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ABSTRACT:

Detecting building facade elements is a crucial problem in computer vision for image interpretation. In Building Information Modeling
(BIM) studies, the detection of building facade elements has an important role. BIM is a tool that allows maintaining a digital
representation of all aspects of building information; therefore, it will enable the storage of almost any data related to a given structure,
regarding its geometric and non-geometric aspects. Facade segmentation was first studied in the 1970s using hand-crafted expertise.
Later, detection and segmentation studies emerged based on shapes of objects and parametric rules. With the developing technology,
deep learning approaches in object detection studies have intensified. It is obvious that the desired analyses can be performed faster
with deep learning approaches. However, deep learning methods require large training data. Algorithms that consider different
situations and are suitable for real-world scenarios continue to be developed. The need in this direction continues in the literature. In
this study, door and window detection was carried out with deep learning on an original data set. The algorithms used are YOLOV3,
YOLOv4, YOLOVS5, and Faster R-CNN. Precision, recall and mean average precision (mAP) are used as evaluation metrics. As a
result of the study, precision, recall, and mAP values with YOLOV5 were obtained as 0.85, 0.72, and 0.79, respectively. With Faster

R-CNN with the lowest performance, precision, recall, and mAP were obtained as 0.54, 0.63, and 0.54, respectively.

1. INTRODUCTION

With advances in technology, it is now possible to efficiently use
and analyze a wide range of data sources and develop new
methods for image interpretation, geo-information extraction,
and processing (Donmez and Ipbuker, 2018). The development
of decision-support systems, especially for crowded urban areas,
is directly related to data processing and geo-information. One of
the essential structures in urban areas is buildings and building
facade elements. The detection of building facade elements is
critical for detecting facade faults and reconstructing street
scenes for sustainable city development (Zhang et al., 2022).
Building information modeling (BIM) technology creates a
virtual representation of a building called a building information
model. BIM is a tool that allows maintaining a digital
representation of all aspects of building information; therefore, it
will enable the storage of almost any data related to a given
structure regarding both its geometric and non-geometric aspects
(Macher et al., 2021). BIM models can be utilized for facility
planning, design, construction, operation, and design to help
architects, engineers, and builders. (Azhar, 2011). Visualization
is an essential step for BIM. For this purpose, the details on the
building must be extracted correctly. Nowadays, detail extraction
methods are changing from digitizing to image processing
techniques with data growth. Thus, much data can be processed
more accurately and in less time.

In recent years, deep learning techniques have commonly used in
object detection and detail extraction. CNN-based methods have
successful results in object detection (Atik and Ipbuker, 2021).
CNNs are computer systems that implement the learning ability,
which is the fundamental function of the human brain. The visual
cortex in biology was the source of inspiration (Cepni et al.,
2020). Especially with object detection algorithms, studies on the
extraction of fagade elements are increasing. Accordingly, the
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need for a data set arises in addition to the appropriate algorithm.
Identifying suitable algorithms and the lack of data sets are still
important problems.

In this study, an experiment is presented extraction of windows
and doors from the collected building facade images with several
deep learning approaches. Additionally, a new data set created
from public data is presented. Within the scope of the study,
many different neural network libraries and different algorithms
using deep convolutional neural networks were used. YOLO v3,
YOLOv4, YOLOv5 and Faster R-CNN algorithms were
compared in terms of their performance in the extraction of
building facade elements using the data set.

2. LITERATURE REVIEW

Facade segmentation was first studied in the 1970s (Ohta et al.,
1978), and since then, more attention has been dedicated to this
area in order to achieve high accuracy. Several methods make
substantial use of hand-crafted expertise, which has proven
effective in achieving satisfactory outcomes in fagade element
detection. In the early times, there were studies on fagcade element
detection or segmentation, which mostly used approaches based
on the shapes of objects and parametric rules (Zhang et al., 2022).

