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ABSTRACT: 

 

Road surface monitoring is a critical key factor to serve the purpose of road safety and driving comfort. Recently, many efforts have 

been made in developing approaches to detect road surface anomalies using smartphone sensors. However, detecting road surface 

anomalies from smartphone sensors face considerable number of challenges due to the various factors affecting detection rate. By 

aggregating data from a large number of users (i.e., concept of crowdsourcing), the accuracy of detection can be increased, and the 

potential false positive and false negative detection rates raised from every single source (i.e., user) can be detected and filtered. In this 

paper, a novel probabilistic-based crowdsourcing technique is proposed to classify and combine road surface anomalies (i.e., dynamic 

events) detected from various smartphones on-board vehicles. The proposed approach can integrate detected events from multiple 

users which are not an absolute binary scenario primarily caused by different sensing capabilities of various participators’ smartphone 

sensors and diversity in mechanical properties of vehicles. Furthermore, this approach considers the spatiotemporal behaviour of 

reported road surface anomalies from different users in different times and locations. The experimental results show that the proposed 

crowdsourcing method improves the accuracy and rate for detecting road surface anomalies. 

 

 

1. INTRODUCTION 

Road surface monitoring is a key task for providing a safe road 

infrastructure for road users. To this end, road surface condition 

monitoring aims to detect road surface anomalies such as 

potholes, cracks, and other surface defects which affect driving 

comfort and on-road safety. The maintenance and monitoring of 

road surfaces are challenging tasks for transportation authorities. 

One of the reasons is that the process requires a substantial 

volume of reliable and timely data that is necessary for any 

continuous maintenance and monitoring scheme. Currently, 

smartphone-based sensing is becoming one of effective 

approaches since the mobile devices are equipped with a variety 

of miniature sensors such as cameras, LIDAR, accelerometers, 

gyroscopes, and GPS. Using smartphones to detect road surface 

anomalies offers the potential to change the way the government 

agencies monitor and prioritize road rehabilitation and 

maintenance and has attracted researchers around the world to 

explore its solutions. 

 

Advances in sensing technologies and big-data computing of 

smartphones data, make them attractive for many applications 

such as monitoring traffic flow, human mobility, and clinical 

research (Talari et al., 2017). Data aggregation is a critical 

feature, which should be considered to make these applications 

more practical and pervasive. However, aggregating data from 

various smartphones is challenging due to the diverse precision 

of smartphone sensors (Ouyang et al., 2016). Moreover, recent 

studies discovered that the GPS accuracy of smartphones is 

considerably lower than that of a dedicated GPS device designed 

solely for positioning and navigation purposes. Therefore, 

integrating data obtained from different smartphones are 

challenging due to their uncertainty and variability. 

 

                                                                 
* Corresponding author 

Many studies have attempted to use smartphone sensors mounted 

on a moving vehicle to collect and process data to monitor and 

locate roadway surface defects (Sattar et al, 2021), (Yi et al., 

2015), (Douangphachanh et al., 2014) and (Mednis et al., 2011). 

However, existing studies are limited to identifying roadway 

anomalies mainly from a single source and do not exploit the 

benefits of combined and integrated multi-sensor systems in 

terms of their accuracy and functionality. By aggregating data 

from a large number of users (i.e., concept of crowdsourcing), the 

accuracy of detection can be increased, and the potential false 

positive and false negative detection rates raised from every 

single source (i.e., user) can be detected and filtered. 

A road surface anomaly detection app for smartphones was 

developed by Sattar et al. (2021) on Android operating system, 

to monitors linear accelerometer and gyroscope sensors’ data to 

detect anomalies when a moving vehicle passes through any road 

surface anomalies. The detected anomalies can be stored locally 

on smartphones or streamed to a remote storage. However, due 

to different sensor properties and mechanical properties of 

vehicles, the detection rates of different smartphones by using the 

app can vary (Sattar et al., 2021). 

