
INDEXED 3D SCENE LAYERS (I3S) – AN EFFICIENT ENCODING AND STREAMING

OGC COMMUNITY STANDARD FOR MASSIVE GEOSPATIAL CONTENT

Tamrat Belayneh

tbelayneh@esri.com

Esri, CA

KEY WORDS: I3S, 3D Objects, IntegratedMesh, BVH, Massive Mesh, OGC, Compressed Texture (Basis Universal in KTX™2.0)

ABSTRACT:

Indexed 3D Scene Layers (I3S), an OGC Community Standard for streaming and storing massive amounts of geospatial content has

been rapidly evolving to capture new use cases and techniques to advance geospatial visualization and analysis. I3S enables efficient

transmission of various 3D geospatial data types including discrete 3D objects with attributes, integrated surface meshes and point

cloud data covering vast geographic areas as well as highly detailed BIM (Building Information Model) content, to web browsers,

mobile apps and desktop.

In this paper, we will explore multiple evolutions of I3S, including the latest, OGC I3S Version 1.2, that brings dramatic improvements

in performance and scalability. We will demonstrate the advantages, including its support for a paged node access pattern, a more

compact geometry layout, advanced material definitions property that supports PBR, as well as its support for supercompression of

texture data using the Basis Universal SuperCompressed Texture format in KTX™2.0 containers. We will also demonstrate

collaborative & research work done to dramatically improve in Basis compressed texture creation in KTX™2.0 container leveraging

both the CPU and GPU – contributions that benefit both the geospatial and 3d graphics communities.

The paper will conclude by highlighting and documenting various use cases and application, where formats such as I3S are pushing

the envelope in geospatial technology – by enabling seamless and ubiquitous access to vast amounts of geospatial data which

traditionally have required specialized hardware and software platforms.

1. GENESIS

1.1 Evolution of a Standard

Indexed 3D Scene Layers (I3S), a specification developed by Esri

for streaming textured mesh and point cloud dataset, has become

one of the widely used format for disseminating massive

geospatial content. I3S Supports various layer types including 3D

object and IntegratedMesh – allowing the streaming of millions

of 3D objects and high fidelity meshes, as well as Point Cloud

Scene Layer – enabling the streaming of point cloud data

consisting of billions of points. I3S has also added support for

Building Scene Layer – unlocking complex BIM (Building

Information Model) content to be accessible in a user friendly,

web stream-able standard. In short, I3S enables the streaming of

massive geospatial content to web browsers, mobile devices, and

desktop applications.

I3S has been evolving since it was publicly shared to the open-

source community under an Apache license in early 2015.

Adopted as the first 3D streaming Community Standard by the

Open Geospatial Consortium (OGC) in the fall of 2017, I3S has

continued to evolve, as a living, breathing specification. The

OGC routinely picks updates from the GitHub version of I3S, as

evidenced by I3S OGC 1.1 Community Standard update,

incorporating Point Cloud Scene Layer support in early 2020, as

well as the recent performance and scalability focused update for

I3S 1.2 Community Standard, on which we will focus on this

paper.

A note to the reader, the OGC community standard, by design,

lags the Github version of I3S. The current OGC I3S Version 1.2

is compatible with 1.8 GitHub version of I3S. There is a

compatibility map, https://github.com/Esri/i3s-spec#an-ogc-

community-standard, located at the Github version of I3S that is

regularly updated.

1.2 I3S OGC 1.2 Community Standard

The essence of the changes in OGC I3S 1.2 Community Standard

include:

• Node Paging Support: Introduction of a node paging (bundling)

capability significantly reduces the client-server traffic resulting

in significant performance improvement.

• Draco Compression Support: Compression of I3S geometry

attributes using Draco 3D Data Compression scheme creates a

more compact content, which in turn provides a smaller payload,

increasing performance.

• Advanced Material Support: I3S OGC 1.2 now has advanced

material definitions supporting PBR materials. I3S advanced

material support is feature compatible to Khronos® glTF™

standard.

