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ABSTRACT: 

Detecting building façade elements is a crucial problem in computer vision for image interpretation. In Building Information Modeling 

(BIM) studies, the detection of building façade elements has an important role. BIM is a tool that allows maintaining a digital 

representation of all aspects of building information; therefore, it will enable the storage of almost any data related to a given structure, 

regarding its geometric and non-geometric aspects. Façade segmentation was first studied in the 1970s using hand-crafted expertise. 

Later, detection and segmentation studies emerged based on shapes of objects and parametric rules. With the developing technology, 

deep learning approaches in object detection studies have intensified. It is obvious that the desired analyses can be performed faster 

with deep learning approaches. However, deep learning methods require large training data. Algorithms that consider different 

situations and are suitable for real-world scenarios continue to be developed. The need in this direction continues in the literature. In 

this study, door and window detection was carried out with deep learning on an original data set. The algorithms used are YOLOv3, 

YOLOv4, YOLOv5, and Faster R-CNN. Precision, recall and mean average precision (mAP) are used as evaluation metrics. As a 

result of the study, precision, recall, and mAP values with YOLOv5 were obtained as 0.85, 0.72, and 0.79, respectively. With Faster 

R-CNN with the lowest performance, precision, recall, and mAP were obtained as 0.54, 0.63, and 0.54, respectively.

1. INTRODUCTION

With advances in technology, it is now possible to efficiently use 

and analyze a wide range of data sources and develop new 

methods for image interpretation, geo-information extraction, 

and processing (Donmez and Ipbuker, 2018). The development 

of decision-support systems, especially for crowded urban areas, 

is directly related to data processing and geo-information. One of 

the essential structures in urban areas is buildings and building 

facade elements. The detection of building façade elements is 

critical for detecting façade faults and reconstructing street 

scenes for sustainable city development (Zhang et al., 2022). 

Building information modeling (BIM) technology creates a 

virtual representation of a building called a building information 

model. BIM is a tool that allows maintaining a digital 

representation of all aspects of building information; therefore, it 

will enable the storage of almost any data related to a given 

structure regarding both its geometric and non-geometric aspects 

(Macher et al., 2021). BIM models can be utilized for facility 

planning, design, construction, operation, and design to help 

architects, engineers, and builders. (Azhar, 2011). Visualization 

is an essential step for BIM. For this purpose, the details on the 

building must be extracted correctly. Nowadays, detail extraction 

methods are changing from digitizing to image processing 

techniques with data growth. Thus, much data can be processed 

more accurately and in less time.  

In recent years, deep learning techniques have commonly used in 

object detection and detail extraction. CNN-based methods have 

successful results in object detection (Atik and Ipbuker, 2021). 

CNNs are computer systems that implement the learning ability, 

which is the fundamental function of the human brain. The visual 

cortex in biology was the source of inspiration (Cepni et al., 

2020). Especially with object detection algorithms, studies on the 

extraction of façade elements are increasing. Accordingly, the 

need for a data set arises in addition to the appropriate algorithm. 

Identifying suitable algorithms and the lack of data sets are still 

important problems. 

In this study, an experiment is presented extraction of windows 

and doors from the collected building façade images with several 

deep learning approaches. Additionally, a new data set created 

from public data is presented. Within the scope of the study, 

many different neural network libraries and different algorithms 

using deep convolutional neural networks were used. YOLO v3, 

YOLOv4, YOLOv5 and Faster R-CNN algorithms were 

compared in terms of their performance in the extraction of 

building façade elements using the data set. 

2. LITERATURE REVIEW

Façade segmentation was first studied in the 1970s (Ohta et al., 

1978), and since then, more attention has been dedicated to this 

area in order to achieve high accuracy. Several methods make 

substantial use of hand-crafted expertise, which has proven 

effective in achieving satisfactory outcomes in façade element 

detection. In the early times, there were studies on façade element 

detection or segmentation, which mostly used approaches based 

on the shapes of objects and parametric rules (Zhang et al., 2022). 

With the developing technology, the usage of deep learning 

approaches in object detection studies has intensified. Studies 

have been published on not only the extraction of building façade 

elements, but also the detection of all kinds of objects through the 

image (Cepni et al., 2020; Atik et al., 2022; Atik and Ipbuker, 

2020). There are both detection and segmentation studies for 

building façade elements. The convolutional network (ConvNet) 

was used by Schmiz and Mayer (2016) to create pixel-wise 

predictions for semantic façade-segmentation, and it performed 

well on the eTRIMS dataset. Dai et al. (2021) used bounding 
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boxes produced with U-Net for semantic segmentation and Faster 

R-CNN to improve object positions. The target façade elements 

in the study are chimney, door, window, roof, and wall. 

