be 
determined which functional and non-functional requirements 
are imposed on it. The functional requirements describe which 
functionalities should be included in a software product, while 
the non-functional requirements describe the performance or 
quality with which these functionalities should be achieved. For 
example, a functional requirement for a mobile AR application 
could be that a marker should be recognised and as a result a 3D 
object is rendered in the scene. A non-functional requirement, 
on the other hand, would be that the marker should be detected 
within 3 seconds, regardless of the used mobile device. The 
functional requirements for a mobile application to be used in a 
(G)CS project will vary greatly depending on the project. This 
depends on the activities the user is to perform with the app. For 
the non-functional requirements, it is easier to identify 
similarities between distinct projects. 
 
For instance, the majority of projects aim to attract a large and 
diverse group of participants (Wiggins, 2013). This is only 
possible if the mobile application integrated into the project can 
be used on a wide range of smartphones. An application that 
supports only one operating system will exclude a sizable group 
of potential participants. A mobile application that is used in a 
CS project should therefore preferably support all of the 
common platforms (Android, iOS, and possibly also Windows). 
In addition, costs often play a major role in CS projects. In 
particular, small CS projects may only have a limited budget, so 
the choice of a development framework should not generate any 
additional costs. Open source products offer an attractive 
alternative to commercial products, since apart from the cost 
factor, the code is also freely accessible and can be adapted and 
extended specifically for the project. However, open source 
projects always carry the risk that maintenance will be 
discontinued and that additional resources and expertise are 
required during implementation (Wiggins, 2013). 
 
This paper focuses on AR frameworks that are open source or 
freely usable, despite the limitations of open source projects 
mentioned above. Additionally, only AR frameworks that 
enable cross-platform implementation are considered. Of 
course, this is only a very small selection of requirements, but 
since these two can be identified in many CS projects, it is a 
good basis for a first comparison. 
 
3.2 Available AR frameworks 

A selection of currently available AR frameworks is shown in 
Table 1. It lists open source, freely available and proprietary 
frameworks. For the open source solutions, all source code is  
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Name Provider Open Source Platforms Website / Documentation 
ARCore Google  Yes  

(Apache License) 
Android, iOS (limited) https://developers.google.com/ar 

AR 
Foundation 

Unity No  
(Unity Companion 
License) 

Android, iOS https://unity.com/unity/features/arfoundat
ion 

AR.js AR.js Org 
Community 

Yes  
(MIT License) 

all phones with WebGL 
and WebRTC 

https://ar-js-org.github.io/AR.js-Docs/ 

ARKit Apple Inc. No iOS, iPadOS https://developer.apple.com/augmented-
reality/arkit/ 

ARToolKit / 
artoolkitX 

artoolkitX team Yes  
(GNU Lesser 
General Public 
License version 3.0) 

Android, iOS, Linux, 
macOS, Windows 

http://www.artoolkitx.org/ 

Kudan AR 
SDK 

XLsoft 
Corporation 

No Android, iOS https://www.xlsoft.com/en/products/kuda
n/ar-sdk.html 

ViroReact ViroMedia / Viro 
Community 

Yes (MIT License)  Android, iOS https://viro-community.readme.io/ 

Vuforia PTC Inc. No Android, iOS, Lumin 
OS, Windows 

https://www.ptc.com/en/products/vuforia 

Wikitude Wikitude GmbH No Android, iOS, Windows https://www.wikitude.com/ 

Table 1. A selection of currently available AR frameworks / SDKs / platforms 
 
publicly available and can be modified. Some freely available 
frameworks do not share the source code, but the solutions can 
be integrated into the own software at no additional cost. For 
the proprietary AR frameworks, on the other hand, a license 
must be purchased. Since the availability of different AR 
frameworks is tremendous, the list does not claim to be 
complete. However, it already shows which options there are 
regarding the choice of an AR framework and how difficult it 
can be to select a suitable one for a specific CS project. 
 
Google’s ARCore and Apple’s ARKit SDKs are the main tools 
to implement AR applications on Android and iOS devices. The 
SDKs are already integrated in a multitude of newer devices and 
provide important AR functionalities like plane detection, 
image/motion tracking, face detection, and light estimation 
(Oufqir et al. 2020). 
 