• Basis Universal Texture Compression in Khronos® KTX™ 2.0

container Support: I3S 1.2 supports supercompression of texture

data using the Basis Universal Texture interchange system in the

Khronos® KTX™ 2.0 format.

2. I3S EVOLUTION

The I3S standard has been evolving over the last decade and has

been adding features and improvements, in backward compatible

fashion. As described in the introduction section above, I3S OGC

1.2 also adheres to this fact, and we will explore in further detail

the additions at this version.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2022
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-349-2022 | © Author(s) 2022. CC BY 4.0 License.

349

mailto:tbelayneh@esri.com
https://github.com/Esri/i3s-spec#an-ogc-community-standard
https://github.com/Esri/i3s-spec#an-ogc-community-standard

2.1 Paged Nodes

In addition to geometry, texture, feature and attribute data, all

represented in binary forms, I3S also includes the bounding

volume hierarchy (BVH) and selection criteria in a textual format

represented with a JSON encoding. Pre OGC I3S 1.2, this

information existed in an expanded notation format, where each

node (referenced as a tile in other data partitioning schemes) was

represented as an individual asset and required being accessed

individually, making the server-client request pattern very chatty.

OGC I3S 1.2 introduces node paging capability, significantly

reducing the server-client traffic by bundling a group of nodes

into a page (the nodes in the bundle have spatial proximity). By

default, there are 64 nodes in each node page, thereby

significantly reducing client requests and allowing local caching

of the resource for further performance improvement.

Figure 1. Figure showing evolution of OGC I3S V1.2.

2.2 Support For Geometry Compression Using Draco

Previous versions of I3S supported compression of the

components of an I3S geometry attribute using both position

quantization and a non-lossy compression scheme, Gzip.

The primary components of an I3S geometry attribute include

vertex positions (x,y,z) – expressed as offsets from the centre of

bounding volume (BV), normals (dx, dy, dz), texture coordinates

(uv0), color (RGBA) and an optional sub-image UV region,

defined as a per vertex, four-component array [u_min, v_min,

u_max, v_max].

Note that vertex positions are recorded not as absolute values but

rather, as offsets from the BV centre of the node – captured as a

Float64 value type, there by retaining the high precision required

in geospatial applications, while still benefiting from the

quantization gained by storing Float32 vertex offset values.

Geometry

Component

Value

Type

description

vertexCount UInt32 Number of vertices

featureCount UInt32 Number of features (could be 0)

position Float32 Vertex positions as x,y,z

[3*vertex count]

normal Float32 Normal vectors as dx, dy, dz

[3*vertex count]

uv0 Float32 Texture coordinates [2*vertex

count]

color UInt8 Geometry color as R,G,B,A

[4*vertex count]

region UINT16 sub-image UV region for

repeated textures [4*vertex

count].

id UInt64 Feature IDs [feature count]

faceRange UInt32 Inclusive range of the mesh

triangles belonging to each

feature in the featureID array.

[2*feature count]

Table 1. Components of an I3S Geometry buffer.

Though the I3S geometry buffer had a compact layout, the advent

of superior compression schemes such as Draco 3D Data

Compression scheme, specifically designed to improve storage

and transmission of 3D graphics, allow creating a more compact

I3S geometry buffer (which in turn provides a smaller payload

increasing performance). As a result, OGC I3S 1.2 opted to

standardize on compressing I3S geometry buffer using Draco,

https://google.github.io/draco/spec, in lieu of Gzip. Draco, a

library for compressing and decompressing 3D geometric meshes

and point clouds supports compressing points, connectivity

information, texture coordinates, color information, normals, and

any other generic attributes associated with geometry, allowing

for significantly smaller payloads without compromising visual

fidelity [Galligan, 2017].

By using Draco compression, OGC I3S 1.2 Community Standard

geometry payload is ~85% smaller compared to OGC I3S 1.1

which uses Gzip for compression. Such a reduction in the

geometry payloads enables I3S 1.2 to stream content across the

wire more efficiently compared to previous versions.