Martinovic et al. (2012) improve the façade element 

classification results with a three-layer approach. In the first step, 

objects are made holistic by merging the hyper partitioned 

regions with a recursive neural network. These objects are then 

combined by Adaboost with the channel tree classification 

results. Finally, objects are aligned horizontally and vertically. 

Liu et al. (2020) added a new loss function to the architecture of 

FCN-8s (Fully-Convolutional Neural Networks) to separate 

windows, doors and balconies in their study. In addition, a region 

recommendation network was created to create bounding boxes. 

Zhang et al. (2022) proposed a deep learning approach with a 

symmetric loss function to automatically detect building facade 

elements from images. A novel loss function is being developed 

to incorporate existing engineering knowledge, which can be 

utilized to compel the identification of highly proportional façade 

elements. Ma and Ma (2020) presented a study that a reliable and 

efficient three-stage window detection architecture based on the 

Faster R-CNN. An object detection branch and a bounding box 

localization branch are used to detect windows. Nordmark, and 

Ayenew (2021) presented their approach using a technique that 

is proposed for performing the segmentation of windows on 

building façades, which can separate segmentation and 

classification for recognizing windows in an image, using a 

bounding box and a partition mask to isolate window samples, 

especially on building façades. Using sample segmentation, 

individual windows can be evaluated with detailed and complete 

information about each pixel and specifically which window it 

belongs to. A method based on Mask R-CNN architecture is 

proposed to separate pixels in the same category into various 

samples. In the study by Ali et al. (2007), a novel window 

detection algorithm for urban areas is presented. The proposed 

window detection approach incorporates proper image 

processing and a multiscale Haar wavelet representation for 

determining image tiles, which is subsequently fed into a window 

detection cascaded classifier. The classifier is trained using a 

Gentle Adaboost-driven cascaded decision tree using masked 

data from training images and then evaluated against window-

based ground truth data, which is publicly available with the 

original building image datasets. Recky and Leberl (2010) 

described a modified gradient projection approach that is capable 

of processing complicated historical building façades. In a single 

picture scenario, just one image of the inspected structure is 

analyzed. It is meant to process complicated façades of ancient 

buildings with various embellishments, arches, patterns, and 

divisions. They use 5 façades in their trials, which are located in 

several photos and have associated point clouds. Existing 

methodologies for window detection in ground view façade 

photos are summarized by Neuhausen et al. (2016). The proposed 

methods are assessed in terms of their general applicability to 

façade photographs in the urban environment. The examined 

methods are divided into three categories based on their principal 

strategies: grammar-based, image processing, and machine 

learning. Because the architectural style of buildings in a given 

area might change, and windows on a façade can be aligned 

unevenly, acceptable detection systems must be resistant to such 

structural problems.  

 

There are many recent studies in the literature for the 

determination of building façade elements. In this study, a new 

data set was prepared and presented. In addition, experiments 

were carried out on the data set prepared with popular object 

detection methods. 

 

3. MATERIAL AND METHODS 

3.1 Dataset 

A data set was prepared within the scope of the study. The data 

set consists of 1000 building images that are detached houses, 

apartments, and residences. Images were collected by taking 

screenshots of randomly selected buildings in randomly selected 

cities and streets in Turkey using the 'View street' feature of the 

Google Maps application (Figure 1). It is aimed to determine 

various types of doors and windows By choosing different types 

of building structures. 

 

After the images were collected, the doors and windows on the 

building façades were labeled manually. Labels are exported in 

'VGG JSON' and 'COCO JSON' formats. 

 

 

Figure 1. A sample of data labeling. 

 

3.2 You Only Look Once (YOLO) 

YOLO architecture (Redmon et al., 2016) is inspired by the 

GoogLeNet model and uses the Darknet framework trained on 

the ImageNet-1000 dataset. The model consists of 24 

convolutional layers and 2 fully connected layers. Features are 

extracted from the image by estimating the output probabilities 

and coordinates of the fully connected layers. The YOLO 

algorithm handles the object detection problem as a regression 

from image pixels to bounding box coordinates and class 

probabilities. It is also based on only one CNN network, unlike 

the others. It is sufficient to look at the image once to detect an 

object in the relevant architecture. (Redmon and Farhadi, 2017). 

