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ABSTRACT: 

 

Indexed 3D Scene Layers (I3S), an OGC Community Standard for streaming and storing massive amounts of geospatial content has 

been rapidly evolving to capture new use cases and techniques to advance geospatial visualization and analysis. I3S enables efficient 

transmission of various 3D geospatial data types including discrete 3D objects with attributes, integrated surface meshes and point 

cloud data covering vast geographic areas as well as highly detailed BIM (Building Information Model) content, to web browsers, 

mobile apps and desktop. 

In this paper, we will explore multiple evolutions of I3S, including the latest, OGC I3S Version 1.2, that brings dramatic improvements 

in performance and scalability. We will demonstrate the advantages, including its support for a paged node access pattern, a more 

compact geometry layout, advanced material definitions property that supports PBR, as well as its support for supercompression of 

texture data using the Basis Universal SuperCompressed Texture format in KTX™2.0 containers. We will also demonstrate 

collaborative & research work done to dramatically improve in Basis compressed texture creation in KTX™2.0 container leveraging 

both the CPU and GPU – contributions that benefit both the geospatial and 3d graphics communities. 

The paper will conclude by highlighting and documenting various use cases and application, where formats such as I3S are pushing 

the envelope in geospatial technology – by enabling seamless and ubiquitous access to vast amounts of geospatial data which 

traditionally have required specialized hardware and software platforms. 

 

 

1. GENESIS 

1.1 Evolution of a Standard 

Indexed 3D Scene Layers (I3S), a specification developed by Esri 

for streaming textured mesh and point cloud dataset, has become 

one of the widely used format for disseminating massive 

geospatial content. I3S Supports various layer types including 3D 

object and IntegratedMesh – allowing the streaming of millions 

of 3D objects and high fidelity meshes, as well as Point Cloud 

Scene Layer – enabling the streaming of point cloud data 

consisting of billions of points. I3S has also added support for 

Building Scene Layer – unlocking complex BIM (Building 

Information Model) content to be accessible in a user friendly, 

web stream-able standard. In short, I3S enables the streaming of 

massive geospatial content to web browsers, mobile devices, and 

desktop applications. 

 

I3S has been evolving since it was publicly shared to the open-

source community under an Apache license in early 2015. 

Adopted as the first 3D streaming Community Standard by the 

Open Geospatial Consortium (OGC) in the fall of 2017, I3S has 

continued to evolve, as a living, breathing specification. The 

OGC routinely picks updates from the GitHub version of I3S, as 

evidenced by I3S OGC 1.1 Community Standard update, 

incorporating Point Cloud Scene Layer support in early 2020, as 

well as the recent performance and scalability focused update for 

I3S 1.2 Community Standard, on which we will focus on this 

paper.  

 

A note to the reader, the OGC community standard, by design, 

lags the Github version of I3S. The current OGC I3S Version 1.2 

is compatible with 1.8 GitHub version of I3S. There is a 

compatibility map, https://github.com/Esri/i3s-spec#an-ogc-

community-standard, located at the Github version of I3S that is 

regularly updated. 

 

1.2 I3S OGC 1.2 Community Standard 

The essence of the changes in OGC I3S 1.2 Community Standard 

include: 

 

• Node Paging Support: Introduction of a node paging (bundling) 

capability significantly reduces the client-server traffic resulting 

in significant performance improvement. 

 

• Draco Compression Support: Compression of I3S geometry 

attributes using Draco 3D Data Compression scheme creates a 

more compact content, which in turn provides a smaller payload, 

increasing performance. 

 

• Advanced Material Support: I3S OGC 1.2 now has advanced 

material definitions supporting PBR materials. I3S advanced 

material support is feature compatible to Khronos® glTF™ 

standard. 

 

• Basis Universal Texture Compression in Khronos® KTX™ 2.0 

container Support: I3S 1.2 supports supercompression of texture 

data using the Basis Universal Texture interchange system in the 

Khronos® KTX™ 2.0 format. 