Figure 2. Snapshot showing loading performance of I3S OGC

1.1 community standard compared to OGC I3S 1.2. As shown in

the video, https://youtu.be/chRpgjIDkzc, the scenes on the left

column correspond to I3S OGC 1.1 and take approximately 75

and 60 secs to completely render, whereas the scenes on the right

column corresponding to OGC I3S 1.2 and take 30 and 25

seconds, with and without any client-side browser caching,

respectively in both cases. Data provided by Vricon.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2022
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-349-2022 | © Author(s) 2022. CC BY 4.0 License.

350

https://google.github.io/draco/spec
https://youtu.be/chRpgjIDkzc

Test case Loading Improvement factor Layer Type Layer Size1 Textured

Min Avg Max

Spain 2.0 3.0 3.6 Integrated Mesh Large Yes

Washington 1.8 3.4 5.6 Integrated Mesh Medium Yes

San Francisco 1.7 2.5 3.4 3D Object Large Yes

San Diego 2.0 2.5 3.2 3D Object Medium Yes

New York 1.9 2.6 3.7 3D Object Large No

Zurich 1.5 1.9 2.3 3D Object Medium No

Vancouver 1.7 2.5 4.3 3D Object Medium No

Manhattan 1.3 2.7 5.9 3D Object Small No

France 2.5 3.2 4.6 3D Object Huge No

Table 2. Loading Improvement factors of OGC I3S 1.2 over I3S OGC 1.1 Community Standard. These improvements were measured

using the ArcGIS JS API client application.

1 Layer Size: Indicates the total I3S dataset size where Small is < 5GB, Medium 5 – 20GB, Large 20 – 50 GB and Huge > 50G

2.3 Support for Advanced Material Definitions

Physically Based Rendering (PBR) materials have significantly

changed the fidelity and realism of geospatial asset

representations.

I3S’s Advanced Material Definition support adds realism to

geospatial assets and is feature compatible with Khronos®

glTF™ standard with the following exceptions:

• I3S material color properties (baseColorFactor, emissiveFactor

etc.) are assumed to be in the same color space as the textures,

most commonly sRGB while in glTF they are interpreted as

linear.

• glTF has separate definitions for properties like strength for

occlusionTextureInfo and scale for normalTextureInfo. Further

I3S has only one texture definition with factor that replaces

strength and scale.

Figure 3. A snapshot of various I3S layer types showing

advanced material support added at OGC Version 1.2.

2.4 Support For Basis Universal Supercompressed Texture

in KTX™2.0

One of the key features of IntegratedMesh and 3D Object Scene

Layers in I3S include support for compressed texture formats

such as DXT and ETC2, as GPU native texture asset resources.

Compressed textures bring massive reduction in client

application memory since they are directly loaded in the GPU

without having to be uncompressed to RGB/A. This affords the

consuming application much-less memory utilization and avoid

the CPU cycles required to decompress highly compressed image

formats such as JPEG and PNG (Belayneh, 2021).

The advantage of a compressed texture is clear. Compressed

textures considerably lower memory footprint of an application

(particularly important in GPUs with shared graphics memory),

more compressed images can fit into the cache of the processor

and using compressed texture can lower battery usage on mobile

devices by avoiding expensive decompression from highly

compact formats such as JPEG/PNG. However, generating and

using compressed textures comes at a cost, including,

compressed textures are significantly larger compared to the

same image quality in JPEG/PNG formats and they tend to be

hardware and platform specific (different platforms require

different type of compressed textures) – creating challenges in

storage and transmission. Lastly, creating compressed textures is

also prohibitively slow even when using state of the art

compression software. For example, ETC2 (a compressed texture

format native to GPUs on mobile platforms) and PVRTC (GPU

native compressed texture supported on Apple Ax/M1 chipsets)

are on average about 100x magnitude order slower compared to

the generation of DXT (using Intel SSE compressor) which is a

GPU native compressed texture format usable on desktop

platforms (Belayneh, T., Khronos 3D Formats Working Group,

2022).

