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ABSTRACT:

In the recent decade, Volunteered Geographical Information (VGI), in particular the OpenStreetMap (OSM), has helped to fill
substantial data gaps in base maps, especially in Global South, thus has become a promising source of massive, free training data
together with rich and detailed semantic information for geospatial artificial intelligence (GeoAI) applications. Although intensive
works have explored the potential of generating training data from OSM, a systematic approach of harvesting OSM contribution
as quality-aware training data for different GeoAI tasks is still missing. To fill this research gap, we proposed a conceptual model
consisting of three major components: historical OSM and external datasets, quality indicators, and GeoAI models. As a proof
of concept, we validated our conceptual model with an example task of detecting OSM missing buildings in Mozambique, where
the impact of different error sources (e.g., completeness, alignment, rotation) in training data were compared and investigated in
a quantitative manner. The lessons learned in this paper shed important lights on cooperating OSM data quality aspects with the
development of more explainable GeoAI models.

1. INTRODUCTION

Due to the development of big data and crowdsourcing tech-
nology, Volunteered Geographic Information (VGI) as a spe-
cial case of user-generated content continued to harvest big
geographic data that was contributed voluntarily by mappers
(Goodchild, 2007). As one of the most popular VGI projects,
OpenStreetMap (OSM) has become an important source for
geospatial data in many aspects, ranging from routing plan-
ning, land use/land cover (LULC) mapping to disaster man-
agement and humanitarian mapping, especially in the Global
South. Examples of humanitarian mapping in OSM includes
the 2010 Haiti earthquake (Zook et al., 2010), the 2014 West
Africa Ebola outbreak (Dittus et al., 2016), and the 2019 Cyc-
lone Idai and Kenneth in Mozambique (Li et al., 2020), where
over millions of buildings and roads were mapped and added
to OSM within a short period of time. In this context, OSM
has contributed to fill substantial data gaps in base maps and
to alleviate mapping inequalities across countries in worldwide
(Albuquerque et al., 2016, Herfort et al., 2019).

More recently, major progress and achievements have been
made in the field of big data analysis and geospatial artificial
intelligence (GeoAI) (Janowicz et al., 2020), while the lack of
high-quality training data has been identified one of the major
bottlenecks for GeoAI since long. Fortunately, OSM was re-
cently explored, making use of its rich semantic information
(e.g., OSM tag and value) to extract customized geospatial ob-
jects, as well as generating geo-referenced training samples,
in order to develop robust LULC mapping and geospatial ob-
ject detection models (Schultz et al., 2017, Fonte et al., 2020,
Chen and Zipf, 2017, Vargas-Munoz et al., 2020). Regard-
ing LULC mapping, a very first attempt in (Schultz et al.,
2017) successfully created the first OSMLULC map by train-
ing a random forest (RF) classification model with OSM train-
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ing samples and Landsat MSI data. Similarly, (Fonte et al.,
2020) investigated the potential of generating training data from
OSM to classify Sentinel-2 time series data into distinct LULC
classes. Moreover, for a more sophisticated object detection
task, early work of (Chen and Zipf, 2017) showed stimulating
results of deep learning from VGI, especially from OSM data,
for a building detection task. Later in (Herfort et al., 2019),
OSM data was adopted to fine-tune an object detection deep
learning model to detect human settlements in rural areas and
achieved competitive accuracy comparing to a crowdsourcing
method (MapSwipe). OSM data has shown great potentials in
offering a massive and freely available source of human-labeled
geographical features as training data for GeoAI applications.
However, a systematic approach of harvesting OSM contribu-
tion as training data for different GeoAI tasks is still missing. In
this paper, we aim to fill this research gap by developing a con-
ceptual model to convert OSM contribution into training data
by incorporating its intrinsic data quality, which can be applied
to different geospatial machine learning (ML) applications.

Different from traditional authorized geospatial data sources,
one major advantage of OSM data is the availability of its full
history. In (Barron et al., 2014), it was reported that approxim-
ate statements (without external reference) on OSM data qual-
ity are generally possible. Therefore, by exploring the OSM
historical data, intensive existing works have been dedicated to
assess the OSM data quality in an intrinsic manner (Mooney
et al., 2010, Minghini and Frassinelli, 2019, Grinberger et al.,
2021, Schott et al., 2021). Quality measurements of OSM data
usually follow the principles of International Organization for
Standardization (ISO) under ISO 19113 and ISO 19157, which
consist of multiple quality aspects, such as completeness, posi-
tion accuracy, and logical consistency. For example Complete-
ness describes how complete the OSM data is, and a lack of
data is referred to as ”Error of Omission” (Barron et al., 2014).
More recently, early attempt started to investigate the effect of
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Figure 1. The workflow of ohsome2label as a prototype of the proposed conceptual model.

such errors (e.g., ”Error of Omission”) in training data when
applying ML methods to earth observation (EO) data (Elmes
et al., 2020). To this end, we argue that the consideration of
OSM data quality is definitely necessary and potentially bene-
ficial for the effective and efficient development of geospatial
ML models.

