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ABSTRACT:

Every year, deforestation results in the loss of wide stretches of forest which is worsening the state of air quality, biodiversity, indigenous
cultures, climate, meteorological conditions, etc. According to the Monitoring of the Andean Amazon Project (MAAP), roughly 20
million hectares of land were lost due to deforestation in 2020. To address the issue of deforestation, this study proposes a derivation
of the deforestation risk model to target the spread of deforestation, which is the first step towards its prevention. The region of interest
- North West of Mato Grosso, Brazil - was selected based on two characteristics: it is a deforestation hotspot according to MAAP and
it comprises 4 indigenous lands. The sequence for developing the risk model comprises reference information collection, information
cleaning, classification, postprocessing, and change detection. In a crowdsourcing mapathon, reference data were gathered, and they
were refined in an iterative process using existing land cover maps and photo interpretation. Google Earth Engine and the Random
Forest algorithm were used to classify Sentinel-2 imagery for 2019 and 2020. The results obtained are land cover maps from 2019 and
2020 and land cover change, and the risk model. The results are not demonstrating intensive deforestation in the region of interest,
however, the deforestation appears to be systematic in two subregions, indicating that it has the potential to spread. An additional
concern in the case of these subregions is their proximity to the indigenous land.

1. INTRODUCTION

Deforestation is a worldwide growing problem that creates ex-
tensive consequences. Rainforests have a pivotal role in climate,
biogeochemical and ecological processes, and as they are getting
depleted, the well-being of humanity is becoming more and more
uncertain (Wearn et al., 2012). Our largest rainforest, the Ama-
zon, is not spared either. The increasing amount of forest fires in
the Amazon rainforest in the last decade also arises the important
question of deforestation. Forest fires naturally occur in the Ama-
zon during the dry season which runs from July to October. But
the forest fires that took place in 2019 are thought to have been
started by human activities as it is the easiest way to clear the
land for starting economical activities such as mining, timber ex-
ploitation, cattle ranching, agricultural production, etc (Geist and
Lambin, 2002; Silveira et al., 2020; Sonter et al., 2017). More-
over, the consequences caused by the fire are severe and often
irreversible.

A year-to-year surge in fires occurring in the Amazon rainforest
shows the urgency for regulating climate and protecting biodiver-
sity. This research is an answer to a research question: ”What can
be done in order to prevent/stop/reduce deforestation?”. It takes
care of identifying the areas in which deforestation happens by
deriving a risk model that is nothing else but a land cover change
model focused on the forest change. By locating areas at high
risk of deforestation, we give a possibility to the local authori-
ties to react and stop it. The research was done under the 2020
YouthMappers Research Fellowship which aims to promote the
use of open, geospatial data in research on the resilience of vul-
nerable populations worldwide.

Deforestation happens everywhere, but since the Amazon is the
largest rainforest, this was selected as the location of interest. To
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be more precise, the area of interest is an area of around 35000
km2 around the Xingu river in Mato Grosso, Brazil. This area is
interesting not only because it is close to one of the deforestation
hotspots identified by the Monitoring of Andean Amazon Project
(MAAP) (MAAP, 2021), but also because it includes the land of
some of the indigenous peoples in Brazil.

The methodology to derive the deforestation risk model can be
broken down into reference data collection, data cleaning, clas-
sification, postprocessing, and change detection. Reference data
were collected in a crowdsourcing mapping event (mapathon) or-
ganized by PoliMappers, Youth Mappers chapter from Politec-
nico di Milano university. The mapping event was a part of
the extra-curricular course of Politecnico di Milano university
called Collaborative and Humanitarian Mapping (Gaspari et al.,
2021). The mapping was based on Teach OSM projects (Tea-
chOSM, 2021), thus all the contributions were stored in Open-
StreetMap (OSM) database. Then data were validated, filtered,
and adjusted when needed in order to get proper data for training
and validation. Ultimately, 13000 sample points were extracted
from collected reference data. The classification was carried out
on Google Earth Engine (GEE). The Random Forest algorithm
was trained by using about 9000 reference samples, and then the
trained model was applied on Sentinel-2 imagery to derive land
cover maps. The reference points that were not used for train-
ing are used for validation of the classification output. Thanks to
the validation it was possible to recognize some major defects in
the land cover map. The defects were mainly the consequence
of the imperfection of reference data. To eliminate them, differ-
ent solutions were tested during the postprocessing component
of the process. The solution that proved to be the most efficient
was the introduction of auxiliary land cover information from ex-
isting high-resolution land cover (HRLC), but in addition sam-
ples of some classes were photo-interpreted. After the reference
samples were enhanced, they were used to classify Sentinel-2 im-
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agery for 2020 and 2019. Based on the land cover map for 2019
and for 2020, land cover change was estimated. Change from
Forest to Grassland, and from Forest to Cropland are the most
relevant changes when deforestation is concerned; Thus, these
two types of change were extracted from the land cover change
map as they represent the deforestation risk model.

