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ABSTRACT:

In Germany, accidents are collected nationwide, including also bicycle accidents. To determine accident-prone locations, it is
necessary to not only look at the number of accidents but also in relation to the absolute number of cyclists traversing that location.
Thus, this study exploits a collection of bicycle accidents in combination with estimated cyclist volumes on street level in Hanover
(Germany). The basis for the generated bicycle volumes is the resulting origin-destination demand for bicycle mode from an agent-
based traffic simulation model. A normalization of the accidents by an absolute bicycle volume allows to estimate a risk score and
to compare high frequented ways with less popular minor paths in an objective manner. This method is used to show locations with
comparatively high risk for cyclists. Besides highlighting these spots on a map, e.g. for city planners, the resulting risk scores can
be integrated into bicycle routing to avoid those areas for future trips.

1. INTRODUCTION

Bicycling has experienced increased popularity as transporta-
tion mode, especially for shorter everyday trips in urban areas.
The support of bike traffic is also becoming a political issue, as
it is expected to reduce traffic congestion and have ecological
and health benefits (Pucher and Buehler, 2017).

(Ravensbergen et al., 2020) identified distinct factors in their
work discouraging people from cycling (on certain trips). A
fear of accidents with cars and resulting injuries was mentioned
by every participant in their survey. There has already been
work from different perspectives on the analysis of cyclists’
safety and relevant factors ((Vanparijs et al., 2015)), (Johnson et
al., 2010), (Jaber et al., 2021)). This includes works to identify
general accident causes and aspects on an abstract level, or
comparative works on regional differences or influences of spe-
cific infrastructure types. These studies of the general factors
influencing the risk of cycling are very wide-ranging, but also
often without specific geospatial reference.

Consequently, this work will not be further discussed here since
the focus of this research relies on integrating reported acci-
dents and their network locations with a corresponding bicycle
demand from given origin-destination information. In particu-
lar, the spatial location of an accident has to be related to the
quantity of bicycles to extract accident spots causing a dispro-
portionately high number of accidents. This methodology al-
lows us to identify accident locations in a network where a tra-
ditional analysis would not necessarily reveal them since these
spots do not appear to be remarkable due to their absolute fre-
quency. An edge-specific bicycle traffic volume is essential for
this approach. This demand can be derived either from real data
or from traffic demand models.

Some works like (Wu et al., 2018), utilize surveys to analyze
perceived cycling safety for different situations and locations
in a city. One recent crowd-sourcing, but more sensor and
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data-driven approach by (Karakaya et al., 2020), utilizes smart-
phones to detect near-accident, which can be observed more
frequently than actual accidents. However, a challenge remains
to classify the events reported by the participants in a repres-
entative and objective manner. Local infrastructure character-
istics aside, accidents in absolute terms occur more frequently
at high-traffic sites than at low-traffic sites, so the volume of
(bike) traffic should be included in comparative analyses. Even
though it is now easier than ever to collect mass and diverse
movement data, it is primarily commercial data as in (Lee and,
Sener, 2021)) that is still limited in its use and availability. Espe-
cially, estimating and adjusting the representativeness in retro-
spect is challenging. (Medeiros et al., 2021) used a commercial
dataset from the provider BikeCitizens in their work to determ-
ine a detailed bicycle traffic demand.

In addition to real data, there is also a high potential in applying
traffic demand models. (Loidl et al., 2015) utilized a specific
agent-based bicycle traffic model (Wallentin and Loidl, 2015)
with an integrated, explicitly geospatial approach to conduct a
bicycle safety and accident analysis. This detailed approach
requires a specific bicycle model, which is not always available
as the primary focus, especially in field of transport demand
modeling, is often on the motorized traffic.

Due to the lack of appropriate real world bicycle volume data
or a detailed bicycle model, our work provides its own estim-
ation methodology as a first step. Therefore, this study ex-
ploits a collection of actual accidents in combination with bike
traffic volumes based on a socio-demographically representat-
ive transportation demand model (Bienzeisler et al., 2020). Un-
like some bicycle traffic simulations that are limited to a specific
roadway like (Grigoropoulos et al., 2021), the demand fully
represent the study area of the city of Hanover (Germany) and
thus provides an objective overview. The derived absolute bi-
cycle volumes allow to normalize the respective bike accidents
to a risk score and to compare highly frequented ways with less
used minor paths.