The general structure of YOLO architecture is presented in 

Figure 2.  

 

 

Figure 2. The general structure of YOLO architecture (Redmon 

et al., 2016). 
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3.2.1 YOLOv3: YOLOv3 estimates 4 coordinates for 

bounding boxes tx, ty, tw, th using dimension sets as junction 

boxes. The 'cx, cy' cell is the shift amounts from the top left 

corner of the image, and the 'pw and ph' amount is the width and 

height of the previous bounding box. The formulation of the 

estimates is as follows: 

 

𝑏𝑥 = 𝜎(𝑡𝑥) +  𝑐𝑥                                     (1) 

 

𝑏𝑦 = 𝜎(𝑡𝑦) + 𝑐𝑦                                   (2) 

 

𝑏𝑤 = 𝑝𝑤𝑒𝑡𝑤                                           (3) 

 

𝑏ℎ = 𝑝ℎ𝑒𝑡ℎ                                            (4) 

 

Logistic classifiers are used for each class in class predictions in 

YOLO v3. Thus, it estimates an objectivity score for each 

bounding box. YOLOv3 estimates each box at three different 

scales, and the feature pyramid network (FPN) extracts features 

with a similar concept (Redmon and Farhadi, 2018). 

 

3.2.2 YOLOv4: YOLOv4 (Bochkovskiy et al., 2020) uses the 

CSPDarknet53 backbone. The fact that the backbone has been 

developed in some ways distinguishes it from Darknet50. One of 

these aspects is the replacement of the GPU. The YOLOv4 

backbone uses the same head as CSPDarknet53, the neck uses 

SPP (spatial pyramid pooling) and PAN, and the head uses the 

same head as YOLOv3. One of the two significant changes made 

is the addition of an SPP block on the spine to distinguish context 

features. In the second change, PANet is used instead of FPN. 

The accuracy of the classifier in the new model obtained was 

tested with the ImageNet (ILSVRC 2012 val) dataset, and the 

detector accuracy was tested with the MS COCO (test-dev 2017) 

dataset. As a result, YOLOv4's single-stage anchor-based 

detector has faster and more accurate technology than any 

alternative detector available. Widely used, the detector can be 

trained and used on a conventional GPU with 8-16 GB-VRAM. 

 

3.2.3 YOLOv5: YOLOv5 (ultralytics, 2022) emerged very 

shortly after YOLOv4. In addition, even the fact that it is named 

YOLOv5 is a matter of debate since neither an official article has 

been published nor has it not been developed by the original 

founders. However, the neck and head structures used in the 

model are the same as the YOLOv4 model. The YOLOv5 is the 

fastest and most successful model among the YOLO models and 

is unofficially published by author Glenn Jocher. There is no 

official release for YOLOv5 and all code is in the repository of 

Ultralytics LLC, of which Gleen is the founder and CEO. There 

are 4 different models in the warehouse: YOLOv5s, YOLOv5m, 

YOLOv5l, YOLOv5x. The accuracy of the models increases, 

respectively. The most important difference of YOLOv5 from 

other YOLOs is the first local version was written in Pytorch 

instead of Darknet. Compared to the last previous version, 

YOLOv4, the YOLOv5 Ultralytics environment is much easier 

to install in colab than the YOLOv4 Darknet environment. 

Moreover, they have similar formats in terms of data setup 

formats. The main difference is seen in the education period. In 

YOLOv4 Darknet, the training length takes around 14 hours. 

However, it reached the maximum validation evaluation at 1300 

iterations in approximately 3.5 hours. Training the YOLOv5 

model in 200 epochs takes 14.46 minutes. 