AR.js is a completely web-based solution and can be easily 
integrated into existing web applications (AR.js Org, 2022). 
ViroReact is based on the React Native framework and is 
therefore strongly influenced by web-based concepts (Viro 
Community, 2022). Both solutions are open source and enable 
cross-platform implementation. 
 
Wikitude, Vuforia, and Kudan AR SDK are popular 
commercial solutions to implement cross-platform AR 
applications. They are not open source or free to use; therefore, 
a license needs to be acquired upon integrating them into an 
application. All three offer a Unity game engine plugin to 
enable cross-platform implementation. AR Foundation and 
artoolkitX follow a similar approach, but unlike the previously 
mentioned, both are freely usable. 
 
Three frameworks were selected for detailed comparison based 
on the previously discussed requirements. The selected AR 
frameworks are AR Foundation, AR.js and ViroReact. All three 
enable cross-platform implementation and are also freely 
usable. In the case of AR.js and ViroReact, it is even possible to 
access the source code in order to better understand and, if 
necessary, adapt individual functions. The framework 

artoolkitX was also initially considered, but since the 
documentation and additional support are rather limited, the 
framework was not selected for the more detailed comparison. 
However, based on the previously defined requirements, it 
would also be suitable for the use in a CS project. 
 
3.3 Prototype implementation 

Prototypes were implemented for the three selected AR 
frameworks (AR Foundation, AR.js, ViroReact). In the process, 
different tracking techniques were examined to draw 
conclusions about which AR framework is suitable for specific 
use cases in (G)CS projects. The tracking techniques considered 
are two vision-based approaches (marker-based and image 
recognition) and one sensor-based approach (location-based).  
 
The AR Foundation prototype was implemented by using the 
cross-platform game engine Unity. The AR Foundation package 
does not implement any AR functionalities itself, but rather 
provides an interface to use the native AR components on the 
different target platforms. This allows a straightforward 
implementation for Android and iOS, as only one application 
needs to be written, which, depending on the target platform, 
uses either ARCore or ARKit functionality in the background 
(Unity Technologies, 2022). 
 
In contrast, AR.js is a purely web-based framework and is 
written entirely in JavaScript. An AR application implemented 
with the AR.js framework can therefore be executed directly in 
the browser, regardless of the target platform. The only 
requirements are that WebGL and WebRTC must be supported, 
which is already integrated in common mobile browsers. The 
AR.js framework can therefore be easily used to add AR 
functionality to an existing web-based application, since only 
two JavaScript libraries need to be loaded (AR.js Org, 2022). 
 
ViroReact is based on React Native and can be compiled for 
both Android and iOS as target platforms. The framework can 
be used for creating AR and VR applications. Similar to AR 
Foundation, the native AR components ARCore and ARKit of 
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the target platforms are used in the background for the 
implementation of AR functionality (Viro Community, 2022). 
 

4. RESULTS & COMPARISON 

The prototypes were tested on Android and iOS devices to 
confirm the cross-platform functionality. For this purpose, 
everyday smartphones were deliberately used rather than high-
end devices, as it can be assumed that devices of varying quality 
will be used by participants of a CS project. On all devices, the 
settings have been adjusted so that the best possible location 
determination can be achieved. In total, three different devices 
were used to test the prototypes: A Samsung Galaxy A51 device 
with Android version 11, an older Samsung Galaxy S8 with 
Android version 9, and an iPhone SE (1st Generation) with iOS 
version 14.4 installed.  
 
In the following, the results of the tests with the prototypes are 
presented. The implementation differences between the selected 
AR frameworks will be discussed, as well as the usability, 
speed, and accuracy of the resulting application. The results 
also indicate which AR Framework is best suited for each of the 
three tracking techniques considered. 
 
4.1 Marker-based tracking 

Marker-based tracking is widely used in AR applications. The 
user scans a marker with the mobile application and additional 
content is displayed in the AR scene. Since the markers are kept 
very simple, they can be detected particularly quickly. Due to its 
ease of use, the method is also suitable for participants who 
have no previous experience with AR. Marker-based tracking 
should therefore not be ignored in the context of CS, because it 
is the simplest and most straightforward way to integrate AR 
functionality into a project. 
 