 

2. I3S EVOLUTION 

The I3S standard has been evolving over the last decade and has 

been adding features and improvements, in backward compatible 

fashion. As described in the introduction section above, I3S OGC 

1.2 also adheres to this fact, and we will explore in further detail 

the additions at this version.  
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2.1 Paged Nodes 

In addition to geometry, texture, feature and attribute data, all 

represented in binary forms, I3S also includes the bounding 

volume hierarchy (BVH) and selection criteria in a textual format 

represented with a JSON encoding. Pre OGC I3S 1.2, this 

information existed in an expanded notation format, where each 

node (referenced as a tile in other data partitioning schemes) was 

represented as an individual asset and required being accessed 

individually, making the server-client request pattern very chatty. 

OGC I3S 1.2 introduces node paging capability, significantly 

reducing the server-client traffic by bundling a group of nodes 

into a page (the nodes in the bundle have spatial proximity). By 

default, there are 64 nodes in each node page, thereby 

significantly reducing client requests and allowing local caching 

of the resource for further performance improvement. 

 

 
 

Figure 1. Figure showing evolution of OGC I3S V1.2. 

 

2.2 Support For Geometry Compression Using Draco  

Previous versions of I3S supported compression of the 

components of an I3S geometry attribute using both position 

quantization and a non-lossy compression scheme, Gzip. 

 

The primary components of an I3S geometry attribute include 

vertex positions (x,y,z) – expressed as offsets from the centre of 

bounding volume (BV), normals (dx, dy, dz), texture coordinates 

(uv0), color (RGBA) and an optional sub-image UV region, 

defined as a per vertex, four-component array [u_min, v_min, 

u_max, v_max].  

 

Note that vertex positions are recorded not as absolute values but 

rather, as offsets from the BV centre of the node – captured as a 

Float64 value type, there by retaining the high precision required 

in geospatial applications, while still benefiting from the 

quantization gained by storing Float32 vertex offset values.  

 

Geometry 

Component 

Value 

Type 

description 

vertexCount UInt32 Number of vertices 

featureCount UInt32 Number of features (could be 0) 

position Float32 Vertex positions as x,y,z 

[3*vertex count] 

normal Float32 Normal vectors as dx, dy, dz 

[3*vertex count] 

uv0 Float32 Texture coordinates [2*vertex 

count] 

color UInt8 Geometry color as R,G,B,A 

[4*vertex count] 

region UINT16 sub-image UV region for 

repeated textures [4*vertex 

count]. 

id UInt64 Feature IDs [feature count] 

faceRange UInt32 Inclusive range of the mesh 

triangles belonging to each 

feature in the featureID array. 

[2*feature count] 

 

Table 1. Components of an I3S Geometry buffer.  

Though the I3S geometry buffer had a compact layout, the advent 

of superior compression schemes such as Draco 3D Data 

Compression scheme, specifically designed to improve storage 

and transmission of 3D graphics, allow creating a more compact 

I3S geometry buffer (which in turn provides a smaller payload 

increasing performance). As a result, OGC I3S 1.2 opted to 

standardize on compressing I3S geometry buffer using Draco, 

https://google.github.io/draco/spec, in lieu of Gzip. Draco, a 

library for compressing and decompressing 3D geometric meshes 

and point clouds supports compressing points, connectivity 

information, texture coordinates, color information, normals, and 

any other generic attributes associated with geometry, allowing 

for significantly smaller payloads without compromising visual 

fidelity [Galligan, 2017]. 

 

By using Draco compression, OGC I3S 1.2 Community Standard 

geometry payload is ~85% smaller compared to OGC I3S 1.1 

which uses Gzip for compression. Such a reduction in the 

geometry payloads enables I3S 1.2 to stream content across the 

wire more efficiently compared to previous versions. 