 

3.3 Faster R-CNN 

Faster R-CNN (Ren et al., 2015) combines the proposed region 

network Region Proposal Network (RPN) and Fast R-CNN 

models. Within the scope of Fast R- CNN, first CNN is applied 

to the image and then the feature map created is divided into 

suggestion regions. The RPN, on the other hand, acts as an 

attention navigator, identifying the most appropriate bounding 

boxes among the wide variety of scales and aspect ratios to be 

evaluated for object classification. In short, it tells the classifier 

where to look. (Fan et al., 2016). In addition, RPN brings 

innovation to the method by connecting Fast R-CNN directly to 

the sampling layer. In this method, a feature map is produced by 

first applying CNN to the image. After this point, the difference 

with Fast R-CNN emerges. After the ESA is applied, the RPN 

comes into play. With the RPN, the suggested regions are 

extracted and the estimation accuracies of the regions are 

calculated. Then, the bounding box suggestions from the RPN are 

combined with the features in the backbone feature map using the 

RoI pooling layer. The resulting classifier and score prediction 

layers are finally combined in the Fast R-CNN network. With the 

use of RPN in the Faster R- CNN model, the estimation time is 

very short. The architecture of Faster R-CNN is shown in Figure 

3. 

 

 

Figure 3. The architecture of Faster R-CNN (Deng et al., 2018). 

 

3.4 Evaluation Metrics 

Precision, recall, and mean average precision (mAP) are used as 

evaluation metrics. The fraction of points categorized as positives 

is measured by precision. The recall measures the fraction of true 

positives in a set of positives. The mean Average Precision, or 

mAP score, is the mean precision over all classes and/or overall 

IoU thresholds, depending on the numerous detection challenges 

that occur. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                            (5) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                 (6) 

 

The number of points in predicted and ground truth that have the 

same label is known as true positive (TP). The term "false 

positive" (FP) refers to the number of points that are predicted to 

be positive but have a negative classification. The term false 

negative (FN) refers to the number of points that are predicted to 

be negative but have a positive label (Atik et al., 2021). 

 

4. EXPERIMENTS 

All models used within the scope of the study were carried out 

on the Google Colaboratory platform. Libraries such as Keras, 

Tensorflow, Pytorch are used during applications. The data set 

was entered into training as 80% training, 10% validation and 

10% test data in each model. The PyTorch 1.10.0 library CUDA 

11.1 was installed during training in YOLO versions. While the 

batch size was entered as 16, the epochs parameter was set to 100. 

The training period lasted approximately 5 hours. Along with 

Darknet, all necessary libraries, especially OPENCV 3.2.0, 

CUDA 11.1 and CUDNN 7.6.5, have been installed and related 
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parameters have been adjusted. The images were included in the 

training with their original dimensions. After the training, each 

model was tested separately on the test data. Thus, accuracy 

performances were evaluated under the same conditions. The 

training parameters were determined experimentally in an 

optimum way for each algorithm. The parameters are used in the 

study are presented in Table 1.  

 
Parameter YOLOv3 YOLOv4 YOLOv5 Faster R-

CNN 

Image size 416 416 416 416 

Batch size 16 64 16 128 

Iteration 6000 6000 2600 2000 

Training time 5 h 8 h 1 h 21 m 2 h 56 m 

Table 1. The training parameters. 
 

 

Figure 4. The workflow of the study. 

 

5. RESULTS 

Precision, recall, and mAP were used as evaluation metrics. A 

metric value was calculated for all window and door classes. 

According to the precision values, the highest value belongs to 

YOLOv5 with 0.85. In other words, YOLOv5 correctly detected 

the existing doors and windows in general. Then YOLOv4 and 

YOLOv3 have the precision of 0.75 and 0.68, respectively. Faster 

R-CNN has the lowest precision value of 0.54. In Recall, the 

highest values belong to YOLOv4 and YOLOv3, with 0.88 and 

0.82, respectively. Faster R-CNN has the lowest recall. 

Considering the 0.5 confidence threshold, the mAP value is 

highest in YOLOv4 with 0.84. Then YOLOv5 has 0.79 mAP. 

The results are presented in Table 2. Examples of the results are 

presented in Figure 5. 

 

Algorithm Precision Recall mAP@.5 

YOLOv3 0.68 0.82 0.77 

YOLOv4 0.75 0.88 0.84 

YOLOv5 0.85 0.72 0.79 

Faster R-CNN 0.54 0.63 0.54 

Table 2. The results of each model. The metrics are normalized 

between 0 and 1. 

 

   
(a) Faster R-CNN 

  
(b) YOLOv5 

 

  
(c) YOLOv4 

 

  
(d) YOLOv3 

Figure 5. Result image for each model. 