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2022
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-349-2022 | © Author(s) 2022. CC BY 4.0 License.

351

Table 3. GPU Compressed Texture Format Fragmentation. Multiple GPU Compressed Texture formats with varying levels of support

across diverse platforms. (Khronos Group, 2021).

Until the introduction of GSTs – GPU-decodable

Supercompressed Textures (Krajcevski et al., 2016), GPU native

compressed image generation was extremely specialized and was

tightly coupled to specific hardware/platforms (see Table 3).

Before GSTs, there wasn’t much option other than redundantly

generating the same texture and distributing it in the various

compressed texture format flavors, targeting specific platforms.

GSTs allowed creating a supercompressed texture format once

and being able to transcode it on the GPU to the native

compressed texture format supported on the target platform. The

general idea behind GSTs is to further compress endpoint texture

compression formats such as DXT, ETC2 and PVRTC –

significantly reducing the payload size (Krajcevski et al., 2016)

(which are typically 3X larger compared to JPEG/PNG – even

after further lossless LZ77 re-compression). The reduction in

compressed texture size coupled with just having to deal with a

single texture asset that works everywhere, allows asset creators

the ability to create and transmit GPU native textures to any

desired platform. GSTs came to further widespread usage with

the introduction of Basis Universal Texture format by Binomial

(Geldreich, R., 2022).

Performant 3D systems routinely utilize compressed textures, as

an essential optimization technique to support the loading and

display of massive amounts of textures in 3D applications.

The addition of Basis Universal compressed texture in KTX™2.0

containers in I3S OGC 1.2 brings excellent decoding speed, great

compression rates while keeping the visual quality and fidelity

intact. Basis Universal, defines a ‘universal’ compressed texture

format that can be efficiently transcoded at run-time into a

natively supported GPU format on the target device, allowing the

compressed texture files to operate cross-platform. The resulting

texture files are comparable to JPEG/PNG in quality and

transmission size but consume only a fraction of the GPU

memory

Figure 4. Figure showing evolution of OGC I3S V1.2. An ArcGIS JSAPI based side-by side compare application, https://tamrat-

b.github.io/i3sBasisKTX20, demonstrating OGC I3S 1.2 client-side memory reduction improvements. The app has various bookmarks

where on average I3S 1.2 shows over 60% client-side memory savings when the input I3S layer is JPEG vs Basis Universal

SuperCompressed texture in KTX™2.0 container.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2022
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-349-2022 | © Author(s) 2022. CC BY 4.0 License.

352

https://tamrat-b.github.io/i3sBasisKTX20
https://tamrat-b.github.io/i3sBasisKTX20

3. BASIS UNIVERSAL SUPERCOMPRESSED

TEXTURE ENCODER OPTIMIZATION

In the 3D graphics industry, when it comes to compressed texture

assets, there has been much focus in maintaining quality and size

as optimal as possible. However, less emphasis and effort has

gone into improving the encoding rates of assets. In other words,

the encoding codec was relegated to a back-office task that must

be done once to get the many runtime advantages it brings to the

fore - which was also the case for the Basis Universal Texture

codec as well.

3.1 Phase 1 Optimization

Geospatial users, typically generate content and have a need to

share, modify and republish content frequently, typically

modelling real world scenarios that change based on various

factors. As a result, it is critical for geospatial users to be able to

generate supper compressed textures in reasonable amount of

time. In early 2020, Esri collaborated with Binomial, to improve

the Basis Universal encoder speed by a factor of at least 3X

(Belayneh, 2021).

In fact, as it can be seen from Table 1, there is about ~4X

improvement in performance for larger textures (2k-4k) brought

by Basis 1.13 encoder for the same quality (measured as a

function of Y-PSNR) and file sizes across various I3S dataset

types. This was very encouraging result especially as the

optimization was brought about with very minimal loss in quality

(less than 3db) or significant increment in file size (less than 5%).