To address this problem, the objective of this paper is to develop 

a probabilistic-based crowdsourcing technique that combines 

road surface anomalies (i.e., dynamic events) detected from 

many individual smartphones on-board vehicles, which provide 

better spatial coverage and continuous observations. This 

approach further considers the spatiotemporal behaviour of 

detected road surface anomalies in different times and locations. 
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2. METHOD 

Figure 1 illustrates the overall process of the proposed 

crowdsourcing approach.  

 

 
 

Figure 1. The proposed spatiotemporal crowdsourcing 

procedure 

 

To collect road surface anomalies of each road segments, the 

Android-based smartphone app proposed by Sattar et al. (2021) 

is installed on smartphones on-board vehicles. This app uses 

smartphone’s linear accelerometer sensor to detect road surface 

anomalies. The app stores detected road surface anomalies, 

which are the outcomes of the k-means approach for each 

segment separately, in a Comma-Separated Values (CSV) file 

format on the local storage of the smartphone. For each detected 

road surface anomaly, the stored information includes location 

(i.e., longitude and latitude), the speed at the time of detection, 

bearing value of moving direction at the time of detection, ratio 

of the standard deviations (i.e., standard deviation of the event 

period to the standard deviation of the normal road condition ), 

ratio of the linear accelerometer values (i.e., linear acceleration 

value in the time of event period to the average value of the 

normal road condition period), and  time of detection. These 

values are described in detail in Sattar et al. (2021). The stored 

CSV files are sent to a local computer or server for further 

processing. 

 

According to Figure 1, the spatiotemporal classification approach 

consists of the following major steps. 

 

2.1 Classification of road surface anomalies 

To classify the detected road surface anomalies from the app, the 

Dirichlet Process Gaussian Mixture Model (DPGMM) 

(Christopher, 2016), which is an unsupervised nonparametric 

Bayesian clustering model, is utilized to classify detected road 

surface anomalies. The detected road surface anomalies are the 

outcomes of the developed mobile app.  

 

In fact, the adopted DPGMM classify data events (i.e., detected 

road surface anomalies from mobile app) to infinite Gaussian 

mixture models. This model adopts the concept of Dirichlet 

Process (DP) and Chinese Restaurant Process Mixture (CRPM) 

to partition the data. The Gaussian mixture model with K 

components can be derived from the Eq. (1). 

 

𝑃(𝑥|𝜃1 + 𝜃2+…+ 𝜃𝑛) = ∑ 𝜋𝑖
𝐾
𝑖=1 𝑁(𝑥|𝜇𝑖 , 𝑆𝑖)  (1) 

 

where θ𝑖 = {µ𝑖  , 𝑆𝑖 , π𝑖}  is the set of parameters for component i, 

π are the mixing proportions (Subject to: ∑ 𝜋𝑖
𝑘
𝑖=1 = 1, 𝜋𝑖 > 0), µi 

is the mean vector for component i, and Si is its precision matrix 

(i.e., inverse of covariance matrix). The DPGMM approach aims 

to classify road surface anomalies according to the severity level 

of each anomaly sensed by vehicles. 

 

An archive JSON file format is created to store the information 

about classified road surface anomalies and formed clusters, 

required for the cluster assignment and spatiotemporal data 

processing steps. 

 

2.2 Clustering assignment processing 

Once newly detected road surface anomalies are classified (i.e., 

the outcomes from the Section 2.1), the archive formed clusters 

which stored in the archive JSON file should be queried to 

discover any possible formed cluster from prior road surveys to 

combine them with possible historical information. If any formed 

cluster is discovered, the new classified road surface anomaly is 

assigned to the associated cluster based on the following 

proposed assignment approach. To assign new classified data 

events (i.e., road surface anomalies) to any possible formed 

clusters which are stored in the archive JSON file, the geographic 

location information of the new classified data events and the 

formed clusters are utilized to find any potential geographic 

intersection. Due to the uncertainty of the detected geographic 

location, two steps of geo-query are conducted to find the 

possible related clusters to which a new classified event can be 

assigned: 

 

1. Absolute accuracy value reported by Android API for each 

detected anomaly’s geographic location is used to create a 

buffer area and discover the formed clusters intersected with 

buffer area. 