 

 
 

Figure 2. Snapshot showing loading performance of I3S OGC 

1.1 community standard compared to OGC I3S 1.2. As shown in 

the video, https://youtu.be/chRpgjIDkzc, the scenes on the left 

column correspond to I3S OGC 1.1 and take approximately 75 

and 60 secs to completely render, whereas the scenes on the right 

column corresponding to OGC I3S 1.2 and  take 30 and 25 

seconds, with and without any client-side browser caching, 

respectively in both cases. Data provided by Vricon. 
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Test case Loading Improvement factor Layer Type Layer Size1 Textured 

Min  Avg  Max  

Spain 2.0  3.0  3.6  Integrated Mesh  Large   Yes  

Washington 1.8  3.4  5.6  Integrated Mesh  Medium  Yes  

San Francisco 1.7  2.5  3.4  3D Object  Large  Yes  

San Diego 2.0  2.5  3.2  3D Object  Medium  Yes  

New York 1.9  2.6  3.7  3D Object  Large  No  

Zurich 1.5  1.9  2.3  3D Object  Medium  No  

Vancouver 1.7  2.5  4.3  3D Object  Medium  No  

Manhattan 1.3  2.7  5.9  3D Object  Small  No  

France 2.5  3.2  4.6  3D Object  Huge  No  

 

Table 2. Loading Improvement factors of OGC I3S 1.2 over I3S OGC 1.1 Community Standard. These improvements were measured 

using the ArcGIS JS API client application. 

1 Layer Size: Indicates the total I3S dataset size where Small is < 5GB, Medium 5 – 20GB, Large 20 – 50 GB and Huge > 50G

2.3 Support for Advanced Material Definitions 

Physically Based Rendering (PBR) materials have significantly 

changed the fidelity and realism of geospatial asset 

representations.  

 

I3S’s Advanced Material Definition support adds realism to 

geospatial assets and is feature compatible with Khronos® 

glTF™ standard with the following exceptions:  

 

• I3S material color properties (baseColorFactor, emissiveFactor 

etc.) are assumed to be in the same color space as the textures, 

most commonly sRGB while in glTF they are interpreted as 

linear. 

• glTF has separate definitions for properties like strength for 

occlusionTextureInfo and scale for normalTextureInfo. Further 

I3S has only one texture definition with factor that replaces 

strength and scale. 

 

 
 

Figure 3. A snapshot of various I3S layer types showing 

advanced material support added at OGC Version 1.2. 

 

2.4 Support For Basis Universal Supercompressed Texture 

in KTX™2.0 

One of the key features of IntegratedMesh and 3D Object Scene 

Layers in I3S include support for compressed texture formats 

such as DXT and ETC2, as GPU native texture asset resources. 

Compressed textures bring massive reduction in client 

application memory since they are directly loaded in the GPU 

without having to be uncompressed to RGB/A. This affords the 

consuming application much-less memory utilization and avoid 

the CPU cycles required to decompress highly compressed image 

formats such as JPEG and PNG (Belayneh, 2021).  

 

The advantage of a compressed texture is clear. Compressed 

textures considerably lower memory footprint of an application 

(particularly important in GPUs with shared graphics memory), 

more compressed images can fit into the cache of the processor 

and using compressed texture can lower battery usage on mobile 

devices by avoiding expensive decompression from highly 

compact formats such as JPEG/PNG. However, generating and 

using compressed textures comes at a cost, including, 

compressed textures are significantly larger compared to the 

same image quality in JPEG/PNG formats and they tend to be 

hardware and platform specific (different platforms require 

different type of compressed textures) – creating challenges in 

storage and transmission. Lastly, creating compressed textures is 

also prohibitively slow even when using state of the art 

compression software. For example, ETC2 (a compressed texture 

format native to GPUs on mobile platforms) and PVRTC (GPU 

native compressed texture supported on Apple Ax/M1 chipsets) 

are on average about 100x magnitude order slower compared to 

the generation of DXT (using Intel SSE compressor) which is a 

GPU native compressed texture format usable on desktop 

platforms (Belayneh, T., Khronos 3D Formats Working Group, 

2022). 
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Table 3. GPU Compressed Texture Format Fragmentation. Multiple GPU Compressed Texture formats with varying levels of support 

across diverse platforms. (Khronos Group, 2021). 

 

Until the introduction of GSTs – GPU-decodable 

Supercompressed Textures (Krajcevski et al., 2016), GPU native 

compressed image generation was extremely specialized and was 

tightly coupled to specific hardware/platforms (see Table 3). 

Before GSTs, there wasn’t much option other than redundantly 

generating the same texture and distributing it in the various 

compressed texture format flavors, targeting specific platforms. 