Image Opt 1 Opt2 Pre-

Opt3

Factor
4

Factor
5

FrankFurt_4

k

5.12 4.62 14.2

3

2.78 3.08

Mesh_1k 0.3 0.26 0.91 3.01 3.57

NYC_2k 1.48 1.33 5.22 3.51 3.91

SanFran_4k 8.68 6.45 23.4

6

2.7 3.64

chateau_1k 0.72 0.63 1.96 2.72 3.13

Rancho_4k 6.46 5.82 23.2

3

3.6 3.99

Singapore_2k 1.08 0.89 3.36 3.11 3.78

Table. 4 Compares the encoding optimization gained for various

I3S datasets by using Compression Level 1 and the new

geospatial focused compression level 0 settings (using single

multithreading). Less values in the Opt columns means the task

completed faster.

1 Post-Optimization (Using SSE 4.1, comp_level 1) encoding

time (Secs)
2 Post-Optimization (Using SSE 4.1, comp_level 0) encoding

time (Secs)
3 Pre-Optimization encoding time (Secs)
4 Improvement Factor (Using Comp_level_1)
5 Improvement Factor (Using Comp_level_0)

However, even with all the improvements that went into

improving Basis Universal encoder, the wall-clock times for

encoding Basis Universal compressed texture still lagged, by

order of magnitudes, when compared to the encoding times of

other compressed texture formats such as DXT1-5/BC3-5 –

though it needs to be pointed out, most of the other formats are

device and platform specific and result typically in 6X or more

bigger payload than Basis Universal compressed texture files.

As encouraging and transformative those results were, we knew

we were not done and work on further improving it began soon

after, especially to leverage GPUs to dramatically improve the

encoding times.

3.2 Phase 2 Optimization

The second collaboration with Binomial, added performance

improvement to CPU based encoding and introduced the ability

to use GPU to generate Basis Universal SupperCompressed

texture and was released in late 2021.

Compressed texture asset creation in geospatial applications

tends to be a batch process, where many of the texture assets to

be converted will be generated a-prior, during the asset creation

phase and are typically queued up for conversion later during the

optimization phase. For example, 3D meshes produced by the

likes of SURE™ for ArcGIS, a surface reconstruction software

that empowers you to create photo-realistic models using datasets

captured via both large-frame nadir and oblique cameras as well

as hybrid systems with lidar sensors, are good examples of such

a use case. In geospatial applications its common to generate very

large datasets covering a cityscape or a site resulting in an I3S

SLPK (Scene Layer Package) layer with tens of thousands of

textures, suitable for batch submission to the GPU to be

converted in parallel, taking advantage of powerful GPU devices

that might otherwise be idle.

There are plenty of applications that bring about dramatic

performance improvements to traditionally CPU bound intensive

tasks by leveraging GPUs. With ever improving GPU texture

bandwidth and faster ROP operations, using the GPU to encode

textures is a well-researched and established arena.

This is also true in geospatial applications which tend to have

further requirements: on one hand geospatial users, like online

video games etc… would benefit from readily available, highly

optimized GPU friendly compressed texture resources, especially

when consuming large city/nationwide 3d mesh data.

But their needs do not end just at the consumption level, as they

also generate, alter, modify, and publish 3D content using various

tool sets available at their disposal. As a result, access to a

performant texture encoder library is key in being able to create

multiple iterations/scenarios, typically done multiple times in

modelling scenarios (Belayneh, T., Khronos 3D Formats

Working Group, 2022).

Another key requirement in this workflow is that any

optimization brought about by leveraging GPUs needs to

universally work as most geospatial applications tend to be

deployed in various platforms with varying capabilities and

hardware characteristics. As a result, we opted to standardize

GPU encoding of Basis Universal not to be specific to any brand

of GPU or API, but to be based on Khrono’s OpenCL API which

is supported by all the major GPUs including from vendors such

as NVDIA™, AMD™ & Intel™, covering both discrete and

integrated GPUs.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2022
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-349-2022 | © Author(s) 2022. CC BY 4.0 License.