2. Bearing value of moving direction for each classified data 

event is used to filter out the intersected clusters from the 

previous stage which had dissimilar moving directions.  

 

Conversely, if no formed cluster is found in the archive JSON 

file, the new classified road surface anomaly is stored in the file 

as a newly detected road surface anomaly which formed a new 

cluster and store in the archive JSON file.  

 

2.3 Spatiotemporal data processing 

This step aims to consider spatiotemporal behaviour of road 

surface anomalies (i.e., data events) for data integration when 

newly detected road surface anomalies assigned to any formed 

cluster from the Section 2.2. Time series road surface anomaly 

data detected by different smartphones on-board vehicles or 

surveys at different time should be integrated to infer the most 

probable and updated information for each road surface anomaly 

existing on the road surface. To consider all concerns to integrate 

detected road surface anomalies from multiple road surveys, a 

spatiotemporal Dirichlet process is developed. This approach 

consists of several steps. First, the spatiotemporal weight of each 

anomaly grouped within a cluster is determined using a Gaussian 

Radial Basis kernel function (RBF). RBF calculates both the 

spatial and temporal distance from the centroid of that cluster and 
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all observations within the cluster. RBF is one of the widely used 

kernel function of Gaussian Processing (GP), which is 

continuous and flexible enough to be positive or negative in 

various region of space (Rasmussen, 2004). Equation (2) 

describes the formulation of RBF kernel function: 

 

k(l, l′) =  exp (
−‖l−l′‖2

2σl
2 ) = exp(−γ‖l − l′‖2)  (2) 

 

According to the Equation 2, ‖l − l′‖calculates the Euclidean 

distance of both time and location for each anomaly within a 

cluster from the current time and the centroid geographic location 

of the cluster. "l" denotes the array containing geographic 

location and the time stamp values of each detected anomaly 

within a cluster. "l′" denotes the array containing the centroid 

geographic location of each cluster and the latest time recorded 

for the detected anomaly grouped within a cluster. In this study, 
1

2σl
2 =  𝛾 which defines the width of the bell-shaped curve is 

calculated based on the standard deviation of the computed time 

and geographic location distances of each cluster’s member. 

 

The outcome array of the RBF process is considered as the 

weight values (for both time and location) for each detected 

anomaly. In fact, the closest event to the centroid location of the 

cluster and the latest detected anomaly, which have both lower 

distance values have higher weight values. To combine both 

spatial and temporal weight values of an anomaly to determine 

the spatiotemporal weigh factor, the weigh values of time and 

location computed from Equation 2 should be summed. Then, to 

normalize all computed weight factors to range between 0 value 

and 1 value and sum to 1, the calculated spatiotemporal weight 

factors are normalized by dividing each weight factor to the sum 

of all weight factors. These normalized weight factors are 

multiplied to each corresponded anomaly’s probability 

distribution to form a weighted-probability matrix. 

 

Then, to estimate the probability distribution of each cluster from 

the composed frequency weighted-probability matrix, a Dirichlet 

multinomial mixture (DMM) model, which is a family of discrete 

multivariate probability distribution, is applied. The Dirichlet-

multinomial distribution is a compound distribution where 

probability vector is drawn from a Dirichlet distribution and then 

a sample of discrete outcomes is drawn from a multinomial with 

probability vector. To fit DMM to the composed frequency 

matrix, the approach proposed by Minka (2000) is adopted and 

applied. 

 

In addition, to infer the post probable value for the geographic 

location and bearing value of moving direction in which the 

anomalies within a cluster are detected, the values of the 

geographic location and the bearing values of the clustered 

anomalies are averaged. 

 

 

3. RESULTS AND ANALYSIS 

The results from the proposed approach verified the advantage of 

the proposed crowdsourcing method to increase the accuracy and 

reliability of detection rate all dynamic features such as road 

surface anomalies. 