 

GSTs allowed creating a supercompressed texture format once 

and being able to transcode it on the GPU to the native 

compressed texture format supported on the target platform. The 

general idea behind GSTs is to further compress endpoint texture 

compression formats such as DXT, ETC2 and PVRTC – 

significantly reducing the payload size (Krajcevski et al., 2016) 

(which are typically 3X larger compared to JPEG/PNG – even 

after further lossless LZ77 re-compression). The reduction in 

compressed texture size coupled with just having to deal with a 

single texture asset that works everywhere, allows asset creators 

the ability to create and transmit GPU native textures to any 

desired platform. GSTs came to further widespread usage with 

the introduction of Basis Universal Texture format by Binomial 

(Geldreich, R., 2022). 

 

Performant 3D systems routinely utilize compressed textures, as 

an essential optimization technique to support the loading and 

display of massive amounts of textures in 3D applications.  

 

The addition of Basis Universal compressed texture in KTX™2.0 

containers in I3S OGC 1.2 brings excellent decoding speed, great 

compression rates while keeping the visual quality and fidelity 

intact. Basis Universal, defines a ‘universal’ compressed texture 

format that can be efficiently transcoded at run-time into a 

natively supported GPU format on the target device, allowing the 

compressed texture files to operate cross-platform. The resulting 

texture files are comparable to JPEG/PNG in quality and 

transmission size but consume only a fraction of the GPU 

memory

 

 

Figure 4. Figure showing evolution of OGC I3S V1.2. An ArcGIS JSAPI based side-by side compare application, https://tamrat-

b.github.io/i3sBasisKTX20, demonstrating OGC I3S 1.2 client-side memory reduction improvements. The app has various bookmarks 

where on average I3S 1.2 shows over 60% client-side memory savings when the input I3S layer is JPEG vs Basis Universal 

SuperCompressed texture in KTX™2.0 container. 
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3. BASIS UNIVERSAL SUPERCOMPRESSED 

TEXTURE ENCODER OPTIMIZATION  

In the 3D graphics industry, when it comes to compressed texture 

assets, there has been much focus in maintaining quality and size 

as optimal as possible. However, less emphasis and effort has 

gone into improving the encoding rates of assets. In other words, 

the encoding codec was relegated to a back-office task that must 

be done once to get the many runtime advantages it brings to the 

fore - which was also the case for the Basis Universal Texture 

codec as well.  

 

3.1 Phase 1 Optimization 

Geospatial users, typically generate content and have a need to 

share, modify and republish content frequently, typically 

modelling real world scenarios that change based on various 

factors. As a result, it is critical for geospatial users to be able to 

generate supper compressed textures in reasonable amount of 

time. In early 2020, Esri collaborated with Binomial, to improve 

the Basis Universal encoder speed by a factor of at least 3X 

(Belayneh, 2021).  

 

In fact, as it can be seen from Table 1, there is about ~4X 

improvement in performance for larger textures (2k-4k) brought 

by Basis 1.13 encoder for the same quality (measured as a 

function of Y-PSNR) and file sizes across various I3S dataset 

types. This was very encouraging result especially as the 

optimization was brought about with very minimal loss in quality 

(less than 3db) or significant increment in file size (less than 5%). 

 

Image Opt 1  Opt2 Pre- 

Opt3  

Factor
4 

Factor
5 

FrankFurt_4

k 

5.12 4.62 14.2

3 

2.78 3.08 

Mesh_1k 0.3 0.26 0.91 3.01 3.57 

NYC_2k 1.48 1.33 5.22 3.51 3.91 

SanFran_4k 8.68 6.45 23.4

6 

2.7 3.64 

chateau_1k 0.72 0.63 1.96 2.72 3.13 

Rancho_4k 6.46 5.82 23.2

3 

3.6 3.99 

Singapore_2k 1.08 0.89 3.36 3.11 3.78 

 

Table. 4 Compares the encoding optimization gained for various 

I3S datasets by using Compression Level 1 and the new 

geospatial focused compression level 0 settings (using single 

multithreading). Less values in the Opt columns means the task 

completed faster. 
 