353

Furthermore, we standardized on OpenCL 1.2 version API as it

is supported by many types and generations of GPUs. OpenCL

has a well specified computation environment capable of

coordinating parallel computation across processors in a cross-

platform programming language, very fitting to the central

premise of Basis Universal compressed texture format as the

cross-platform GST format that works across a variety of devices

and operating systems.

Table. 4 Compares the encoding optimization gained for the texture resources of an I3S dataset by leveraging the GPU using OpenCL™

to orchestrate parallel computation as well as CPU improvements gained in version 1.16 vs. 1.15 of the Basis Universal encoder

libraries.

1 Quadro RTX 5000 @ 1.545 GHz, 1545 Mhz, 3072 Cuda Cores, Memory data rate: 14.00 Gbps, Memory interface: 256-bit, Memory

bandwidth: 448.06 GB/s, Total available graphics memory: 81779 MB, Dedicated video memory: 16384 MB GDDR6, Driver

version: 472.42
2 Quadro RTX A6000 @ 1.800 GHz, 1800 Mhz, 10752 Cuda Cores, Memory data rate: 16.00 Gbps, Memory interface: 384-bit,

Memory bandwidth: 768.106 GB/s, Total available graphics memory: 81826 MB, Dedicated video memory: 49140 MB GDDR6, Driver

version: 462.31
3 Intel(R) Xeon(R) W-10885M CPU @ 2.40GHz, 2400 Mhz, 8 Core(s), 16 Logical Processor(s), Total Physical Memory: 128 GB,

running Windows 10 Pro for Workstations 64-bit
4 AMD Ryzen Threadripper PRO 3995WX 64-Cores, 2695 Mhz, 64 Core(s), 128 Logical Processor(s), Total Physical Memory: 128

GB, running Windows 10 Pro for Workstations 64-bit.

The encoding rate improvement factor of Basis Universal

encoder 1.16 could be as much as 10x when using GPU in parallel

compression mode to compress over a thousand texture resources

with varying texture sizes (ranging from 512 – 4k pixels). As

expected, the performance gain decreases when queuing up more

textures (in this case we were compressing ~10x (10,121) more

textures in parallel), but nevertheless, parallel GPU compression

in this use case still yields a 4.5X faster rate than version 1.15

using CPU encoding (running in multi-thread mode with CPU

compression only (16 threads used per hardware concurrency).

In this optimization phase, not only GPU based encoding was

introduced but CPU based encoding was also improved for an

average of 2X. These improvement numbers (up to ~10x factor

improvement as shown in Table 2) are on top of the existing 3X

improvement introduced at Basis Universal encoder version

1.13/1.14 (Basis Universal 1.15 added ability to encode Basis

Universal in KTX™ 2.0 containers), purely focusing on CPU

optimizations.

4. CONCLUSION AND FUTURE WORK

It is evident Geospatial standards such as I3S OGC 1.2 have an

evolving need to adopt, implement and improve general 3D

graphics optimizations and usage patterns.

I3S OGC 1.2 introduced 4 areas of improvements, namely, node

paging, better geometry compression using Draco, advanced

material support compatible with Khronos® glTF™ standard,

and reduced client-side memory usage using Basis Universal

Supercompressed Texture in Khronos® KTX™ 2.0 format, all

working in concert to bring increased client application

performance and scalability as shown in Figures 2 and 4 and

Table 2, respectively.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2022
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-349-2022 | © Author(s) 2022. CC BY 4.0 License.

354

We also described in detail and demonstrated collaborative

research that culminated in the improvement of Basis Universal

Texture encoder (Basis Universal library is freely available,

https://github.com/BinomialLLC/basis_universal, delivered in a

well-established container format Khronos KTX™ 2.0), further

paving the way for it to become the de facto format for delivering

compressed texture assets for 3D geospatial content.