Marker-based tracking was implemented for all three of the 
selected frameworks and tested on the different devices. 
Markers of varying complexity (see Figure 1b-d) were used to 
display 3D objects in the AR scene. It is noticeable that the 
AR.js framework explicitly differentiates between marker-based 
tracking and image recognition during implementation. This is 
reflected in the need to integrate individual libraries into the 
prototypes for each of the two approaches. According to the 
documentation, it is not possible to use both approaches within 
one application. The implementation is therefore clearly 
different from the implementation in the ViroReact and AR 
Foundation frameworks. In these frameworks, the 
implementation of the two vision-based approaches follows the 
same principle, so there is no need to distinguish whether a 
marker or a more complex image is to be used for tracking.  
 
The documentations of all frameworks emphasise that the 
quality of the markers (and images) plays a crucial role and 
determines how quickly and reliably the marker is recognised. 
For the tests three different marker types were used: Hiro 
marker, barcode marker and pattern marker. The Hiro marker is 
the default marker of the AR.js framework and can be seen in 
Figure 1c. Barcode markers are automatically-generated matrix-
based markers. The dimensions of the matrix determine how 
many codes can be used to generate the markers. A simple 
example of a marker is shown in Figure 1d. It is a barcode 
marker with the dimension 3x3 and the code 6. The pattern 
marker, on the other hand, consists of a simple custom image 
surrounded by a black border (Figure 1b). Regardless of  

 
Figure 1. ARCore quality score for selected reference 

images/markers 
 
the marker type selected, all markers should always have a high 
contrast, and therefore black and white markers are always a 
good choice. 
 
Figure 1 also shows the ARCore quality score for each 
marker/image. The score indicates how suitable the 
marker/image is for recognition with mobile devices that use 
ARCore in the background. The higher the score is, the better 
the recognition works. To achieve a high score, the image 
should have a wide range of geometric features and contain as 
few recurring patterns as possible. The score takes a value 
between 0 and 100, whereby ARCore recommends a value of at 
least 75 (Google Developers, 2022). The barcode marker is a 
negative example of a well-chosen marker, since it contains so 
few features that no ARCore quality score can be calculated. 
The more complex image in Figure 1a, on the other hand, is 
very suitable, which is reflected in a score of 100. 
 
To find out which framework recognises the markers the fastest, 
a test of all frameworks was performed with the different mobile 
devices. The time between the moment when the marker is 
completely in the camera’s view until the display of the 3D 
model was measured. Since the time was measured manually, 
the values do not reflect the exact time because the human 
reaction time is included. However, since this reaction time is 
included in all measured values, the numbers can certainly be 
compared to get a first impression of the speed of the individual 
frameworks. The first detection of the marker after opening the 
application usually takes longer than the subsequent ones, 
therefore the two cases were distinguished and measured 
individually. The marker was always moved to a different 
position in the scene before a subsequent detection. In order to 
make the test as realistic as possible, a test person with only 
limited prior experience in dealing with AR was chosen, since it 
is to be expected that some participants in CS projects also have 
never used AR on their own mobile device. 
 
AR.js detects the markers quite fast and does not lose the 
tracked object even when moving the smartphone (see Table 2).  
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  Marker-based Tracking 

(average time until … detection) 
Image Recognition 

(average time until … detection) 
Framework Mobile Device first subsequent first subsequent 
AR.js Samsung Galaxy A51 2.21 s 2.01 s 7.25 s 3.11 s 
 Samsung Galaxy S8 1.04 s 0.55 s 2.52 s 1.72 s 
 iPhone SE 2.22 s 1.63 s 12.80 s 1.40 s 
  Ø 1.82 s Ø 1.40 s Ø 7.52 s Ø 2.08 s 
AR Foundation Samsung Galaxy A51 1.24 s 1.74 s 1.63 s 1.33 s 
 Samsung Galaxy S8 1.01 s 0.90 s 0.85 s 0.84 s 
 iPhone SE 1.25 s 2.78 s 1.55 s 1.63 s 
  Ø 1.17 s Ø 1.81 s Ø 1.34 s Ø 1.27 
ViroReact Samsung Galaxy A51 4.64 s 2.46 s 2.74 s 1.58 s 
 Samsung Galaxy S8 2.76 s 2.45 s 2.66 s 1.89 s 
 iPhone SE 3.23 s 1.76 s 1.09 s 1.30 s 
  Ø 3.54 s Ø 2.22 s Ø 2.16 s Ø 1.59 s 