The risk model suggests that cattle ranching is the main driver of
the rainforest in the region of interest, but that the deforestation
rate is not intensive. About 80km2 of the forest was replaced by
Grassland and 27 km2 by Cropland. Yet, two subregions in the
North-East of the region of interest contain a deforestation pat-
tern that is characteristic of systematic deforestation that is likely
to be continued. The two subregions are in proximity to Xingu
indigenous land, which increases the gravity of the situation.

The rest of the paper is structured as follows. Section 2 contains
the description of the region of interest. In Section 3 the different
segments of methodology (reference data collection, data clean-
ing, classification, postprocessing, and change detection) are de-
scribed. Results that consist of land cover maps, and land cover
change are reported and discussed in Section 4, while conclusions
are made in Section 5.

2. REGION OF INTEREST

Region of interest was selected by taking into account the risk
of deforestation and the presence of indigenous land. In 2020
MAAP identified 8 main deforestation hotspots, which are mostly
located in the southern part of the Amazon rainforest (Figure 1).

Figure 1: Hotspots of primary forest loss in Amazon in 2020
(Source: MAAP)

The region of interest (Figure 2) is North-East of Mato Grosso
state in Brazil around Xingu river valley. It extends along hotspot
E displayed in Figure 1. The area was limited to 35000 km2 in
order to collect a sufficient amount of reference data for the train-
ing and validation of the risk model. The region includes the in-
digenous land of Batovi and Pequizal do Naruvôtu, and southern
halves of the indigenous territories of Xingu and Wawi.

3. METHODOLOGY

The work done for this project had multiple steps that can be
split into reference data collection, data cleaning, classification,
postprocessing, and change detection (Figure 3). Each of these
steps will be further explained in the following subsections.

Figure 2: Selected region of interest

Figure 3: Workflow
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3.1 Reference Data Collection

The final goal of reference data collection was to collect informa-
tion related to 8 generic land cover classes present in the region of
interest to be used for training and validation of a machine learn-
ing algorithm. These classes are Cropland, Forest, Grassland,
Shrubland, Wetland, Water, Built-up, and Bareland. Training and
validation data were collected during the Collaborative and Hu-
manitarian Mapping course (Gaspari et al., 2021). This course is
an extra-curricular course of Politecnico di Milano university or-
ganized and supervised by Prof. Maria Antonia Brovelli and Prof.
Ludovico Giorgio Aldo Biagi. It is an innovative course focused
on promoting technical skills related to open-source geospatial
tools, but also soft skills. The total duration of the course was 20h
that were distributed in the 7 online sessions. The session dedi-
cated to the 2020 YouthMappers research fellowship took place
on 12. March 2021. It was named ”Mapping deforestation in
the Amazon rainforest with JOSM” and it had a form of map-
athon. During this session, a tutorial was given on how to use
JOSM (Java OpenStreetMap editor), but also how to contribute
to TeachOSM projects, and to recognize, trace and tag various
features on satellite imagery. To keep mapping in the target area,
seven TeachOSM projects were created. Since the mapping was
done on Teach OSM, all the contributions were stored in Open-
StreetMap (OSM) database. A total of 19 OSM tags were pro-
posed for mapping. OSM tags are typically more detailed than
target land cover classes, therefore for some of the target land
cover classes, there was more than one corresponding OSM tag
(Table 1). To make it easier for participants to keep track of the
numerous tags, a preset of tags was prepared and it was shown
to participants how to integrate and use it with JOSM. Moreover,
participants had access to the very detailed written support ma-
terials, but also every TeachOSM project was accompanied by a
list of tags to be used, and a description of how to recognize cor-
responding features in the basemaps. One week after the session
dedicated to deforestation, an additional session was organized to
address the doubts or curiosities that students have had.

The amount of collected data categorized by different features is
reported in Table 2.