 

6. DISCUSSION 

The methods generally find the same doors and windows. The 

difference occurs in the accuracy of the detected doors and 

windows. YOLOv4 appears to yield higher results than 

YOLOv5. The main reason for this is that YOLOv5 is trained 

with fewer epochs. Within the scope of the study, the best method 

is YOLOv5. In general, although YOLOv5 detects doors and 

windows, the false detection rate is higher than YOLOv4. It has 

been determined that YOLOv4 detects façade elements with 

higher reliability and less error. The lowest metrics belong to 

Faster R-CNN.  

 

Considering the training times, YOLOv4 has the longest training 

time. YOLOv5 stands out with its speed. Considering the 

accuracy and speed together, it was concluded that YOLOv5 

could be the appropriate algorithm for the detection of building 

façade elements. Although Faster R-CNN is fast, it has low 

accuracy metrics in this study. 

 

While other methods detected the doors well, it was seen that they 

could not find the windows well. It was observed that the 

windows of the cars in front of the buildings were marked as 

building windows. It has also been frequently seen that glass 

doors are marked as windows. For this reason, data of building 

surfaces with different windows and doors should be collected 
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and more than one image should be obtained for each different 

window and door.  

 

Apart from this, better results could be obtained by increasing the 

training epoch/iteration. Google Colab was used free of charge 

because the hardware's capacities were not sufficient. Since 

Google Colab stopped working after 12 hours, the number of 

epochs/iterations could not be increased due to the slowness of 

the other methods except for Yolov5. While these reasons are the 

limitations in front of the training, it has been seen that 

outstanding results will be obtained when the number of epochs 

is increased due to the speed of YOLOv5. 

 

7. CONCLUSIONS 

Within the scope of the study, YOLOv3/4/5 and Faster R- CNN 

models were trained and tested in an original window-door 

detection dataset. When the test data obtained as a result of the 

study were compared, it was observed that the fastest model was 

YOLOv5 and the model that gave the most optimum result for 

the purpose of the study was YOLOv4. For this reason, it is 

recommended that researchers who prioritize time in their studies 

should choose YOLOv5. Parameters for the appropriate version 

should be arranged according to the data set and purpose. 

Although YOLOv4 gives high accuracy, it is thought that 

YOLOv5 can reach accuracy of YOLOv4 as the iteration number 

is increased. To obtain better results, the data of the train can be 

increased or different façade elements can be added. From this 

point of view, it is predicted that in the future, deep learning and 

object detection studies and fields will expand by using different 

data sources. Images can be integrated with LiDAR to obtained 

3D information. In addition, significant contributions can be 

made to the literature by developing appropriate deep learning 

approaches. 

 

REFERENCES 

Ali, H., Seifert, C., Jindal, N., Paletta, L., Paar, G. 2007: Window 

detection in façades. In 14th International Conference on Image 

Analysis and Processing (ICIAP 2007) (pp. 837-842). IEEE. 

 

Atik, M. E., Duran, Z., Özgünlük, R. 2022. Comparison of 

YOLO Versions for Object Detection from Aerial 

Images. International Journal of Environment and 

Geoinformatics, 9(2), 87-93. 

 

Atik, M. E., Duran, Z., Seker, D. Z. 2021: Machine learning-

based supervised classification of point clouds using multiscale 

geometric features. ISPRS International Journal of Geo-

Information, 10(3), 187. 

 

Atik, S. O., Ipbuker, C. 2020. Instance Segmentation Of Crowd 

Detection In The Camera Images. In Proceeding of 41th Asian 

Conference on Remote Sensing (ACRS 2020). 

 

Atik, S. O., Ipbuker, C. 2021. Integrating Convolutional Neural 

Network and Multiresolution Segmentation for Land Cover and 

Land Use Mapping Using Satellite Imagery. Applied 

Sciences, 11(12), 5551. 

 

Azhar, S. 2011. Building Information Modeling (BIM): Trends, 

Benefits, Risks, and Challenges for the AEC Industry. 

Leadership and Management in Engineering, 11, 241-252. 

 

Bochkovskiy, A., Wang, C. Y., Liao, H. Y. M. 2020: Yolov4: 

Optimal speed and accuracy of object detection. arXiv preprint 

arXiv:2004.10934. 

 

Cepni, S., Atik, M. E., Duran, Z. 2020. Vehicle detection using 

different deep learning algorithms from image sequence. Baltic 

Journal of Modern Computing, 8(2), 347-358. 

 

Dai, M., Ward, W. O., Meyers, G., Tingley, D. D., Mayfield, M. 

2021. Residential building façade segmentation in the urban 

environment. Building and Environment, 199, 107921. 