 

To implement the experiment, a study area was selected in the 

North York region, in City of Toronto, Canada. The study area 

(see Figure 2) is composed of four different road segments with 

different grades of surface roughness. The process of data 

collection was repeated in five different days between March 21, 

2018, and March 30, 2018, to simulate the data collection model 

operated by different users.  

 

 
 

Figure 2. Location for the study area 

 

The app mentioned above was utilized to collect road surface 

anomalies on the determined road segments. Figure 3 illustrates 

the main interface of the developed mobile application, in which 

base map tiles are provided by the Google Maps API. An on-click 

GUI (Graphical User Interface) button was implemented to 

manage the start/stop service request from users (“CLICK TO 

START DETECTION” and “CLICK TO STOP DETECTION”). 

By clicking on the “CLICK TO START DETECTION” button, 

the developed detection service starts the processing in the 

background. And, in the meantime, the GUI button automatically 

changes to “CLICK TO STOP DETECTION” to manage the 

requests for stopping the service whenever the user needs to stop 

the process. 

 

 
Figure 3. The main interface of the developed Mobile GIS 

application and its functionalities 

To illustrate the detected road surface anomalies in temporal 

domain, ArcScene, which is a software package provided by 

ESRI, was utilized. The detected road surface anomalies were 

represented in a way that the vertical dimension of each detected 

road surface anomaly demonstrates the time of detection. For 

example, the red data points, which are in the lower elevation 

than the other data points, was collected on March 21, 2018, and 

purple data point, which were in higher elevation, was collected 
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in the last survey conducted on March 30, 2018 (refer to Figure 

4). 

 

 

 
 

Figure 4. Spatiotemporal representation of detected road 

surface anomalies 

 

Table 1 summarizes the numbers of detected road surface 

anomalies for each road segment and for each time of survey. 

According to Table 1, Cummer Avenue and Finch Avenue both 

have approximately the same lengths. However, the average 

number of anomalies detected in Cummer Avenue was about 3.5 

times more than anomalies detected in Finch Avenue. On the 

other hand, Bayview Avenue and Leslie Street are approximately 

the same length. However, the number of detected anomalies 

along Bayview Avenue was less than one third of the detected 

anomalies along Leslie Street. Even though the rate of detections 

varied in each survey, the pattern of detection was similar 

between all surveys. By combining and integrating these 

anomalies detected at multiple times, not only the accuracy of 

detections increases but also the implication of anomalies’ 

probability distribution is enhanced. 

 

 

Date 

Street Name 

Cummer Ave Leslie St Finch Ave Bayview Ave 

March 21, 2018 86 13 26 6 
March 23, 2018 72 14 19 6 
March 24, 2018 87 9 20 7 
March 28, 2018 72 13 27 4 

March 30, 2018 77 10 18 6 

 

Table 1. Total number of detected road surface anomalies for 

each road segment in each time of survey 

 

Table 2 summarizes the number of clusters for each road segment 

after applying the DPGMM approach on collected road surface 

anomalies for each time of road surface anomaly data collection. 

It was evident that the DPGMM is effective to manage the 

dissimilarities of available road surface anomalies existing on 

every road segment and classify them to the most conceivable 

classes. For example, the detected road surface anomalies on 

Cummer Avenue, which had the most defective road surface 

conditions among all the other studied road segments, were 

classified into either three or four classes. However, the detected 

road surface anomalies on Bayview Avenue, which had the 

greatest road surface condition among all those studied road 

segments, were classified into mostly one or two classes. The 

outcomes from the DPGMM classification approach specifies 

that the number of formed clusters was highly correlated with the 

quality of the roads surface. 