Table 2. Comparison of the average time (in seconds) required by the frameworks to detect a marker or image and display the 
corresponding 3D model 

 

 
 

Figure 2. Examples of the results of the three different tracking techniques 
 
The average time for all three devices is 1.82 seconds for the 
first detection and 1.4 seconds for all subsequent detection. A 
visual example of the marker-based approach with AR.js can be 
seen in Figure 1a. Overall, it is surprising that the newest device 
does not perform better than the older ones. The Samsung 
Galaxy S8 delivers the best results for all three frameworks and 
recognises the markers the fastest. The framework ViroReact 
performs the weakest and takes the longest to display the 3D 
objects in the scene. On average, it takes 3.54 seconds for the 
first detection and 2.22 seconds for all subsequent ones. The 
AR Foundation framework performs even better than AR.js. 
Here, the objects were rendered so quickly that it was 
sometimes difficult to measure the time meaningfully. With 
AR.js and ViroReact, a trend can be observed that all 
subsequent detections are significantly faster than the first one. 
This trend cannot be seen with the AR Foundation framework, 
but this may be because recognition is generally very fast. It 
should be noted that the simple barcode marker only worked in 
the web-based solution (AR.js) and on the iOS device, because 
the marker’s ARCore quality score needs to be at least 0 to be 
detected with Android devices. 
 
The results show that marker-based tracking can be a good fit 
for CS projects. Due to the fast and reliable recognition of the 
markers, participants can learn the process quickly, and this 
contributes to a good experience. However, since the lighting 
conditions are crucial for the recognition of the markers, the 

method should be used mainly indoors. For outdoor projects, 
black and white markers are preferable because they have good 
contrast and are better recognised than coloured markers. 
 
4.2 Image recognition 

Image recognition follows the same principle as marker-based 
tracking. The only difference is that more complex images are 
used to place the 3D objects into the scene. The advantage for 
CS projects is that real images can be used instead of artificial 
markers. For example, images already placed on an information 
board, in a leaflet or on a website can be utilised to display 
further information in the AR scene. The disadvantage is that it 
can be challenging for the participant to detect the image with 
their mobile device. Unlike marker-based tracking, it can be 
difficult to find the correct angle and distance to recognise the 
complex image. Furthermore, image recognition is more 
influenced by lighting conditions, which, as mentioned before, 
is strongly related to the colour representation. 
 
Image recognition was implemented for all three frameworks. 
Two complex images were used to test the approach. One shows 
the earth and has an ARCore quality score of 100 (Figure 1a). 
The other one shows a canal surrounded by colourful buildings. 
The second image has an ARCore quality score of only 30 and 
can be seen in Figure 2b. Selecting a suitable image is not an 
easy task, so it is advisable to check the documentation 
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beforehand to determine which image properties are important. 
The ARCore quality score can be used as a first reference value. 
 
To test the approach, the same procedure as for marker-based 
tracking was used. The measured times until the recognition of 
the image and the display of the 3D model can be seen in Table 
2. It is evident that the AR.js framework takes the longest to 
recognise the complex images. On average, it takes 7.52 
seconds for the first image recognition and 2.08 seconds for all 
subsequent ones. Thus, the framework performs significantly 
slower than the other two. AR Foundation recognises the 
images the fastest. Occasionally, the image does not even have 
to be completely in the camera's view to be recognised. It is also 
noticeable that the AR Foundation framework works very 
consistently with all test devices. The Samsung Galaxy S8 is 
again slightly faster, but overall the experience is very good on 
all devices. ViroReact delivers similarly fast results as AR 
Foundation. Here, it is notable that the iPhone SE recognises 
the images much faster than the Android devices. Regardless of 
the framework and the device, it was observed that the image 
showing the earth was always recognised somewhat quicker 
than the second image. This confirms ARCore's 
recommendation to carefully select an image with a high quality 
score. Nevertheless, the second image was still reliably 
recognised by the AR Foundation and ViroReact frameworks 
despite the quality score of 30. 
 
