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ABSTRACT: 

 

Forecasting urban metro flow accurately plays an important role for station management and passenger safety. Owing to the limitations 

of non-linearity and complexity of traffic flow data, traditional methods cannot satisfy the requirements of effectively capturing 

spatiotemporal dependencies at the metro network level, which makes it difficult to demonstrate high performance. In this paper, a 

novel deep learning method is proposed based on Graph Neural Networks (GNN), named STGCN-Metro (SpatioTemporal Graph 

Convolutional Network based on Metro network), to forecast the short-term inflow and outflow volumes of metro passengers. The 

proposed model is composed of two spatiotemporal convolutional blocks, which is integrated with the Dilated Convolutional Neural 

Network (DCNN) and Cluster-Graph Convolutional Network (Cluster-GCN). The DCNN is employed with different dilation rates to 

capture temporal dependence in larger receptive field. In addition, compare with GCN, the Cluster-GCN is applied the graph clustering 

algorithms to reduce computational resources considering spatial heterogeneity. A real-world dataset collected in Shanghai metro 

stations is conducted for validation, and the results demonstrate that the proposed model achieves higher performance, outperforming 

some well-known baseline models. 

 

 

1. INTRODUCTION 

Predicting urban metro flow is one of essential mission of the 

Intelligent Transportation Systems (ITS). In particular, realizing 

prediction of flow volume accurately can help passengers to 

make travel planning in advance, alleviate traffic pressure, 

reasonably allocate metro staff and coordinate operation 

schedules (Wang et al., 2021). Therefore, it is fundamental to 

achieve accurate prediction for metro network. 

 

Urban metro flow forecasting is a typical spatiotemporal 

prediction problem. Passenger flow-volume refers to the number 

of metro card-swiping at each station during a fixed period of 

time. From the perspective of spatial, taking the fixed stations as 

nodes and complex metro lines as connection edges, forms a 

graph structure in the network of metro stations. Different 

stations have different degrees of impact on the same station. 

From the perspective of temporal, the flow-volume has varying 

records on certain station as time goes by. Besides, there are 

certain patterns in the inflow and outflow volumes aspect. The 

flow-volume data of different stations has varying influence at 

different times in the future. In a word, the correlations of flow-

volume in metro network reflect powerful dynamics in both the 

spatial perspective and temporal perspective. It means that metro 

flow forecasting should consider two aspects: spatial and 

temporal. How to structure models to explore spatiotemporal 

patterns and extract spatiotemporal correlations in complex 

passenger flow data is an extremely challenging problem. 

 

With the development of computer technology, more time series 

data with geospatial information has been obtained in the field of 

transportation, so that more and more scholars have done a lot of 
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researches on the prediction of these data. Early, classic statistical 

methods were adopted to forecast traffic flow, but the methods 

constrain the highly non-linear feature representability of traffic 

flow data (Yu et al., 2017). Later, the traditional machine learning 

methods have been further applied to complete traffic prediction 

tasks. These methods are based on well-trained samples to 

forecast non-linear traffic flow. However, the performance of 

methods heavily relies on manually extracting feature 

engineering (Guo et al., 2019). Hence, there are difficult to yield 

the best performance. Recently, a growing number of researchers 

are applying deep learning methods to handle high-dimensional 

spatiotemporal data, i.e., Recurrent Neural Network (RNN) 

(Connor et al., 1994) are employed to capture temporal dynamic, 

but ignore spatial dependence; Convolutional Neural Network 

(CNN) (Krizhevsky et al., 2012) is employed to extract spatial 

features of grid-based data. However, there are topological 

relationships and flow correlations between adjacent metro 

stations. Therefore, the convolutional operations based on regular 

grid cannot accurately capture spatiotemporal dependencies at 

the metro network level (Han et al., 2019), which makes it 

difficult to obtain higher prediction accuracy. 