Date 
Street Name 

Cummer Ave Leslie St Finch Ave Bayview Ave 

March 21, 2018 3 1 2 2 
March 23, 2018 3 3 2 1 
March 24, 2018 3 1 3 2 
March 28, 2018 4 3 3 1 
March 30, 2018 3 2 2 3 

 

Table 2. Numbers of formed clusters for each road segment 

 

Then, classified road surface anomalies at different times of 

survey were clustered together based on the detected location. To 

perform the clustering process, the classified road surface 

anomalies from the previous step were passed to this process in 

the sequence. That is, first, collected road surface anomalies of 

March 21, 2018, was passed to this process, then collected 

anomalies data of March 23, 2018, passed for integration. This 

process continues until passing the last collected anomalies 

occurred on March 30, 2018. This process aimed to group the 

multiple detections of every road surface anomaly. Figure 5 

illustrates the formed clusters related to the two existing road 

surface anomalies and all assigned detections to each cluster 

along Cummer Avenue. Blue and yellow points illustrate the 

assigned detected road surface anomalies, which were grouped 

as the potential related detection to these two cluster after five   

surveys. Red points represent the centroid location of these 

clusters. 

  

 
 

Figure 5. Two clusters with their members 

 

Table 3 represents the integrated probability distribution results 

for the four different selected clusters. These clusters are 

numbered as “1”, “2”, “3”, and “4” as depicted in Figure 6. Figure 

6 shows the captured images of those selected road surface 

anomalies recorded during the filed inspections. According to 

Table 3, Cluster 1 was in Cummer Avenue and has higher 

likelihood of being in Class 3. Cluster 2 was in Leslie Street and 

has higher likelihood of being in Class 1. Cluster 3 was in Finch 

Avenue and has higher likelihood of being in Class 2. The last 
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cluster was in Bayview Avenue and has more likelihood of being 

in Class 1. However, in all four selected clusters, there was the 

possibility of such anomalies belonging to other classes in all 

selected clusters.  

 

Cluster # Class#1 Class#2 Class#3 Class#4 

1 0.00 0.00 0.76 0.24 
2 0.53 0.25 0.22 0 
3 0.35 0.47 0.18 0 
4 0.96 0.03 0.01 0 

 

Table 3. Probability distribution of four selected clusters 

illustrating four individual road surface anomalies in four 

different rod segments 

 

 
 

Figure 6. Captured photos from studied road surface anomalies 

 

The spatiotemporal data processing step was focussed on 

integrating the multiple probability distributions of multi-time 

detections of any road surface anomaly. They were grouped as a 

cluster resulting from the cluster assigning process to update the 

level of the severity probability distribution for a detected 

anomaly as more evidence becomes available. Figure 7 

represents the 3D view of the results by integrating road surface 

anomalies according to their classes which have high probability.  

 

According to Figure 7, the height of each anomaly indicates the 

severity level of the anomaly (with high probability), which were 

sensed and integrated after five repetitions of the road surveys. 

The anomalies which were clustered in Class 1 (first level of 

severity) with higher probability specifies the least level of 

severity which were mainly caused by small cracks, even 

manhole covers, or road joints. However, the anomalies, which 

were clustered in other classes (i.e., Class 1, Class 2 and Class 3) 

with higher probabilities, resulted from potholes, big cracks, or 

uneven manhole covers and should be inspected for further 

verification. 

 

 

 
 

Figure 7. Outcomes of the spatiotemporal processing of the 

formed cluster  
 

To assess and verify the accuracy of detection from the proposed 

spatiotemporal crowdsourcing technique, field inspection was 

employed to define the number of existing road surface 

anomalies for every studied road segments. To ensure the 

accuracy of detection in terms of the detected location and the 

numbers of detections, in each studied road segment, the detected 

road surface anomalies from the spatiotemporal processing of 

each road segment were split into the smaller segments based on 

the intersection of that road segment with other roads. For 

example, parts of Cummer Avenue, Leslie Avenue, Finch 

Avenue, and Bayview Avenue were selected for this study were 

composed of twelve, eight, six, and three smaller segments, 

respectively. Moreover, during the field inspection, the number 

of existing road surface anomalies were counted recorded within 

those each segment. 