1 Post-Optimization (Using SSE 4.1, comp_level 1) encoding 

time (Secs) 
2 Post-Optimization (Using SSE 4.1, comp_level 0) encoding 

time (Secs) 
3 Pre-Optimization encoding time (Secs) 
4 Improvement Factor (Using Comp_level_1) 
5 Improvement Factor (Using Comp_level_0) 

 

However, even with all the improvements that went into 

improving Basis Universal encoder, the wall-clock times for 

encoding Basis Universal compressed texture still lagged, by 

order of magnitudes, when compared to the encoding times of 

other compressed texture formats such as DXT1-5/BC3-5 – 

though it needs to be pointed out, most of the other formats are 

device and platform specific and result typically in 6X or more 

bigger payload than Basis Universal compressed texture files. 

 

As encouraging and transformative those results were, we knew 

we were not done and work on further improving it began soon 

after, especially to leverage GPUs to dramatically improve the 

encoding times. 

 

3.2 Phase 2 Optimization  

The second collaboration with Binomial, added performance 

improvement to CPU based encoding and introduced the ability 

to use GPU to generate Basis Universal SupperCompressed 

texture and was released in late 2021.  

 

Compressed texture asset creation in geospatial applications 

tends to be a batch process, where many of the texture assets to 

be converted will be generated a-prior, during the asset creation 

phase and are typically queued up for conversion later during the 

optimization phase. For example, 3D meshes produced by the 

likes of SURE™ for ArcGIS, a surface reconstruction software 

that empowers you to create photo-realistic models using datasets 

captured via both large-frame nadir and oblique cameras as well 

as hybrid systems with lidar sensors, are good examples of such 

a use case. In geospatial applications its common to generate very 

large datasets covering a cityscape or a site resulting in an I3S 

SLPK (Scene Layer Package) layer with tens of thousands of 

textures, suitable for batch submission to the GPU to be 

converted in parallel, taking advantage of powerful GPU devices 

that might otherwise be idle.  

 

There are plenty of applications that bring about dramatic 

performance improvements to traditionally CPU bound intensive 

tasks by leveraging GPUs. With ever improving GPU texture 

bandwidth and faster ROP operations, using the GPU to encode 

textures is a well-researched and established arena.  

 

This is also true in geospatial applications which tend to have 

further requirements: on one hand geospatial users, like online 

video games etc… would benefit from readily available, highly 

optimized GPU friendly compressed texture resources, especially 

when consuming large city/nationwide 3d mesh data. 

But their needs do not end just at the consumption level, as they 

also generate, alter, modify, and publish 3D content using various 

tool sets available at their disposal. As a result, access to a 

performant texture encoder library is key in being able to create 

multiple iterations/scenarios, typically done multiple times in 

modelling scenarios (Belayneh, T., Khronos 3D Formats 

Working Group, 2022). 

 

Another key requirement in this workflow is that any 

optimization brought about by leveraging GPUs needs to 

universally work as most geospatial applications tend to be 

deployed in various platforms with varying capabilities and 

hardware characteristics. As a result, we opted to standardize 

GPU encoding of Basis Universal not to be specific to any brand 

of GPU or API, but to be based on Khrono’s OpenCL API which 

is supported by all the major GPUs including from vendors such 

as NVDIA™, AMD™ & Intel™, covering both discrete and 

integrated GPUs. 
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Furthermore, we standardized on OpenCL 1.2 version API as it 

is supported by many types and generations of GPUs. OpenCL 

has a well specified computation environment capable of 

coordinating parallel computation across processors in a cross-

platform programming language, very fitting to the central 

premise of Basis Universal compressed texture format as the 

cross-platform GST format that works across a variety of devices 

and operating systems. 

 

 
 

Table. 4 Compares the encoding optimization gained for the texture resources of an I3S dataset by leveraging the GPU using OpenCL™ 

to orchestrate parallel computation as well as CPU improvements gained in version 1.16 vs. 1.15 of the Basis Universal encoder 

libraries. 