 

In order to overcome these challenges, we present a novel deep 

learning method based on Graph Neural Network (GNN), named 

STGCN-Metro (SpatioTemporal Graph Convolutional Network 

based on Metro network), which is used for passenger flow 

forecasting based on metro network. The main contributions are 

as follows: 

 

(1) The STGCN-Metro model designs a novel spatiotemporal 

block, which is integrated with dilated convolutional neural 
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network and cluster-graph convolutional network. The former is 

adopted to capture the temporal dynamic of traffic flow to model 

temporal dependence. The latter is adopted to capture the spatial 

topological structure of metro network to model spatial 

dependence. 

 

(2) The prediction results of the STGCN-Metro model show 

excellent performance under inflow and outflow volumes of 

passengers, which indicates the short-term forecasting ability of 

model in complex and different traffic flow.  

 

(3) The proposed approach is evaluated on publicly-available 

real-world dataset collected in Shanghai metro stations. 

Experimental results demonstrate our model outperforms other 

well-known baselines. 

 

 

2. RELATED WORK 

Passenger flow forecasting is an important but challenging task, 

for which a number of scholars have conducted extensive 

researches. The researches methods can be divided into three 

categories: the statistical methods, the machine learning methods 

and the deep learning methods (Han et al., 2021). 

 

2.1 Statistical Methods 

The statistical methods belong to mathematical analysis methods 

that predict future values based on historical time series, which 

are used to predict traffic flow, such as History Average (HA) 

model (Brian and Michael, 1997), Kalman filtering (Liang et al., 

2019), AutoRegressive Integrated Moving Average (ARIMA) 

model (Ahmed and Cook, 1979) and its variations the Seasonal 

AutoRegressive Integrated Moving Average (SARIMA) model 

(Ni et al., 2017), etc. The HA model obtains prediction results by 

calculating average values of traffic flow in history periods, 

which is commonly used in baseline model because of simple 

calculation. In addition, the ARIMA model has been frequently 

used to deal with time series, especially for passenger flow 

forecasting. Study proved the ARIMA model has fine results 

though simulation experiment both in accuracy and effect (Liu et 

al., 2021). Moreover, the emergence of hybrid models leads to a 

certain improvement in prediction. Li et al. combined symbolic 

regression and ARIMA to model different forms of relationships 

under the passenger flow dataset, the evaluation results indicate 

the hybrid model outperforms the ARIMA model (Li et al., 2018).  

In view of the dynamic volatility and nonlinearity of the metro 

passenger flow, Chen et al. integrated the Generalized 

AutoRegressive Conditional Heteroscedasticity (GARCH) and 

ARIMA to model mean and volatility of passenger flow to 

achieve the short-term prediction (Chen et al., 2020b). These 

methods have simple algorithm and capture linear feature 

successfully. However, they rely on the stationary assumption 

and fail to consider spatiotemporal correlations. Therefore, these 

methods tend to constrain the highly non-linear feature 

representability of traffic flow data, while the emergence of 

machine learning brings new opportunities. 

 

2.2 Machine Learning Methods 

The machine learning methods are able to reflect complex non-

linear relations of traffic flow data, which can make up the flaws 

of statistical methods. The representative works are K-Nearest 

Neighbor (KNN) (Pinlong et al., 2016), Support Vector 

Regression (SVR) (Smola and Schlkopf, 2004), neural networks 

(Kranti et al., 2013), etc., which are commonly compared to time 

series models. For example, Tang et al. employed ARIMA, linear 

regression and SVR to compare prediction effect of short-term 

passenger flow (Tang et al., 2019). Wang et al. proposed a novel 

hybrid model based on Support Vector Machine (SVM) to 

capture periodic and non-linear features of passenger flow, 

compared with SARIMA and SVM, the model has the best 

performance on unstable weekend and holiday (Wang et al., 

2018). Liu et al. proposed based on the modified  Least-square 

SVM model for forecasting passenger flow on holiday, results 

demonstrate the model outperforms the ARIMA (Liu and Yao, 

2017). To consider the trend factor and time interval factor of 

passenger flow, Bai et al. adopted enhanced KNN method for 

passenger flow forecasting, which gains better performance than 

original KNN method (Bai et al., 2019). These methods can 

extract non-linear feature for complicated traffic flow. However, 

there is still difficult in simultaneously considering 

spatiotemporal correlations of high-dimensional traffic flow. 