This study aims to develop a conceptual model of converting
OSM contribution to quality-aware geospatial ML training data,
and further investigate the impact of training data quality in spa-
tial ML models. Specifically, we first provided a systematic
overview of how to properly extract OSM features depending
on the type of ML tasks (e.g., classification, object detection,
semantic segmentation); we then identified quality aspects of
training data that might affect the model performance of GeoAI,
and define potential indicators based on historical OSM data
or external data, which can measure the intrinsic/extrinsic data
quality of the training data; finally, we evaluated the conceptual
model by fine-tuning a building detection on simulated OSM
training data and examines the impact of training data in model
performances.

As a prototype of our conceptual model, we developed an open-
source python tool named ohsome2label1 (Wu et al., 2020). As
its name says, ohsome2label was built on the ohsome API2,
which provides a flexible and fast way of analyzing the rich
data source of OSM history, therefore it allows us to calcu-
late many intrinsic quality indicators (see a list of endpoints
in ohsome API2) besides extracting OSM geometry. In this pa-
per, we selected the OSM missing building detection as an ex-
ample geospatial ML task, and evaluated our conceptual model
across a residential area in Mozambique by fine-tuning a Faster
RCNN building detector on different sets of simulated OSM
training data, such as complete or incomplete, well-aligned or
misaligned, etc. Our study therefore makes two major contribu-
tions: (1) a systematic and generic approach of harvesting OSM
contribution as quality-aware training data for different geospa-
tial ML applications; (2) by testing on simulated OSM training
data, the impact of errors in training data on model performance
is examined in a quantitative manner.

The remainder of this paper is organized as follows. Section 2
describes the conceptual model and Section 3 presents the ex-
perimental design and datasets used in the OSM missing build-
ing detection example. Section 4 elaborates on the results and

1 https://github.com/GIScience/ohsome2label
2 https://docs.ohsome.org/ohsome-api/v1/

discusses the future directions, then Section 5 summarizes the
lessons learned and concludes the paper.

2. CONCEPTUAL MODEL

Besides the prototype workflow of ohsome2label (Figure 1), we
elaborate on the overall design of our conceptual model in Fig-
ure 2, where the model consists of mainly three major compon-
ents:

Historical OSM and external datasets - The first compon-
ent refers to the full-history of OSM data as well as external
data sources (e.g., authorial GIS data (Fan et al., 2014) or open-
source building layers (Li et al., 2020)), based on which in-
trinsic or extrinsic data quality analysis of OSM feature can be
conducted. Moreover, the historical OSM data serves as a basis
of extracting target features as training data for GeoAI.

Quality Indicators - Herein, the concept of quality indicators
ranges from extrinsic measurements (e.g., completeness, posi-
tion accuracy, etc.) to intrinsic factors (e.g., currentness, satur-
ation, etc.), thus besides existing indicators this can be easily
extended to novel indicators of OSM data quality. For more de-
tails, one can refer to existing works of OSM quality assessment
in (Barron et al., 2014) and (Fan et al., 2014, Zhou et al., 2019)
from either an intrinsic or extrinsic perspective. More import-
antly, we aim to cooperate the quality prior knowledge into the
training of GeoAI models, and investigate the impact of quality
aspects on model performances.

GeoAI models - The proposed conceptual model is designed
to be independent of the specific GeoAI task or model, which
should support the training of diverse GeoAI models based on
OSM features, for instance, classification, semantic segmenta-
tion, and object detection in Figure 3. In general, GeoAI models
consume OSM-based training data as well as their correspond-
ing quality prior knowledge and seek to learn predictive cap-
ability w.r.t target features (e.g., building, road, and LULC). In
this context, our conceptual model could facilitate the develop-
ment of explainable GeoAI (Hu et al., 2019, Xing and Sieber,
2021) with explicit prior knowledge of training data. Moreover,
our conceptual model highlights the potential of generating ML
predictions with high accuracy levels and relying on these map-
ping results during extrinsic quality analysis. An early attempt
in this direction was conducted in (Li et al., 2019).

As a proof of concept, we validate the proposed conceptual
model on an example GeoAI task of detecting OSM missing
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Figure 2. The conceptual model of converting OSM contribution to quality-aware training data of GeoAI models.