A comparison with marker-based tracking clearly shows that the 
AR Foundation and ViroReact frameworks recognise more 
complex markers/images much faster and reliably display the 
3D object at the correct position even when the user moves the 
mobile device quickly. AR.js, on the other hand, works best 
with markers that are as simple as possible. The more complex 
the marker/image becomes, the more patience and experience 
the user needs to recognise it. The framework should therefore 
not be used for complex images in CS projects, so that 
participants do not abandon the AR experience due to 
frustration. 
 
4.3 Location-based tracking 

The location-based approach probably represents the greatest 
potential for GCS projects. Objects can be placed in the 
participant's environment based on geographic coordinates, 
allowing the project to cover a large area, in contrast to marker-
/image-based approaches. The approach is thus suitable, for 
example, for guiding participants to a specific geographic 
location, for displaying data already collected at that position, 
or for giving participants further instructions once they have 
reached the position. A conceivable example could be an 
explanatory video that is shown to the participant in the AR 
environment, while he simultaneously sees the real environment 
in which the data is to be collected. The only prerequisite is that 
the participant has a mobile device with a GPS sensor and 
additional sensors to determine the device’s orientation. 
 
In this study, simple 2D objects were placed in the AR scene 
based on geographic coordinates. An example of the result can 
be seen in Figure 2c. This simple approach gives a first 
indication whether the frameworks allow placement in relation 
to the geographic position of the participant. Generally, it can 
be noted that positioning by means of geographic coordinates 
can be implemented with all three frameworks. However, as 
expected, the accuracy of the positioning depends heavily on 
the sensors in the used mobile devices. It should therefore be 
carefully examined by each GCS project whether the use of a 

location-based tracking approaches is feasible and leads to the 
desired results. 
 
The AR.js framework directly integrates the functionality to 
place objects based on geographic coordinates. The 
documentation describes how the implementation can be carried 
out. It should be noted that the documentation is very limited. 
In addition, the libraries mentioned do not match those in the 
referenced examples, which can cause confusion and 
complicates the implementation. However, since AR.js is an 
open source framework, it is of course always possible to check 
the source code to clarify any ambiguities. Of the three AR 
frameworks to be compared, AR.js is the only one that offers a 
location-based approach out-of-the-box. It is therefore the 
easiest solution to integrate a location-based approach into GCS 
projects. 
 
AR Foundation and ViroReact do not support this functionality 
without further custom implementation. For both frameworks, a 
script must be written that first accesses the current position of 
the mobile device and then converts the geographic position of 
the device and the object into a Cartesian reference system. 
Only then can the objects be placed in the scene by calculating 
the distance between the two points. Afterwards, the position of 
the object in the scene should be adjusted using the compass 
heading to account for the orientation of the mobile device. 
 
The prototype tests reveal that the location-based tracking 
approach is error-prone for all three compared frameworks. The 
distance of the placed objects in relation to the mobile device 
depends on the accuracy of the geographical coordinates 
determined by the GPS sensor. If the position is inaccurate, then 
the objects will be placed too close or too far away. Therefore, 
in order to increase the accuracy of the placement, the 
positioning of the objects should be delayed until the values of 
the GPS sensor have reached an acceptable accuracy level.  The 
acceptable level of accuracy depends heavily on the use case 
and should be determined on an individual basis. If the AR 
functionality is used to show a participant the position at which 
new data should be collected, then an inaccuracy of a few 
meters is of course more significant than if data that has already 
been collected is to be visualised for other participants at its 
approximate measurement location. During the practical tests 
with the prototypes, an accuracy of 5-10 meters was observed. 
Lower values are of course preferable, but they lead to a longer 
waiting time for the participant until the objects are placed in 
the AR scene.  
 