Besides, the prediction performance of approaches heavily relies 

on feature engineering that requires abundant expert experiences 

in the corresponding domain. 

 

2.3 Deep Learning Methods 

Compared with the machine learning algorithms, there are deep 

learning methods enable to automatically model more 

complicated dependencies, which has made the focus on 

modeling complicated spatiotemporal data (Aqib et al., 2019). 

The RNN is suitable for handling complicated time series to 

model dynamic temporal dependence. Its successors such as 

Long Short-Term Memory (LSTM) (Hochreiter and 

Schmidhuber, 1997), Gated Recurrent Unit (GRU) (Chung et al., 

2014) are applied for prediction tasks. Considering the irregular 

fluctuation of passenger flow caused by various factors, the 

single LSTM method cannot make great predictions. As a result, 

scholars proposed LSTM in combination with other methods, 

such as Seasonal-Trend decomposition based on Loess (Chen et 

al., 2020a), stacked auto-encoders (Jia et al., 2019), wavelet 

(Yang et al., 2021), evaluation results indicate the hybrid model 

has superior performance than single LSTM. However, these 

methods mentioned only the temporal dependence, while neglect 

spatial dependence. The CNN was originally designed for regular 

grids data (i.e., images). Recently, the CNN models have been 

used to capture the spatial dependence in Euclidean space. Zhang 

et al. proposed CNN-based named DeepST model to forecast 

flow-volume (Zhang et al., 2016). Since then, CNN-based 

models have been frequently applied in passenger flow prediction. 

In order to capture the spatiotemporal dependencies, Zhang et al. 

aggregated the output of the three residual neural networks to 

construct ST-ResNet model, and achieved prediction of regional 

traffic flow (Zhang et al., 2017). Chen et al. proposed Conv-

LSTM hybrid model to extract spatiotemporal features for 

solving the short-term prediction problem of metro congestion 

delay (Chen et al., 2021b). However, these models need to be 

applied for regular grid data, while the traffic flow is essentially 

a graphical data (Wang and Jing, 2022). There are topological 

relationships and flow correlations between adjacent metro 

stations. Therefore, the operation cannot accurately capture the 

spatiotemporal dependencies in metro network. With the 

development of GNN, some models have appeared, such as 

Graph Convolutional Networks (GCN) (Kipf and Welling, 2016), 

Chebyshev networks (ChebNet) (Defferrard et al., 2016), 

diffusion convolutional neural networks (Atwood and Towsley, 

2016), etc. They are more suitable for capturing spatial 

dependence due to that preserve the realistic topological 

information. Meanwhile, the GCN achieves greatly preserve the 

metro network globality by convolving the whole structured 

graphs, which is theoretically superior to CNN that can only 

capture adjacent spatial pattern because of the limited kernel 
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window size (Chen et al., 2021a). Hence, the GNN-based models 

can be applied to effectively capture the irregular spatiotemporal 

dependencies at metro network rather than CNN-based models. 

 

Based on aforementioned background, we proposed a novel deep 

learning method based on GNN that can accurately capture 

spatiotemporal dependencies at the metro network level. 

 

 

3. METHODOLOGY 

3.1 Metro Flow Prediction on Graphs 

In this work, the metro network is defined on graph. The metro 

stations are used as nodes and the connections between stations 

as edges of the graph. At the time step t, in graph 𝐺 =  (𝑉𝑡 , 𝐸, 𝑊), 

𝑉𝑡 is a set of vertices, each of which is denoted observation vector 

of 𝑛  stations at time step 𝑡 ; 𝐸  is a set of edges connected by 

stations; 𝑊 ∈  𝑅𝑁×𝑁  denotes the weighted adjacency matrix. 