There were around 80 participants in the mapathon. They are
from different continents: South America, Africa, Asia, and Eu-
rope which makes the project cross-continental.

Data collected in the mapathon were validated by PoliMappers
officers. During the validation, the minor errors were fixed, while
for the major errors we gave instructions to the OSM user who
introduced the error how to fix it. Prevalently, the errors were
related to the buildings that are not orthogonalized, landuse fea-
tures connected to the roads, highways mistakenly named road,
and landuse overlapping. These errors are not related only to de-
forestation mapping but are typical errors in mapping on OSM.

3.2 Data Cleaning

We used Overpass turbo to download OSM data in the region of
interest, then we filtered data by date, tags, username, and hash-
tags. Data filtering was done by using a custom Python script.
It was necessary to filter data to eliminate all features that are
not collected during the mapathon and that therefore could be
inadequate or unnecessary for the scope of this work. After fil-
tering, we made a visual inspection of data in QGIS. The visual
inspection resulted in the identification of some errors such as
missing tags, presence of two mutually exclusive tags (i.e. natu-
ral=wetland and natural=grassland), confusion of farmland with
grassland and vice versa, confusion of wood with scrub and vice

OSM tags / combination of tags LC class Value
landuse=farmland Cropland 1

natural=wood Forest 2
natural=grassland Grassland 3

natural=scrub Shrubland 4
natural=wetland Wetland 5

waterway=stream

Water 6

natural=water
natural=water, water=lagoon

natural=water, water=lake
natural=water, water=oxbow
natural=water, water=pond

natural=water, water=reservoir
natural=water, water=river

natural=water, water=stream
natural=water, waterway=riverbank

waterway=river
building=house

Built-up 8

building=yes
highway=path

highway=residential
highway=secondary

highway=tertiary
highway=track

highway=unclassified
natural=sand

Bareland 9
natural=scree

Table 1: OSM tags and their correspondence to the land cover
classes

Feature Amount
Roads 2092.3 km
Buildings 560
Land use area 693.22 km2

Rivers 495.3 km

Table 2: Mapping results. Source: resultmaps.neis-one.org/,
https://mapathon.cartong.org/

versa, etc. The identified errors were corrected both locally using
QGIS and on OSM using JOSM. Tags were translated into land
cover classes (Table 1), and features that belong to the same land
cover class were dissolved. At the end of the data cleaning pro-
cedure, 2000 samples per class were extracted from the available
data polygons to be used in the classification.

3.3 Classification

Classification of Sentinel-2 imagery was carried out on GEE by
using the Random Forest training algorithm.

Sentinel-2 was selected for classification because it is imagery
with the best resolution available publicly. In addition, it is ac-
cessible through GEE Catalog which is one more advantage given
that it could be directly processed on GEE. Sentinel-2 is the im-
agery of the Copernicus Sentinel-2 mission. An image consists
of 4 bands at 10m resolution, 6 bands at 20m resolution, and 3
bands at 60m resolution. In this work, only bands at 10m and
20m resolution and scenes with less than 10% cloud coverage
were used. The two separate classifications were executed - one
of imagery of 2019 and one of 2020. In both cases, Sentinel-2 im-
agery at the L2A processing level was considered. At this level,
imagery values refer to Bottom of atmosphere (BOA) reflectance
which means that the image reflectance is corrected for absorp-
tion and scattering caused by the presence of gases and aerosols
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in the atmosphere.

The classification procedure started by loading all images for
2020 with cloud coverage lower than 10% from Earth Engine
Data Catalog. At this point, a cloud mask was applied to remove
clouds and cirrus. The cloud mask is provided for Sentinel L2A
products as the band QA60. In the following step, 10 bands to
be used in the classification are specified. The bands selected are
bands 2, 3, 4, 5, 6, 7, 8, 8A, 11, and 12 that correspond to Blue,
Green, Red, Red Edge 1, Red Edge 2, Red Edge 3, NIR, Red
Edge 4, SWIR 1, and SWIR 2 electromagnetic spectrum. Then,
samples extracted after reference Data Cleaning were imported
into GEE assets. 70% of reference samples were used for the
training of the Random Forest algorithm with 100 trees. The out-
put raster was exported from GEE to Google Drive and then to
local storage. The intermediate step of exporting to Google Drive
was needed because there is no direct way to export data from
GEE to local storage. Finally, the classification output was vali-
dated with 30% of the remaining reference samples. The output
of the validation was error matrix and accuracy indexes - Overall
Accuracy (OA), User’s Accuracy (UA), and Producer’s Accuracy
(PA).