Figure 3. Examples of OSM training data generated by
ohsome2label. (a) LULC classification; (b) semantic

segmentation of human settlements; (c) object detection of
wastewater treatment plants.

building. Specifically, we select a test area from a rural region
of Mozambique, then explicitly simulate different error sources
(i.e., completeness, alignment, rotation) in the training data, and
further examine their impact on the OSM missing building de-
tection results.

3. DATA AND EXPERIMENT

3.1 Study area and model

The experimental setup of the OSM missing building detection
task (Figure 4) consists of mainly two steps. First, a well-
mapped area (i.e., buildings) in Tanzania was selected as the
training area for the base model to detect buildings. Next, a tar-
get area in Mozambique, where buildings are completely miss-
ing in OSM, was identified as a test area to validate the proposed
conceptual model. By considering the fact that buildings from
two areas might appear differently (e.g., size, shape, appear-
ance) and lead to poor model performance of the base model,
80% of the target area was split for the model fine-tuning pur-
pose and 20% was kept for testing. In this context, we carefully

digitized all building geometries based on the Bing satellite im-
agery in the target area, which leads to 740 buildings for fine-
tuning and 183 buildings for testing. Based on these building
geometries, we further simulated three different error sources
during the fine-tuning, namely completeness, alignment, and
rotation.

Figure 4. The overview map of study areas as a proof of concept.
(1) the Tanzania training area for the base model (well-mapped

in OSM); (2) the target area Mozambique split by 80% for
fine-tuning and 20% for test (completely missing in OSM).

As for the building detection model, we followed a good prac-
tice in (Li et al., 2019) and implemented a Faster R-CNN (Ren
et al., 2016) using ResNet-50 (He et al., 2016) as a backbone
network, which was pre-trained on Microsoft COCO dataset
(Lin et al., 2014). The pre-trained parameters were downloaded
from the Tensorflow Detection Model Zoo (Tensorflow, 2020).
For more details of the base model training on OSM, one could
refer to a technical walk-through of automatic building detec-
tion with ohsome2label and Tensorflow (Wu et al., 2021).

3.2 Error sources of training data

Based on the 740 fine-tuning buildings in Mozambique, we then
simulated three typical types of training data errors as follows:

Completeness error - As one can see column-wise in Figure 5,
we explicitly considered different level of completeness in the
fine-tuning building geometries. Specifically, such errors refer
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Table 1. Validation accuracies of the OSM missing building detection in Mozambique regarding different error sources in training
data.

Methods Completeness(%) Predictions Recall(%) Precision(%) F1

Correct

30 71 32.42 83.46 0.4669
50 131 58.72 82.05 0.6844
70 169 74.61 80.79 0.7758
90 192 84.40 80.23 0.8226

100 198 86.54 79.72 0.8299

Misalignment

30 35 17.43 90.47 0.2923
50 81 38.53 87.50 0.5350
70 127 58.40 84.14 0.6895
90 155 70.03 82.37 0.7570

100 150 67.89 82.52 0.7450

Rotation

30 51 24.46 86.96 0.3818
50 114 52.29 83.82 0.6440
70 153 68.50 81.45 0.7442
90 174 77.37 81.09 0.7919

100 200 85.93 78.49 0.8204

to the absence of a certain amount of buildings in the training
data.

Alignment error - Besides the completeness, we also con-
sidered different levels of position accuracy, for which building
geometries were moved into four random directions by 5 meters
distance, thus simulated the misalignment in the training data.

Rotation error - Last, different levels of Shape accuracy were
included, where we rotated building geometries by random
angles based on their geometry center. This type of error simu-
lated the rotation of training features.

100%

 Misalignment

Completeness

50%

Rotation

30%

Figure 5. Illustrations of simulated error sources in training data.
Basemaps contrast to Bing aerial imagery.

Base on this design, we considered a range of completeness
levels from 100% to 90%, 70%, 50%, and 30%, together with
alignment and rotation error. As a result, a number of 15 build-
ing geometries was used to fine-tune the base model trained on
OSM data in order to investigate the impact of different errors
in training data. The fine-tuning process in Mozambique was
run for 20,000 epochs with an initial learning rate of 0.0004.
All experiments ran on a Linux server with 4 GeForce RTX

2080Ti graphical processing units (GPUs), each with 12 GB of
memory.

Based on the building detection results, we used distinct valida-
tion metrics to assess the general mapping accuracy against the
183 reference buildings. Specifically, we considered the metrics
of Precision, Recall, and F1 score (F1). All metrics are derived
from the number of False Negatives (FN), False Positives (FP),
True Negatives (TN), and True Positives (TP), where we used
the Intersection over Union (IoU) between building geometries
and all prediction boxes as a criterion and empirically set the
threshold to 0.5.