With the developing technology, the usage of deep learning
approaches in object detection studies has intensified. Studies
have been published on not only the extraction of building facade
elements, but also the detection of all kinds of objects through the
image (Cepni et al., 2020; Atik et al., 2022; Atik and Ipbuker,
2020). There are both detection and segmentation studies for
building fagade elements. The convolutional network (ConvNet)
was used by Schmiz and Mayer (2016) to create pixel-wise
predictions for semantic fagade-segmentation, and it performed
well on the eTRIMS dataset. Dai et al. (2021) used bounding
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boxes produced with U-Net for semantic segmentation and Faster
R-CNN to improve object positions. The target facade elements
in the study are chimney, door, window, roof, and wall.
Martinovic et al. (2012) improve the facade -element
classification results with a three-layer approach. In the first step,
objects are made holistic by merging the hyper partitioned
regions with a recursive neural network. These objects are then
combined by Adaboost with the channel tree classification
results. Finally, objects are aligned horizontally and vertically.
Liu et al. (2020) added a new loss function to the architecture of
FCN-8s (Fully-Convolutional Neural Networks) to separate
windows, doors and balconies in their study. In addition, a region
recommendation network was created to create bounding boxes.
Zhang et al. (2022) proposed a deep learning approach with a
symmetric loss function to automatically detect building facade
elements from images. A novel loss function is being developed
to incorporate existing engineering knowledge, which can be
utilized to compel the identification of highly proportional fagade
elements. Ma and Ma (2020) presented a study that a reliable and
efficient three-stage window detection architecture based on the
Faster R-CNN. An object detection branch and a bounding box
localization branch are used to detect windows. Nordmark, and
Ayenew (2021) presented their approach using a technique that
is proposed for performing the segmentation of windows on
building facades, which can separate segmentation and
classification for recognizing windows in an image, using a
bounding box and a partition mask to isolate window samples,
especially on building facades. Using sample segmentation,
individual windows can be evaluated with detailed and complete
information about each pixel and specifically which window it
belongs to. A method based on Mask R-CNN architecture is
proposed to separate pixels in the same category into various
samples. In the study by Ali et al. (2007), a novel window
detection algorithm for urban areas is presented. The proposed
window detection approach incorporates proper image
processing and a multiscale Haar wavelet representation for
determining image tiles, which is subsequently fed into a window
detection cascaded classifier. The classifier is trained using a
Gentle Adaboost-driven cascaded decision tree using masked
data from training images and then evaluated against window-
based ground truth data, which is publicly available with the
original building image datasets. Recky and Leberl (2010)
described a modified gradient projection approach that is capable
of processing complicated historical building facades. In a single
picture scenario, just one image of the inspected structure is
analyzed. It is meant to process complicated fagades of ancient
buildings with various embellishments, arches, patterns, and
divisions. They use 5 fagades in their trials, which are located in
several photos and have associated point clouds. Existing
methodologies for window detection in ground view fagade
photos are summarized by Neuhausen et al. (2016). The proposed
methods are assessed in terms of their general applicability to
facade photographs in the urban environment. The examined
methods are divided into three categories based on their principal
strategies: grammar-based, image processing, and machine
learning. Because the architectural style of buildings in a given
area might change, and windows on a fagade can be aligned
unevenly, acceptable detection systems must be resistant to such
structural problems.

There are many recent studies in the literature for the
determination of building facade elements. In this study, a new
data set was prepared and presented. In addition, experiments
were carried out on the data set prepared with popular object
detection methods.

3. MATERIAL AND METHODS
3.1 Dataset

A data set was prepared within the scope of the study. The data
set consists of 1000 building images that are detached houses,
apartments, and residences. Images were collected by taking
screenshots of randomly selected buildings in randomly selected
cities and streets in Turkey using the 'View street' feature of the
Google Maps application (Figure 1). It is aimed to determine
various types of doors and windows By choosing different types
of building structures.

After the images were collected, the doors and windows on the
building fagades were labeled manually. Labels are exported in
'VGG JSON' and 'COCO JSON' formats.

Figure 1. A sample of data labeling.

3.2 You Only Look Once (YOLO)

YOLO architecture (Redmon et al., 2016) is inspired by the
GoogLeNet model and uses the Darknet framework trained on
the ImageNet-1000 dataset. The model consists of 24
convolutional layers and 2 fully connected layers. Features are
extracted from the image by estimating the output probabilities
and coordinates of the fully connected layers. The YOLO
algorithm handles the object detection problem as a regression
from image pixels to bounding box coordinates and class
probabilities. It is also based on only one CNN network, unlike
the others. It is sufficient to look at the image once to detect an
object in the relevant architecture. (Redmon and Farhadi, 2017).
The general structure of YOLO architecture is presented in
Figure 2.
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Figure 2. The general structure of YOLO architecture (Redmon
et al., 2016).
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321 YOLOvV3: YOLOv3 estimates 4 coordinates for
bounding boxes tx, ty, tw, th using dimension sets as junction
boxes. The ‘cx, cy' cell is the shift amounts from the top left
corner of the image, and the 'pw and ph' amount is the width and
height of the previous bounding box. The formulation of the
estimates is as follows:

by = o(ty) + ¢y (€]
b, = o(ty) + ¢y 2)
bw = pwe'™ (3)
by, = ppetr @

Logistic classifiers are used for each class in class predictions in
YOLO v3. Thus, it estimates an objectivity score for each
bounding box. YOLOv3 estimates each box at three different
scales, and the feature pyramid network (FPN) extracts features
with a similar concept (Redmon and Farhadi, 2018).