 
1 Quadro RTX 5000 @ 1.545 GHz, 1545 Mhz, 3072 Cuda Cores, Memory data rate:  14.00 Gbps, Memory interface:  256-bit, Memory 

bandwidth: 448.06 GB/s, Total available graphics memory: 81779 MB, Dedicated video memory: 16384 MB GDDR6, Driver 

version: 472.42 
2 Quadro RTX A6000 @ 1.800 GHz, 1800 Mhz, 10752 Cuda Cores, Memory data rate:  16.00 Gbps, Memory interface:  384-bit, 

Memory bandwidth: 768.106 GB/s, Total available graphics memory: 81826 MB, Dedicated video memory: 49140 MB GDDR6, Driver 

version: 462.31 
3 Intel(R) Xeon(R) W-10885M CPU @ 2.40GHz, 2400 Mhz, 8 Core(s), 16 Logical Processor(s), Total Physical Memory: 128 GB, 

running Windows 10 Pro for Workstations 64-bit  
4 AMD Ryzen Threadripper PRO 3995WX 64-Cores, 2695 Mhz, 64 Core(s), 128 Logical Processor(s), Total Physical Memory: 128 

GB, running Windows 10 Pro for Workstations 64-bit. 
 

The encoding rate improvement factor of Basis Universal 

encoder 1.16 could be as much as 10x when using GPU in parallel 

compression mode to compress over a thousand texture resources 

with varying texture sizes (ranging from 512 – 4k pixels). As 

expected, the performance gain decreases when queuing up more 

textures (in this case we were compressing ~10x (10,121) more 

textures in parallel), but nevertheless, parallel GPU compression 

in this use case still yields a 4.5X faster rate than version 1.15 

using CPU encoding (running in multi-thread mode with CPU 

compression only (16 threads used per hardware concurrency).  

 

In this optimization phase, not only GPU based encoding was 

introduced but CPU based encoding was also improved for an 

average of 2X. These improvement numbers (up to ~10x factor 

improvement as shown in Table 2) are on top of the existing 3X 

improvement introduced at Basis Universal encoder version 

1.13/1.14 (Basis Universal 1.15 added ability to encode Basis 

Universal in KTX™ 2.0 containers), purely focusing on CPU 

optimizations. 

 

4. CONCLUSION AND FUTURE WORK 

It is evident Geospatial standards such as I3S OGC 1.2 have an 

evolving need to adopt, implement and improve general 3D 

graphics optimizations and usage patterns.  

 

I3S OGC 1.2 introduced 4 areas of improvements, namely, node 

paging, better geometry compression using Draco, advanced 

material support compatible with Khronos® glTF™ standard, 

and reduced client-side memory usage using Basis Universal 

Supercompressed Texture in Khronos® KTX™ 2.0 format, all 

working in concert to bring increased client application 

performance and scalability as shown in Figures 2 and 4 and 

Table 2, respectively. 
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We also described in detail and demonstrated collaborative 

research that culminated in the improvement of Basis Universal 

Texture encoder (Basis Universal library is freely available, 

https://github.com/BinomialLLC/basis_universal, delivered in a 

well-established container format Khronos KTX™ 2.0), further 

paving the way for it to become the de facto format for delivering 

compressed texture assets for 3D geospatial content. 

 

The release of Basis Universal 1.16 culminated in bringing up to 

10x increase in the encoder codec performance over Basis 

Universal 1.15 version when using GPU encoding as shown on 

Table 4. With this release and via the introduction of GPUs to 

complement the texture conversion process, the Basis Universal 

texture format is now creatable at a rate similar to DXT1-

5/BC1,3,7 encoding times, while still keeping its advantage of 

being cross platform and as compact as input source (whereas the 

latter is 3x bigger than input source typically and is platform 

specific. See Table 3). 

 

These improvements are made accessible to geospatial users as 

they are incorporated in the freely available I3S Converter tool, 

https://github.com/Esri/i3s-spec. The current version of the tool 

has incorporated Phase 1 optimizations of the encoder, enabling 

the upgrade of I3S datasets to the latest OGC I3S 1.2 community 

standard version supporting Basis Universal compressed textures 

in KTX™ 2.0 containers. Work is ongoing to incorporate results 

from Phase 2 optimization bringing GPU capabilities as well as 

much faster encode times. 
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