Recall =
TP

TP + FN
(1)

Precision =
TP

TP + FP
(2)

F1 =
2TP

(2TP + FP + FN)
(3)

4. RESULT AND DISCUSSION

Table 1 presents a quantitative comparison of building detection
accuracies w.r.t different error sources in training data. Based
on the numerical results, one can observe the following key
findings.

First and most straightforward, we noticed that a higher com-
pleteness level mostly led to a better model with higher ac-
curacies, where a 100% completeness in the training data out-
performed other variations regardless of the misalignment or
rotation errors. Actually, the importance of completeness in the
training data of GeoAI was recognized since long, where huge
efforts were dedicated to establishing high-quality and com-
plete benchmark datasets, for instance, NWPU VHR-10 (Cheng
et al., 2016), DOTA (Ding et al., 2021), LCZ42 (Zhu et al.,
2020), and FAIR1M (Sun et al., 2022).
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100%

 Misalignment

Completeness

90%

Rotation

70% 50% 30%

Figure 6. Prediction maps of OSM missing building in the test area w.r.t different simulated error sources in training data. Basemaps
contrast to Bing aerial imagery.

Moreover, from an intrinsic quality perspective, the complete-
ness of OSM data could be estimated via intrinsic analysis, for
example, buildings of a specific area can be stated ”nearly com-
plete” when the temporal change of new contributions or user
edits is close to saturation (Barron et al., 2014). Such an es-
timation of OSM data completeness is of substantial benefit
when training a GeoAI model with OSM data, especially in
global south countries where external datasets are less avail-
able. While from an extrinsic quality perspective, a recent work
in (Zhang et al., 2022) proposed a promising method of assess-
ing OSM building completeness based on population data.

Next, regarding the alignment error, though the impact of 5
meter misalignment varies in buildings of different sizes, one
can observe a significant decrease in detection accuracies with
much fewer building predictions than training on correct geo-
metries. Specifically, the misalignment in training data resulted
in the lowest recall value (17.43%) combined with a complete-
ness level of 30%. Therefore, the position accuracy of training
data definitely plays an important role in establishing a robust
GeoAI model. A good example of assessing the position accur-
acy of OSM data can be found in (Fan et al., 2014).

Last but not the least, though rotation errors are sometimes
even more obvious than misalignment (Figure 5), the impact
of rotation errors was relatively trivial compared to misalign-
ment. Especially in the case of 100% completeness, our build-
ing detection models achieved a similar level of recall, preci-
sion and F1 score. While it is not supervising to find that the
pre-trained Faster R-CNN was robust to these rotation errors,
since rotation was usually considered as a data augmentation
technique when lacking of enough training data. Therefore, a
lesson learned from our results was the GeoAI model (at least
the Faster R-CNN used in this work) can compromise various
shape accuracies to a certain extent when completeness and po-
sition accuracy are ensured.

A visual comparison of models with different error sources in
Figure 4 provides important insights into the aforementioned
findings. In this first row, by contrasting satellite images, we
can observe a trend of missing buildings when models were
trained with less complete data. Moreover, when comparing the
second and third rows, the model was more robust to rotation
errors than alignment errors and generated much more building
predictions in the third row, which also confirmed our previous
statement of different impact of these two types of errors w.r.t
detecting buildings of various sizes and shapes.

5. CONCLUSION

In this paper, we proposed a conceptual model of converting
OSM contribution to quality-award training data of geospatial
ML models. As a proof of concept, we conducted a series of
experiments to validate the conceptual model regarding a spe-
cific geospatial ML task of detecting OSM missing buildings in
Mozambique. To this end, we first trained a Faster RCNN in
a well-mapped area in Tanzania, then fine-tuned it in our tar-
get area in Mozambique using a set of simulated training data
consisting of three types of errors (i.e., completeness, misalign-
ment, rotation), and investigated their impact of the model per-
formance. Moreover, the proposed conceptual model could be
easily extended to include existing or novel quality indicators
via either intrinsic or extrinsic analysis based on lessons learned
in this paper. One future direction could be applying this con-
ceptual model with different GeoAI models (e.g., classification,
semantic segmentation) and application contexts.

In short, the insight shared in this paper highlighted the huge
potential of harvesting OSM data as GeoAI training data, while
in the meantime suggested taking full consideration of OSM
data quality for a more effective and efficient development of
geospatial ML models. Our future work will focus on extending
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the quality indicators, as well as developing more explainable
GeoAI models by incorporating quality as prior knowledge.
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