3.22 YOLOv4: YOLOv4 (Bochkovskiy et al., 2020) uses the
CSPDarknet53 backbone. The fact that the backbone has been
developed in some ways distinguishes it from Darknet50. One of
these aspects is the replacement of the GPU. The YOLOv4
backbone uses the same head as CSPDarknet53, the neck uses
SPP (spatial pyramid pooling) and PAN, and the head uses the
same head as YOLOV3. One of the two significant changes made
is the addition of an SPP block on the spine to distinguish context
features. In the second change, PANet is used instead of FPN.
The accuracy of the classifier in the new model obtained was
tested with the ImageNet (ILSVRC 2012 val) dataset, and the
detector accuracy was tested with the MS COCO (test-dev 2017)
dataset. As a result, YOLOv4's single-stage anchor-based
detector has faster and more accurate technology than any
alternative detector available. Widely used, the detector can be
trained and used on a conventional GPU with 8-16 GB-VRAM.

3.23 YOLOV5: YOLOvV5S (ultralytics, 2022) emerged very
shortly after YOLOVA4. In addition, even the fact that it is named
YOLOVS5 is a matter of debate since neither an official article has
been published nor has it not been developed by the original
founders. However, the neck and head structures used in the
model are the same as the YOLOv4 model. The YOLOVS5 is the
fastest and most successful model among the YOLO models and
is unofficially published by author Glenn Jocher. There is no
official release for YOLOV5 and all code is in the repository of
Ultralytics LLC, of which Gleen is the founder and CEO. There
are 4 different models in the warehouse: YOLOvV5s, YOLOv5m,
YOLOV5I, YOLOvV5x. The accuracy of the models increases,
respectively. The most important difference of YOLOV5 from
other YOLOs is the first local version was written in Pytorch
instead of Darknet. Compared to the last previous version,
YOLOV4, the YOLOV5 Ultralytics environment is much easier
to install in colab than the YOLOv4 Darknet environment.
Moreover, they have similar formats in terms of data setup
formats. The main difference is seen in the education period. In
YOLOvV4 Darknet, the training length takes around 14 hours.
However, it reached the maximum validation evaluation at 1300
iterations in approximately 3.5 hours. Training the YOLOV5
model in 200 epochs takes 14.46 minutes.

3.3 Faster R-CNN
Faster R-CNN (Ren et al., 2015) combines the proposed region

network Region Proposal Network (RPN) and Fast R-CNN
models. Within the scope of Fast R- CNN, first CNN is applied

to the image and then the feature map created is divided into
suggestion regions. The RPN, on the other hand, acts as an
attention navigator, identifying the most appropriate bounding
boxes among the wide variety of scales and aspect ratios to be
evaluated for object classification. In short, it tells the classifier
where to look. (Fan et al., 2016). In addition, RPN brings
innovation to the method by connecting Fast R-CNN directly to
the sampling layer. In this method, a feature map is produced by
first applying CNN to the image. After this point, the difference
with Fast R-CNN emerges. After the ESA is applied, the RPN
comes into play. With the RPN, the suggested regions are
extracted and the estimation accuracies of the regions are
calculated. Then, the bounding box suggestions from the RPN are
combined with the features in the backbone feature map using the
Rol pooling layer. The resulting classifier and score prediction
layers are finally combined in the Fast R-CNN network. With the
use of RPN in the Faster R- CNN model, the estimation time is
very short. The architecture of Faster R-CNN is shown in Figure

Figure 3. The architecture of Faster R-CNN (Deng et al., 2018).

3.4 Evaluation Metrics

Precision, recall, and mean average precision (mAP) are used as
evaluation metrics. The fraction of points categorized as positives
is measured by precision. The recall measures the fraction of true
positives in a set of positives. The mean Average Precision, or
MAP score, is the mean precision over all classes and/or overall
loU thresholds, depending on the numerous detection challenges
that occur.

Precision = P 5
recision = TP T FP )
Recall = e 6
CAt = TP Y FN ®

The number of points in predicted and ground truth that have the
same label is known as true positive (TP). The term "false
positive™ (FP) refers to the number of points that are predicted to
be positive but have a negative classification. The term false
negative (FN) refers to the number of points that are predicted to
be negative but have a positive label (Atik et al., 2021).