The graph 𝐺 processes a feature matrix 𝑋𝑡 ∈  𝑅𝑁×𝐹 at each time 

step 𝑡. Our problem is to forecast the passenger flow in next 𝑇 

time intervals given the graph 𝐺 and historical 𝑠 step values. We 

regard the 𝑛  stations passenger flow information on metro 

network as input data, expressed as 𝑋: 

 

𝑋 =  [𝑋𝑡−𝑠, 𝑋𝑡−𝑠+1, ⋯ , 𝑋𝑡] 

    =  [

𝑥𝑡−𝑠
1 𝑥𝑡−𝑠+1

1

𝑥𝑡−𝑠
2 𝑥𝑡−𝑠+1

2

⋯ 𝑥𝑡
1

⋯ 𝑥𝑡
2

⋯ ⋯
𝑥𝑡−𝑠

𝑛 𝑥𝑡−𝑠+1
𝑛

⋯ ⋯
⋯ 𝑥𝑡

𝑛

]  (1) 

 

Where 𝑋𝑡−𝑖  represents the flow vector counted at the 𝑖𝑡ℎ  time 

intervals before 𝑡 timestamp, and 𝑥𝑗 denotes the passenger flow 

of 𝑗𝑡ℎ  station. Besides, the function 𝑓  maps relation between 

input and output, which is represented as follows: 

 
[𝑋𝑡+1, 𝑋𝑡+2, ⋯ , 𝑋𝑡+𝑇] = 𝑓([𝑋𝑡−𝑠, 𝑋𝑡−𝑠+1, ⋯ , 𝑋𝑡], 𝐺) (2) 

 

3.2 Network Architecture 

This paper defines graph structure based on the metro network 

and focus on constructing model about spatiotemporal graph 

convolutional network of passenger flow. As shown in Figure 1, 

the framework STGCN-Metro is a combination of two 

spatiotemporal convolutional blocks (ST-Conv Blocks) and 

fully-connected output. Each of ST-Conv Blocks contains two 

temporal convolutional layers and one spatial convolutional layer. 

The details of method are described as follows.  

 

Temporal

DCNN + GLU, 

Dilation=1

Temporal

DCNN + GLU, 

Dilation=2

Spatial

 Cluster-GCN

ST-Conv Block

ST-Conv Block

ST-Conv Block

Output Layer

Input

output
 

Figure 1. The framework of STGCN-Metro. 

3.3 Temporal Dependence Modeling 

We adopt the Dilated Convolutional Neural Network (DCNN) 

(Yu and Koltun, 2016) as temporal convolution layer to capture 

temporal dependence. Although RNN-based methods are 

commonly used in time series analysis, the method suffers from 

complicated gating mechanisms and time-consuming iterations 

(Yu et al., 2017). Conversely, convolutional neural network is 

simple in structure as well as efficient in training. The DCNN 

adds dilation to standard convolution map, which allows to 

increase large receptive field for wider range of information and 

reduce calculation complexity (Sun et al., 2020). In this work, 

stacking two convolution layers with different dilation rates can 

capture multi-scale contextual information, which not only 

reduces computational resources, but also increases the 

sensitivity of the temporal component. 

 

In addition, the Gated Linear Units (GLU) are proved powerful 

to control information flow (Dauphin et al., 2017). Therefore, the 

GLU are used for convolutional network in temporal layer. They 

can retain the non-linear characteristics of complex dataset (Xu 

et al., 2021). Mathematically, given the input X∈𝑅𝑁×𝐹×𝑇 , 

representing 𝑓  feature matrix of 𝑛  points in 𝑡  time series, the 

gating mechanism is represented as: 

 

 𝐻 = 𝑔(𝑋 ∗ 𝑘1 + 𝑏) ⨀ 𝜎(𝑋 ∗ 𝑘2 + 𝑐)  (3) 

 

Where 𝑘1 , 𝑘2  are convolutional kernels, 𝑏 , 𝑐  are the model 

learnable parameters, 𝑔(∙) is the activation function, 𝜎(∙) is the 

sigmoid function that controls the pass of information to next 

layer, and ⨀ is the element-wise Hadamard product. We take the 

DCNN as convolutional approach, and then through gating 𝐴 ⊙
𝜎(𝐵) gains output layer in this paper, which is able to capture 

complicated temporal dependence.  