The release of Basis Universal 1.16 culminated in bringing up to

10x increase in the encoder codec performance over Basis

Universal 1.15 version when using GPU encoding as shown on

Table 4. With this release and via the introduction of GPUs to

complement the texture conversion process, the Basis Universal

texture format is now creatable at a rate similar to DXT1-

5/BC1,3,7 encoding times, while still keeping its advantage of

being cross platform and as compact as input source (whereas the

latter is 3x bigger than input source typically and is platform

specific. See Table 3).

These improvements are made accessible to geospatial users as

they are incorporated in the freely available I3S Converter tool,

https://github.com/Esri/i3s-spec. The current version of the tool

has incorporated Phase 1 optimizations of the encoder, enabling

the upgrade of I3S datasets to the latest OGC I3S 1.2 community

standard version supporting Basis Universal compressed textures

in KTX™ 2.0 containers. Work is ongoing to incorporate results

from Phase 2 optimization bringing GPU capabilities as well as

much faster encode times.

ACKNOWLEDGEMENTS

The author and Esri would like to thank Stephanie Hurlburt &

Richard Geldreich of Binomial for the opportunity to collaborate

on an exciting area of optimization of Basis Universal encoder.

The optimized encoder code of Basis Universal (Version 1.16) is

now publicly available under Apache 2.0 license.

REFERENCES

Belayneh, T., 2021. Esri collaborates with Binomial to improve

Basis Universal Supercompressed GPU Texture Codec speed.

https://www.esri.com/arcgis-blog/products/arcgis/3d-gis/esri-

collaborates-with-binomial-to-improve-basis-universal-texture-

compression-speeds.

Belayneh, T., Khronos 3D Formats Working Group, 2022.

https://www.khronos.org/blog/ktx2.0-support-in-i3s-v1.2-puts-

the-whole-world-in-your-hands.

Galligan, F., 2017. Draco Bitstream Specification, Version 2.2.

https://google.github.io/draco/spec.

Geldreich, R., 2022. Basis Universal Supercompressed GPU

Texture Codec, Version 1.16.

https://github.com/BinomialLLC/basis_universal.

Khronos Group, 2021. Universal GPU Compressed Textures for

glTF using KTX 2.0, April., 2021.

https://www.khronos.org/assets/uploads/apis/KTX-2.0-Launch-

Overview-Apr21_.pdf.

Krajcevski., P., Pratapa, S., Manocha, D., 2016. ACM

Transactions on Graphics, Volume 35 Issue 6, November 2016,

Article No.: 230pp 1–10, http://gamma.cs.unc.edu/GST/gst.pdf.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2022
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-349-2022 | © Author(s) 2022. CC BY 4.0 License.

355

https://github.com/BinomialLLC/basis_universal
https://github.com/Esri/i3s-spec
https://www.esri.com/arcgis-blog/products/arcgis/3d-gis/esri-collaborates-with-binomial-to-improve-basis-universal-texture-compression-speeds
https://www.esri.com/arcgis-blog/products/arcgis/3d-gis/esri-collaborates-with-binomial-to-improve-basis-universal-texture-compression-speeds
https://www.esri.com/arcgis-blog/products/arcgis/3d-gis/esri-collaborates-with-binomial-to-improve-basis-universal-texture-compression-speeds
https://www.khronos.org/blog/ktx2.0-support-in-i3s-v1.2-puts-the-whole-world-in-your-hands
https://www.khronos.org/blog/ktx2.0-support-in-i3s-v1.2-puts-the-whole-world-in-your-hands
https://github.com/BinomialLLC/basis_universal
https://www.khronos.org/assets/uploads/apis/KTX-2.0-Launch-Overview-Apr21_.pdf
https://www.khronos.org/assets/uploads/apis/KTX-2.0-Launch-Overview-Apr21_.pdf
http://gamma.cs.unc.edu/GST/gst.pdf