3.4 Postprocessing

The validation results of the first classification outputs were
showing relatively low accuracy - OA = 63%. By visually check-
ing the resulting raster, it was evident that the Built-up and Wet-
land classes were overestimated. This was an indicator that the
reference data might not be sufficiently accurate and that they
need further refinement. At this point, we decided to use addi-
tional information about land cover in this area to increase the
reliability of reference data collected in the crowdsourcing ap-
proach. The additional sources of the information were existing
HRLC maps at a resolution of 30m or better and available for the
year 2016 or later. Existing HRLC maps and data collected in
OSM were combined in a particular way in order to try to extract
only those information with a higher probability to be correct in
each individual map/data source.

Existing HRLC maps that were used for reinforcing reference
data collected on TeachOSM are listed in Table 3 together with
their main characteristics - name, resolution, and baseline year.

Dataset name Year Resol. Reference
FROM GLC (Finer
Resolution Observation
and Monitoring of Global
Land Cover)

2017 10 m Gong et al. (2019)

MapBiomas 2018 30 m MapBiomas (2019)
GHS BU LDS (Global
Human Settlement Built-
Up Grid – Sentinel-1)

2016 20 m
Corbane et al.
(2018)

WSF (World Settlement
Footprint)

2019 10m
Marconcini et al.
(2020)

FNF (Forest / Non-
Forest)

2016 25 m
Shimada et al.
(2014)

GSW seasonality
(Global Surface Water
seasonality)

2019 30 m Pekel et al. (2016)

GL30 (GlobeLand30) 2017 30m Chen et al. (2015)

Table 3: Existing high-resolution land cover dataset

Every land cover map aims at representing material on the Earth’s
surface as accurately as possible. Nevertheless, every map con-
tains certain errors depending on imagery type, preprocessing,

training data, classification algorithm, etc. When existing land
datasets are compared among themselves, the area in which they
all show coherent information is the area with the highest prob-
ability that they are correct. Therefore, if we intersect multiple
land cover maps, the areas in which they share information can
be used to extract training samples for deriving a new land cover
map. Figure 4 illustrates how coherent land cover information
can be extracted from existing HRLC and reference data collected
on OSM.

Figure 4: Extracting coherent information from multiple datasets

Before any type of data comparison/intersection, it was neces-
sary to harmonize data with respect to their coordinate reference
system, legend, and resolution. Furthermore, OSM data were ras-
terized to comply with the existing HRLC data type. The coordi-
nate reference system selected was WGS84 (EPSG:4326) and all
datasets were reprojected to 10m resolution. The legends (pixel
values and labels) of the existing HRLC classes were adapted to
correspond to 1 - Cropland, 2 - Forest, 3 - Grassland, 4 - Shrub-
land, 5 - Wetland, 6 - Water, 8 - Built-up, and 9 - Bareland. The
harmonized data were intersected and coherent information was
extracted and stored in a raster format. Hereafter, the raster will
be referred to as a map of agreement. It was computed by using
GRASS GIS and Python.

The map of agreement had one shortcoming - classes Bareland
and Built-up were missing. This means that intersected datasets
were not showing consistency with respect to these two classes.
Nonetheless, it was possible to extract samples for other classes
i.e., Cropland, Forest, Grassland, Shrubland, Wetland, and Wa-
ter. Also, in this case, 2000 samples per class were extracted.
To overcome the issue with missing information for Built-up and
Bareland classes multiple potential solutions were tested:

• Using originally collected reference samples for these two
classes.

• Using originally collected reference samples for these two
classes, but removing Built-up class samples coinciding
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with roads. The reason for doing so is the fact that the roads
are relatively narrow features that might be subject to po-
sitional error. In case of positional errors, it could happen
that the samples that should represent road actually repre-
sent surrounding features but are labeled as Built-up class
samples.

• Using originally collected reference samples for Bareland
class, but extracting only buildings centroids as samples for
Built-up class.