  

3.4 Spatial Dependence Modeling 

We adopt Cluster-Graph Convolutional Network (Cluster-GCN) 

as spatial convolution layer to acquire spatial dependence. The 

traditional methods, such as CNN and CNN-based variants, 

cannot reflect the complex spatial topological structure well for 

metro network. In contrast, the GCN is often applied by scholars 

due to its ability to process graph structured data (Zhao et al., 

2020). After that, (Chiang et al., 2019) proposed the expansion 

of GCN, named Cluster-GCN. The graph nodes clustering 

algorithm is employed to divide the nodes of the graph into 

multiple clusters, the nodes of these clusters and the 

corresponding edges are formed into subgraphs, and then using 

subgraphs to train separately. (Chiang et al., 2019) shows the 

difference between traditional graph convolution and Cluster-

GCN approach. In Figure 2, it defines a red node as starting node, 

which is used for neighbourhood nodes expansion. As the 

number of layers increases, eventually a forward propagation of 

the red node needs to use all nodes of the graph, while Cluster-

GCN cuts the original large graph into two small subgraphs, 

reducing the memory pressure. In comparison with GCN, that is 

shown to be significant to improve the utilization by sampling the 

subgraph and limiting neighbourhood search within the subgraph 

(Chiang et al., 2019).  Besides, the spatial heterogeneity is 

considered, and the phenomenon of over-smoothing is less 

frequent. Therefore, by approaching Cluster-GCN to capture 

spatial dependence with less layers reduces computational 

resources and guarantees extraction accuracy. A 𝑙-layer Cluster-

GCN can be expressed as: 

 

     𝑋𝑙+1 =  𝜎 ((𝐴̃ + 𝜆 𝑑𝑖𝑎𝑔(𝐴̃)) 𝑋𝑙𝑊𝑙)  (4) 
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Where 𝑋𝑙  and 𝑋𝑙+1  denotes feature input and output matrix 

respectively, 𝐴̃ = (𝐷 + 𝐼)−1(𝐴 + 𝐼) represents to add identity to 

𝐴 and normalization. 𝐴 , 𝐷 denotes adjacency matrix and degree 

matrix respectively. 𝑊𝑙 is the weighted matrix in 𝑙-layer, 𝜆 is the 

learnable parameter, and 𝜎(∙) is the sigmoid function. 

 

 
Figure 2. The neighbourhood expansion contrast of (a) 

traditional graph convolution and (b) Cluster-GCN model. 

 

In addition, geographically speaking, we take the distance among 

stations as an important factor in the Cluster-GCN module. The 

adjacency matrix of metro graph is calculated by normalizing and 

exponential function the distances in the metro network. The 

adjacency matrix with weighted 𝑊 is formed as: 

 

                            𝑊𝑖𝑗 =  {
𝑒𝑥𝑝 (

𝑑𝑖𝑗−𝜇

𝜎
) ,   𝑖 ≠ 𝑗

   0     ,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (5) 

 

Where 𝑑𝑖𝑗  denotes the distance along the metro network between 

station 𝑖 and station 𝑗 , which decides the weight of edge 𝑊𝑖𝑗 . 𝜇 

and 𝜎  is the mean and standard deviation of distances 

respectively. 

 

In summary, the STGCN-Metro model is feasible in handling 

spatiotemporal dependencies. On the one hand, the DCNN with 

gating mechanism is used to obtain temporal feature of passenger 

flow information for capturing the temporal dependence. On the 

other hand, the Cluster-GCN is used to obtain complex spatial 

topological structure of metro stations network for capturing the 

spatial dependence. And stacking these spatiotemporal 

convolutional layers builds two ST-Conv Blocks to achieve flow 

prediction task. 