 

Deng, Z., Sun, H., Zhou, S., Zhao, J., Lei, L., Zou, H. 2018. 

Multiscale object detection in remote sensing imagery with 

convolutional neural networks. ISPRS journal of 

photogrammetry and remote sensing, 145, 3-22. 

 

Donmez, S.O., Ipbuker, C. 2018. Investigation on agent based 

models for image classification of land use and land cover maps. 

in Proceedings - 39th Asian Conference on Remote Sensing: 

Remote Sensing Enabling Prosperity, ACRS 2018. vol. 4, pp. 

2005-2208.  

 

Fan, Q., Brown, L.M., Smith, J.R. 2016. A closer look at Faster 

R-ESA for vehicle detection, 2016 IEEE Intelligent Vehicles 

Symposium (IV), DOI:10.1109/IVS.2016.7535375. 

 

Liu, H., Xu, Y., Zhang, J., Zhu, J., Li, Y., Hoi, S. C. 2020. 

DeepFaçade: A deep learning approach to façade parsing with 

symmetric loss. IEEE Transactions on Multimedia, 22(12), 

3153-3165. 

 

Ma, W., Ma, W. 2020. Deep window detection in street 

scenes. KSII Transactions on Internet and Information Systems 

(TIIS), 14(2), 855-870. 

 

Macher, H., Roy, L., Landes, T. 2021. Automation of windows 

detection from geometric and radiometric information of point 

clouds in a scan-to-BIM process. Int. Arch. Photogramm. Remote 

Sens. Spatial Inf. Sci., 5-9 June 2021, Nice, 43. 

doi.org/10.5194/isprs-archives-XLIII-B2-2021-193-2021. 

 

Martinović, A., Mathias, M., Weissenberg, J., Gool, L. V. 2012. 

A three-layered approach to façade parsing. In European 

conference on computer vision (pp. 416-429). Springer, Berlin, 

Heidelberg. 

 

Neuhausen M., Koch, C., König, M. 2016: Image-based Window 

Detection — An Overview. Proceedings of Workshop of the 

European Group for Intelligent Computing in Engineering, EG-

ICE (2016), pp. 217-225. 

 

Nordmark, N., Ayenew, M. 2021. Window Detection In Façade 

Imagery: A Deep Learning Approach Using Mask R-CNN. arXiv 

preprint arXiv:2107.10006. 

 

Ohta, Y. I., Kanade, T., Sakai, T. 1978. An analysis system for 

scenes containing objects with substructures. In Proceedings of 

the Fourth International Joint Conference on Pattern 

Recognitions (pp. 752-754). 

 

Recky, M., Leberl, F. 2010: Window detection in complex 

façades. In 2010 2nd European Workshop on Visual Information 

Processing (EUVIP) (pp. 220-225). IEEE. 

 

Redmon, J., Divvala, S., Girshick, R., Farhadi, A. 2016. You only 

look once: Unified, real-time object detection. In Proceedings of 

the IEEE conference on computer vision and pattern recognition, 

pp. 779-788. doi: 10.1109/CVPR.2016.91. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-315-2022 | © Author(s) 2022. CC BY 4.0 License.

 
319



 

Redmon, J., Farhadi, A. 2017: YOLO9000: better, faster, 

stronger. 2017 IEEE Conference on Computer Vision and 

Pattern Recognition (CVPR), 6517-6525, 

DOI:10.1109/CVPR.2017.690. 

 

Redmon, J., Farhadi, A. 2018: Yolov3: An incremental 

improvement. arXiv preprint arXiv:1804.02767. 

 

Ren, S., He, K., Girshick, R., Sun, J. 2015. Faster r-cnn: Towards 

real-time object detection with region proposal 

networks. Advances in neural information processing 

systems, 28. 

 

Schmitz, M., Mayer, H. 2016. A convolutional network for 

semantic façade segmentation and interpretation. The 

International Archives of Photogrammetry, Remote Sensing and 

Spatial Information Sciences, 41, 709. 

 

ultralytics. yolov5. Available online: 

https://github.com/ultralytics/yolov5 (accessed on 3 April 2022). 

 

Zhang, G., Pan, Y., Zhang, L. 2022. Deep learning for detecting 

building façade elements from images considering prior 

knowledge. Automation in Construction, 133, 104016. 

 

 

 

 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-315-2022 | © Author(s) 2022. CC BY 4.0 License.

 
320