Each test was one iteration of modification of the reference data,
classification, validation, and export of the classification results
for visual inspection. None of the previously mentioned solu-
tions was giving satisfactory results, therefore the initially col-
lected reference samples of Bareland and Built-up classes were
revised and corrected by comparing them visually with Sentinel-
2 basemap for 2020. In the case of the Built-up class, revi-
sion showed that only buildings with an area bigger than 100
m2 were detectable on Sentinel-2 imagery. Thus, all the build-
ings with sizes smaller than 100m were discarded from the ref-
erence data. When Bareland class is concerned, the only areas
where we noticed this class was present are sand accumulations
in the Xingu river. The reference samples collected for this class
did not resemble the situation displayed Sentinel-2 basemap for
2020. Most probably the reason behind is that the basemap used
to collect reference data (Maxar Standard Imagery (Beta)) was
not from the year 2020, and sand accumulation can move or
change its form over time. As a solution, the collected Bareland
samples were compared visually against Sentinel-2 basemap for
2020, and those samples that were not aligned with sand accu-
mulation in the basemap were deleted. The revision yielded 52
samples of Built-up and 919 samples of Bareland.

Once the samples were refined, there were utilized to derive two
land cover maps - one for 2019 and one for 2020. The intersection
of reference data with existing land cover produced in the period
2016-2019 assured that the land cover did not change by 2020
therefore it was reliable to use the same samples for classifying
imagery in 2019.

Modification of reference data and visual inspection of the results
were done in QGIS, while classification and validation were done
on GEE.

3.5 Change detection

Change detection was the last data processing exercise. Firstly,
the land cover change was computed by using r.cross of GRASS
GIS. This tool produces output in the form of raster whose val-
ues are all unique combinations of category values found in the
raster input layers (land cover maps). Furthermore, starting from
the land cover change map, changes related to deforestation were
extracted - change of forest to grassland or cropland. Finally, the
changes of forest to grassland or forest to cropland were exam-
ined visually to understand the presence of a pattern that indicates
systematic deforestation.

4. RESULTS AND DISCUSSION

The results of the previously presented procedure include both
maps and accuracy figures.

Figure 5: Land cover for 2020 (up) and 2019 (down)

4.1 Land cover

When the land cover is concerned there were two maps derived,
one for 2019 and another one for 2020 (Figure 5). The two maps
look alike, but there are small differences that cannot be appreci-
ated at this scale.

The accuracy of two land cover maps was computed based on
approximately 4000 samples (30% of reference samples). Due
to the refinement of the reference data, the area of the reference
data was reduced, and thus training and validation data might be
biased due to proximity. However, the validation was performed
anyway in absence of another reference data source. The error
matrix and accuracy indexes for the map of 2019 are reported in
Table 4, and for the map of 2020 in Table 5. In both cases, ac-
curacy figures indicate a very high overall accuracy of 93%. PA
of class Built-up is low for both years which indicates that there
is omission error in this class i.e., many Built-up areas are not
classified as such, but rather as Bareland or Cropland. However,
this is acceptable in this study given that this class is very small
in the region of interest and in general this class does not affect
deforestation significantly. Somewhat lower accuracy is evident

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-231-2022 | © Author(s) 2022. CC BY 4.0 License.

 
235



also in the case of the Grassland class. PA of about 85% is in-
dicating that some pixels of this class are not classified as such,
but also UA of about 85% is indicating that other classes were
classified as Grassland by mistake. This class was mostly con-
fused with Cropland due to their similarity. Also, this confusion
should not affect deforestation detection because both classes are
contributing to deforestation.
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Water 4 601
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PA [%] 94 98 85 93 94 98 35 93
UA [%] 88 96 89 91 96 99 100 95
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Table 4: Error matrix and accuracy indexes for land cover for
2020
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Cropland 652 4 56 3 5
Forest 4 537 1 13 7

Grassland 58 1 514 22 7 1
Shrubland 1 6 42 575 15
Wetland 2 10 602 3
Water 7 585 2

Built-up 7
Bareland 1 3 281
PA [%] 91 98 84 93 94 99 54 97
UA [%] 91 96 85 90 98 98 100 99
OA [%] 93

Table 5: Error matrix and accuracy indexes for land cover for
2019

4.2 Land cover change

The final result - the deforestation risk model - represents the map
of changes of Forest to Grassland or Forest to Cropland. The risk
model is displayed in Figure 6. The figure includes also the bor-
ders of several indigenous lands in the region of interest. Overall,
deforestation does not seem to be intensive in this region in the
period from 2019 to 2020. Land cover maps are never completely
correct, so the change includes also some errors. However, there
are two regions emphasized in red boxes and denoted with num-
bers 1 and 2 in the figure in which deforestation seems to be sys-
tematic. The deforestation in the red boxes was compared vi-
sually against Sentinel-2 basemaps for 2019 and 2020, it seems
that changes in these regions are real, and not a consequence of
classification errors.