 

 

4. STUDY AREA AND DATASET 

In this paper, Shanghai, a developing rapidly city in China, is 

selected as our study area. The metro stations have become a 

network and surrounded by commercial areas, education areas, 

and residential areas, etc., so the passenger flow is highly 

concentrated. There were 14 metro running lines with 289 metro 

stations for metro system in 2015, as shown in Figure 3.  

 

The metro flow datasets including inflow and outflow volumes 

are counted by card-swiping data of Shanghai, from Apr.1 to 

Apr.30, 2015. The card-swiping data provides lots of information 

for metro operators including passenger ID, transaction date, 

transaction time, current station, transaction amount and 

transaction nature (e.g., preferential, non-preferential). It appears 

about nine million records per day. When the transaction amount 

is equal to 0, we define this card-swiping record as inbound status, 

otherwise, it is defined as outbound status. Taking the metro 

operating schedules and human activities into account, we select 

the time between 6:00 and 23:00 as study period. The passenger 

flow of stations is aggregated in 5-minutes intervals, so each 

station contains 204 time points per day. 

 

 
Figure 3.  Shanghai metro network. 

 

 

5. EXPERIMENT 

5.1 Experimental Settings 

All experiments are implemented with Python3 programming 

language and the Pytorch deep learning packages. For the inflow 

and outflow volumes prediction, the settings of two ST-Conv 

Blocks in STGCN-Metro model are equivalent. The dilation rates 

of the DCNN model are 1, 2 respectively. And the Cluster-GCN 

model layer is set to 1. In this work, the Mean Square Error 

(MSE), reflecting the deviation of the ground truth and prediction 

value, is employed as loss function and minimized for 100 epochs. 

The batch size is set to 64 and the learning rate is set to 0.001. It 

is worth noting that the same parameters are also taken in the 

baseline models. Additionally, 80% of the flow-volume is 

utilized for training and the 20% is utilized for testing. It means 

that the passenger flow before Apr.24 is applied as training set, 

which contains eighteen weekdays and six weekends. And the 

remaining six days after Apr.24 is applied as testing set, which 

contains four weekdays and two weekends. Furthermore, we use 

the last 12 window values to predict the next window values, that 

is to say, 1-hour records are used to predict flow-volume in the 

next 5 minutes. 

 

5.2 Evaluation Metrics 

In order to evaluate the performances of the proposed model and 

baselines, the two widely metrics that Mean Absolute Error 

(MAE) and Root Mean Squared Error (RMSE) are chosen. The 

metrics calculations are expressed as: 

 

  𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑦𝑖 − 𝑦̂𝑖|𝑛

𝑖=1   (6) 
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                            𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1   (7) 

 

Where 𝑛  is the values number, 𝑦𝑖  and 𝑦̂𝑖  are passenger flow, 

representing the ground truth and prediction value respectively. 

In generally, the smaller the results obtained by the above two 

formulas, the smaller the prediction errors of the model. 

 

5.3 Baseline Methods 

We compare STGCN-Metro model with the following six 

baseline models: 

 

HA (Brian and Michael, 1997): Historical Average method. The 

last an hour average value of passenger flow-volume as the 

prediction value. 

 

LSTM (Hochreiter and Schmidhuber, 1997): Long Short-Term 

Memory network, a special form of RNN. 

 

GRU (Chung et al., 2014): Gated Recurrent Unit network, a 

special form of RNN. 

 

GCN (Kipf and Welling, 2016): Graph Convolutional Network, 

a basis model of traffic prediction, which is composed of pre-

defined graph convolutional layer components.  

 

TGCN (Zhao et al., 2020): Temporal Graph Convolutional 

Network, which processes temporal features with GRU on the 

basis of graph convolution. 

 

STGCN (Yu et al., 2018): SpatioTemporal Graph Convolution 

Network. The graph convolution and 1D convolution networks 

with GLU function are adopted to the spatial and temporal feature 

extraction respectively. 

 

 

6. RESULT AND DISCUSSION 

In this paper, two evaluation metrics are selected as the basis for 

our experiment. We compare the proposed model and baselines 

in inflow and outflow volumes prediction, the results are shown 

in Table 1.  