4. EXPERIMENTS

All models used within the scope of the study were carried out
on the Google Colaboratory platform. Libraries such as Keras,
Tensorflow, Pytorch are used during applications. The data set
was entered into training as 80% training, 10% validation and
10% test data in each model. The PyTorch 1.10.0 library CUDA
11.1 was installed during training in YOLO versions. While the
batch size was entered as 16, the epochs parameter was set to 100.
The training period lasted approximately 5 hours. Along with
Darknet, all necessary libraries, especially OPENCV 3.2.0,
CUDA 11.1 and CUDNN 7.6.5, have been installed and related
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parameters have been adjusted. The images were included in the
training with their original dimensions. After the training, each
model was tested separately on the test data. Thus, accuracy
performances were evaluated under the same conditions. The
training parameters were determined experimentally in an
optimum way for each algorithm. The parameters are used in the
study are presented in Table 1.

Parameter YOLOv3 YOLOv4 YOLOvV5 | Faster R-
CNN
Image size 416 416 416 416
Batch size 16 64 16 128
Iteration 6000 6000 2600 2000
Training time 5h 8h 1h2lm | 2h56m
Table 1. The training parameters.
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Figure 4. The workflow of the study.

5. RESULTS

Precision, recall, and mAP were used as evaluation metrics. A
metric value was calculated for all window and door classes.
According to the precision values, the highest value belongs to
YOLOV5 with 0.85. In other words, YOLOV5 correctly detected
the existing doors and windows in general. Then YOLOV4 and
YOLOV3 have the precision of 0.75 and 0.68, respectively. Faster
R-CNN has the lowest precision value of 0.54. In Recall, the
highest values belong to YOLOv4 and YOLOv3, with 0.88 and
0.82, respectively. Faster R-CNN has the lowest recall.
Considering the 0.5 confidence threshold, the mAP value is
highest in YOLOvV4 with 0.84. Then YOLOV5 has 0.79 mAP.
The results are presented in Table 2. Examples of the results are
presented in Figure 5.

Algorithm Precision | Recall | mMAP@.5
YOLOvV3 0.68 0.82 0.77
YOLOv4 0.75 0.88 0.84
YOLOvV5 0.85 0.72 0.79
Faster R-CNN 0.54 0.63 0.54

Table 2. The results of each model. The metrics are normalized
between 0 and 1.
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Figure 5. Result image for each model.

6. DISCUSSION

The methods generally find the same doors and windows. The
difference occurs in the accuracy of the detected doors and
windows. YOLOv4 appears to yield higher results than
YOLOV5. The main reason for this is that YOLOVS5 is trained
with fewer epochs. Within the scope of the study, the best method
is YOLOVS. In general, although YOLOV5 detects doors and
windows, the false detection rate is higher than YOLOVA4. It has
been determined that YOLOv4 detects facade elements with
higher reliability and less error. The lowest metrics belong to
Faster R-CNN.

Considering the training times, YOLOVA4 has the longest training
time. YOLOV5 stands out with its speed. Considering the
accuracy and speed together, it was concluded that YOLOV5
could be the appropriate algorithm for the detection of building
facade elements. Although Faster R-CNN is fast, it has low
accuracy metrics in this study.

While other methods detected the doors well, it was seen that they
could not find the windows well. It was observed that the
windows of the cars in front of the buildings were marked as
building windows. It has also been frequently seen that glass
doors are marked as windows. For this reason, data of building
surfaces with different windows and doors should be collected
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and more than one image should be obtained for each different
window and door.

Apart from this, better results could be obtained by increasing the
training epoch/iteration. Google Colab was used free of charge
because the hardware's capacities were not sufficient. Since
Google Colab stopped working after 12 hours, the number of
epochs/iterations could not be increased due to the slowness of
the other methods except for Yolov5. While these reasons are the
limitations in front of the training, it has been seen that
outstanding results will be obtained when the number of epochs
is increased due to the speed of YOLOVS5.

7. CONCLUSIONS

Within the scope of the study, YOLOv3/4/5 and Faster R- CNN
models were trained and tested in an original window-door
detection dataset. When the test data obtained as a result of the
study were compared, it was observed that the fastest model was
YOLOV5 and the model that gave the most optimum result for
the purpose of the study was YOLOv4. For this reason, it is
recommended that researchers who prioritize time in their studies
should choose YOLOV5. Parameters for the appropriate version
should be arranged according to the data set and purpose.
Although YOLOv4 gives high accuracy, it is thought that
YOLOVS5 can reach accuracy of YOLOV4 as the iteration number
is increased. To obtain better results, the data of the train can be
increased or different facade elements can be added. From this
point of view, it is predicted that in the future, deep learning and
object detection studies and fields will expand by using different
data sources. Images can be integrated with LiDAR to obtained
3D information. In addition, significant contributions can be
made to the literature by developing appropriate deep learning
approaches.
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