About 80 km2 of Forest was replaced by Grassland and 27 km2

by Cropland, which indicates that cattle ranching is probably the

Figure 6: Land cover change – Forest to Cropland or Grassland

main driver for deforestation. From the figure, it can be also
observed that the lower red box is very close to the boundary
of Xingu indigenous land. The distance is approximately 3km,
therefore if deforestation in this area continues, it might invade
the indigenous land.

5. CONCLUSION

The research presented in this report was focused on the devel-
opment of the deforestation risk model for the Amazon rainfor-
est. The research was driven by the motivation to contribute to
deforestation prevention. Deforestation seriously suppresses the
ecological services that we owe to the rainforests, such as oxy-
gen production, air quality regulation, and regulation of weather
on a local and regional scale. Moreover, rainforests are home to a
wide variety of plant and animal species, as well as of indigenous
people.

The research tackles the deforestation problem by providing a
deforestation risk model. The risk model represents a land cover
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change map focused only on changes from Forest to Cropland or
Forest to Grassland between 2019 and 2020. The risk model con-
cerns a region of approximately 200 km x 180 km in the North-
East of Mato Grosso state in Brazil. The region comprises 4 in-
digenous land - Batovi, Pequizal do Naruvôtu, Xingu, and Wawi.
The process of the deforestation risk model derivation has 5 main
components: reference data collection, data cleaning, classifica-
tion, postprocessing, and change detection. Reference data col-
lection was based on a mapathon during which participants were
trained how to map features that are useful input for classification.
After the training, the participants mapped many different fea-
tures. The mapathon was a part of the Collaborative and Human-
itarian extracurricular course of Politecnico di Milano, sustained
by the local Italian YouthMappers chapter - PoliMappers. The
features collected in the mapathon were validated by PoliMap-
pers officers, and they were adapted to serve as the reference
samples for classification. Then, classification and processing
were running repetitively until satisfactory results of classifica-
tion were obtained. The iterations were needed because the first
classification results were worse than expected, and therefore it
was necessary to remove the source of problems to improve the
results. The source of the problem was in the reference data.
They were refined by using auxiliary land cover information (ex-
isting HRLC) as well as by photo-interpretation of samples for
those classes for which information was not available in the ex-
isting HRLC maps. 70% of the refined reference samples were
fed to Random Forest in order to produce land cover maps for
2019 and 2020, based on Sentinel-2 imagery. Land cover change
raster was computed for the period 2019–2020, and thereupon
the changes that are the most relevant for deforestation were ex-
tracted - Forest to Cropland or Forest to Grassland.

Derived land cover maps were validated against 30% of refer-
ence data, and they showed an overall accuracy of 93%. Some-
what lower accuracy was present in the case of the Built-up class,
which was an indicator of underestimation of this class. How-
ever, due to the small area of this class in the region of interest,
the underestimation is not significant for the risk model. Slightly
lower accuracy was noticeable also in the case of the Grassland
class. With UA and PA of 85%, the accuracy figures are suggest-
ing that this class was committed and omitted on behalf of other
classes, mainly Cropland. Due to the particular refinement of the
reference samples, the area from which training and validation
samples were extracted was rather narrow, and therefore valida-
tion results might not be completely unbiased from the training
data.

Regarding the deforestation risk model, it does not show exten-
sive deforestation in the analyzed region. The change from Forest
to Grassland was estimated to be approximately 80 km2, and in
case of change from Forest to Cropland 20 km2. Even though
the change does not seem significant in terms of its extent, the
analyses of the risk model show some patterns that imply system-
atic deforestation with evolving potential. Moreover, the areas in
which systematic pattern is detected are at the 3 km distance from
Xingu indigenous land boundaries, hence the potential expansion
could lead to deforestation of indigenous land.

Besides the immediate results relative to the region of interest,
the research path is taken to derive the deforestation risk model
can serve as an example of how OSM data can be combined with
existing HRLC in order to derive land cover maps, land cover
change maps, and/or deforestation risk models in general. In this
case, the mapathon was organized to map specific features in the
region of interest which were later used for classification. In the
future, it would be interesting to examine the potential to directly
use data already available in the OSM in combination with exist-
ing HRLC to produce a deforestation risk model.
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