 

Model Inflow Outflow 

 MAE RMSE MAE RMSE 

HA 21.70 46.45 27.76 61.18 

GRU 18.12 44.96 27.35 65.61 

LSTM 15.57 42.87 23.83 61.49 

GCN 12.34 22.48 19.64 36.99 

TGCN 12.68 28.72 19.08 44.03 

STGCN 11.92 21.95 18.70 35.69 

STGCN-

Metro 
11.65 21.23 17.87 34.73 

Table 1. Results comparison of different methods. 

 

The following can be thought: (1) The STGCN-Metro processes 

the best performance in evaluation metrics, which demonstrates 

the advantages of this model in extracting spatiotemporal 

dependencies. (2) The GRU and LSTM models achieve better 

prediction precision than statistical model, such as the HA model, 

since take the extraction temporal dependence into account. (3) 

Compared with the GRU and the LSTM models, the neural 

network-based models, including the GCN model, the TGCN 

model and the STGCN model, which emphasize topological 

relationships and flow correlations between adjacent metro 

stations, generally have higher prediction results. (4) The MAEs 

of the GCN model are closed to the TGCN model whether inflow 

or outflow volume. However, the RMSEs of the GCN model are 

reduced by approximately 21.7% and 16.0% compared with the 

TGCN model in the inflow and outflow prediction respectively, 

which means that applying GRU to extract temporal dependence 

based on GCN cannot be combined well. (5) The MAEs and 

RMSEs of the STGCN model are the second smallest values both 

in the inflow and outflow volumes. It shows that the feasibility to 

consider temporal and spatial dependencies separately on graph 

neural networks, but the method employed can be further 

optimized. 

 

From the test results of inflow and outflow prediction in Table1, 

it can be seen the STGCN-Metro model, the STGCN model and 

the GCN model perform well. As a result, three models are 

chosen to explore more details. In this work, we take the crowded 

Xujiahui station in weekday as an example, Figure 4 and Figure 

5 show the performance of three models for inflow and outflow 

volumes prediction. The overall fluctuation trend in predictions 

looks roughly similar. However, the model is superior to 

baselines in the morning and evening peaks, such as the evening 

peak of inflow volume around 18:00, the morning and evening 

peaks of outflow volume around 9:00 and 18:30. It shows that the 

proposed model is more sensitive than other baseline models in 

predicting peak passenger flow. At the same time, it also proves 

that the effectiveness of the model in spatiotemporal prediction. 

The property is meaningful for predicting station congestion and 

protecting metro operations. 

 

 
Figure 4. Inflow volume prediction in weekday. 

 

 
Figure 5. Outflow volume prediction in weekday. 

 

 

7. CONCLUSION 

In this paper, we propose a novel deep learning method based on 

graph neural networks, named STGCN-Metro, to predict the 

short-term passenger inflow and outflow volumes at the citywide 
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metro network. The model is a combination of two 

spatiotemporal convolutional blocks, each of which contains two 

temporal convolutional layers and one spatial convolutional layer. 

In temporal convolutional layer, the DCNN model is employed 

with different dilation rates to capture temporal dependence in 

larger receptive field. In spatial convolutional layer, compare 

with GCN, the Cluster-GCN is applied the graph clustering 

algorithms to reduce computational resources considering spatial 

heterogeneity. The effectiveness of the model is proved by real-

world dataset collected in Shanghai metro stations. Experimental 

results demonstrate our model outperforms other well-known 

baselines (i.e., HA, GRU, LSTM, GCN, TGCN, STGCN). The 

model achieves end-to-end prediction that can accept the raw 

format of input data and automatically extract the feature from 

passenger flow. Besides, it has ability to capture spatiotemporal 

dependencies to gain better prediction accuracy. This work can 

not only assist passengers to make travel planning in advance, but 

also provide references for relevant metro departments to make 

effective plans. In the future, it is worth to consider other factors 

that affect passenger flow, such as urban structure, population 

density, weather, etc., to achieve more accurate prediction. 
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