The orientation and placement of the objects in relation to the 
participant holding the mobile device is an even greater 
challenge. In order for the objects to be displayed in the correct 
position, it is not sufficient to only know the distance between 
the mobile device and the geographical position. Rotation must 
also be considered for the object to be placed on the correct side 
of the participant. For this purpose, the position must be 
corrected using the compass heading. The tests demonstrated 
that the compass measurements of the three test devices are 
rather inaccurate. By calibrating the compass beforehand, this 
problem can be corrected to some extent, but the determination 
of the orientation still remains imprecise and erratic. This 
results in objects being placed at approximately the correct 
distance from the mobile device, but not with the correct angle 
compared to the orientation of the device. For the frameworks 
that use ARKit in the background, the orientation does not have 
to be determined separately when the application is used on iOS 
devices. ARKit already integrates a setting that allows the 
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negative z-axis of the AR scene's coordinate system to 
automatically align to the north. When testing the ViroReact 
framework with the iPhone, it was observed that the placement 
of the objects improved significantly when the above-mentioned 
setting was applied and the orientation was not calculated via 
the compass heading. Unfortunately, a comparable setting 
currently does not exist for ARCore. 
 

5. CONCLUSION 

In conclusion, it can be observed that all three compared AR 
frameworks have potential for integration in (G)CS projects, but 
the choice of framework depends strongly on the functionality 
to be implemented and the already existing technical 
infrastructure. For projects that already offer a web-based 
solution and plan to add simple marker-based AR functionality, 
the AR.js framework is the right choice. The customisation 
effort would be minimal and the AR functionality could add 
significant value for participants. If more complex images are to 
be used for tracking, then AR Foundation or ViroReact are a 
better fit as the recognition of the images is much more reliable. 
Without further customisation location-based tracking should 
only be used for coarse positioning, for example, to show 
participants in a GCS project the approximate position they 
should move towards. To use the method for more targeted 
purposes, the custom scripts would need to be extended and 
refined. 
 
Of course, the comparison presented has also its limitations. On 
the one hand, the non-functional requirements should be 
extended to enable a more precise selection of AR frameworks. 
So far, only two basic requirements for the use of frameworks in 
CS projects have been identified, which could lead to a lack of 
consideration of other suitable AR frameworks. Of course, the 
final choice of an AR framework strongly depends on the 
individual requirements of a CS project. The comparison 
presented here should only serve as an orientation and simplify 
the selection process. On the other hand, the presented 
functional approaches should be further deepened and tested. 
The AR frameworks offer a wide range of possible applications 
and the tracking methods compared represent only a fraction of 
them. Therefore, these should be tested and analysed in more 
detail to make recommendations as to which AR frameworks 
are suitable for more individual functional requirements. 
Furthermore, hardware aspects of the individual AR 
frameworks should be evaluated, since, for example, power 
consumption plays a significant role in AR applications. 
Especially when applying the location-based approach, it 
becomes clear that the constant request of the geographic 
position has a strong impact on the power usage. This should be 
examined and deepened in further studies. 
 
The comparison of the AR frameworks and the subsequent tests 
with the prototypes have also shown that the geographical 
position, which is determined via the GPS receiver of everyday 
mobile devices, might be too inaccurate for specific 
applications. It remains to be seen whether the positioning 
accuracy of everyday smartphones will improve in the future. 
The announcement of a meter-level accuracy for Android 
smartphones, realised by the partnership of Qualcomm and 
Trimble (Qualcomm Technologies, Inc., 2022), is a step in the 
right direction and can thus also have a positive effect on the 
use of AR applications in GCS projects. Nevertheless, any GCS 
project should thoroughly test whether the current accuracy of 
the positioning is sufficient before integrating a location-based 
AR component into the project. Including an AR component in 

a (G)CS project should always have a clear benefit for the 
participants and the project itself. The technology should only 
be used if it advances the project. 
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APPENDIX 

The source code of the prototypes is available in the following 
GitLab repository and can be cloned and adapted for own 
projects: https://git.rz.tu-bs.de/users/cosima.berger/projects.
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