 

The results and the accuracy of detection analysis indicated that 

the proposed approach in this research were highly capable of 

merging multiple detections and inferring robust interpretation of 

each road surface anomalies. Moreover, the accuracy of detection 

analysis indicated that the drastic improvement of road anomaly 

detection could be achieved after few rounds of surveys with an 

overall accuracy of almost 100%.  

 

In Table 4, it is evident that the detection rate drastically 

improves by using the proposed crowdsourcing approach. In 

Cummer Avenue, the first round of survey was able to detect the 

road anomaly with overall accuracy barely over 65%. With one 

additional survey, the accuracy improved to 77%. The overall 

accuracy yielded better than 90% all the time after the Cummer 

Avenue was being surveyed for more than three times. Similar 

phenomena occur in the Finch Avenue and Leslie Street. The first 

survey was able to detect the anomaly features with accuracy 

over 68% and 62%, respectively. While the second and the third 

surveys improved the detection over 80% and 90% in the 

respective two roads, additional surveys afterwards improved the 

accuracy to almost 100%. In Bayview Street, since the road has 

been recently rehabilitated, fewer road anomaly features exist 

along the road. As a result, a drastic improvement of road 

anomaly detection can be achieved after three rounds of survey 

with overall accuracy improving from 67% to almost 100%. 
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 No. of Survey 

Street Name 1 2 3 4 5 

Cummer Avenue 65% 77% 92% 97% 99% 

Leslie Street 62% 90% 90% 100% 100% 

Finch Avenue 68% 82% 84% 100% 100% 

Bayview Avenue 67% 67% 100% 100% 100% 

 

Table 4. Accuracy detection rate after every data accumulation 

and processing. 

 

 

4. DISCUSSION 

Road surface anomaly detection from smartphone sensors face 

critical challenges due to the variability of detection rate, 

accuracy of detected location, and measuring the intensity 

anomaly form device to device and from vehicle to vehicle. Also, 

road surface anomalies have varying properties and they may 

change from time to time. These uncertainties and variabilities 

existed in both detection and nature of road surface anomalies led 

to the use of a crowdsourcing technique to integrate detected road 

surface anomalies from various users and to combine them to 

infer more robust and accurate detection information from 

multiple users. Previous studies investigating the use of 

crowdsourcing techniques to aggregate road surface anomalies 

from multiple detections were only in a very early stage and not 

efficient for implementing in an on-line mode but also suffered 

from dealing with the uncertainty and variability aspects of road 

surface anomalies. The research presented in this study provides 

a probabilistic crowdsourcing approach to aggregate various 

detections of road surface anomalies from different users in the 

spatiotemporal domain.  

 

The participatory web-based GIS prototype can be beneficial to 

both authorities such as ministry of transportation or 

municipalities to actively monitor, improve and maintain road 

surface conditions with a low cost by using road user supplied 

data. In the City of Toronto, citizens can report potholes by 

completing an online form, calling 311 (the service line of the 

City of Toronto), or sending emails to authorities reporting the 

exact location of identified potholes. However, these reporting 

methods require considerable human interactions and may lead 

to faulty reports, which are costly for communities. 

 

Based on the proposed crowdsourcing approach, a Web-based 

GIS prototype could be developed using the Web technology. 

This Web-based GIS prototype consists of web maps and a client-

server architecture to collect, process, store, and continuously 

display the road surface anomalies detected from multiple users. 

In addition, this Web-based prototype should be able to query and 

display anomalies based on the selected time range. Moreover, 

an event-driven GIS could be developed performing as a sense 

and respond GIS system, for subscribe/publish notification. The 

subscriber can be any road user such as drivers or road authorities 

who are responsible for road monitoring and maintenance 

including ministries of transportation or municipalities. The 

system should also notify road users (e.g., sending pop-up 

messages) through the developed smartphone application and 

notify them before approaching any road surface anomaly, or 

inform the road authorities about the high potential of road 

hazardous areas within the road network. 
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