This enables an estimation of the relative risk for cyclists to be
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Figure 1. Heatmap of all listed accidents involving cyclists from 2017 to 2020 in Hanover city.

injured on certain streets based on the accident history. The
results can be used for the identification and mitigation of com-
paratively dangerous spots in the network. In addition, it is re-
quired to analyze possible reasons for the accidents and to take
it into account in further urban planning. Further, derived risk
scores can be integrated into bicycle routing to avoid corres-
ponding areas for future trips.

2. STUDY AREA AND DATA

This paper focuses on the city of Hanover as a case study. It is
the state capital of Lower Saxony in the north-western part of
Germany. The city center is enclosed by a ring of main streets
(called Cityring), from which other main axes branch off in a
star shape. Much of the bicycle traffic is oriented along these.
Between them are densely populated neighborhoods adjacent
to the center, some of which are separated by large areas of
parkland, woodland and water, but which are well accessible
for bicycles. Towards the outskirts of the city, large commercial
and industrial sites complement the less dense residential use.
There are relatively few and only minor hills in the city area.

Specific data sets used for this work are presented in the follow-
ing subsection.

2.1 Accident History

In our work, the term (traffic) accident is chosen because it de-
scribes an undesired incident with negative consequences, al-
though it is explicitly not meant to be read as an unavoidable
situation here. The otherwise common term incident seems to
be a bit too general in the context of the data used (with personal
injury), since near accidents would also be included. These are

of course to be avoided as well, but are not part of the data set
used.

In Germany data of accidents is public available for the years
2017-2020 via the Unfallatlas (Statistische Amter des Bundes
und der Lander, 2021). Only those resulted in damage to per-
sons and reported by the police are included into this collection.
Beside different location and time attributes, further given in-
formation on the accident is for example: involved types of road
users, maximum severity (slightly/seriously injured or death),
incident type and light and road conditions. A full list can be
found in the German data information sheet.

According to these criteria, 4 174 entries remain. Of these, 88 %
resulted in minor injuries, 11 % in serious injuries and about
0.2 % (10 in total) in deaths. They are distributed over the en-
tire city area in figure[T] but are concentrated especially towards
the edge along the main axes and intersections. Further they
are categorized by UART and UTYPI, so types of accidents.
For UART, 48 % are group 5 (collision with turning/crossing
vehicle), 26 % are group O (other), and groups 1, 3, 4, 6 are
assigned around 5 % each. For UTYPI, 33 % type 3 (enter-
ing/crossing accident), 23 % type 2 (turning accident), 13 %
type 7 (other), 12 % (driving accident) type 1 and the rest are
represented by 3-8 % each.

As can be seen in figure |I[, most of the accident hotspots for
cyclists in absolute terms are located along the main roads and
intersections around the city center. However, as in the case of
motorized traffic, these also have a significantly higher cyclist
frequency than minor streets or paths, so the relative accident
risk of individual cyclists may have to be allocated differently.
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Figure 2. Simulated cyclist volume in the study area (Hanover, Germany), symbolized by light yellow (low volume) to dark black
(high volume). Bicycle counting stations are marked with dots.

2.2 Bicycle Demand

The used bike demand is derived from a transportation simu-
lation of Hanover by (Bienzeisler et al., 2020). A city wide
multi-modal traffic demand model was implemented based on

based on season and continuous changes in peoples’ behavior
during the Corona pandemic and related constraints. However,
no detailed values are available for the reference year, only total
sums at (Landeshauptstadt Hannover, FB Planen und Stadtent-|
|wicklung, 2021). Due to the lack of station-wise values from

the agent-based simulation framework MATSim (Horni et al.,
[2016). It adapts peoples’ day schedules and trip chains from the
German mobility survey Mobilitit in Deutschland 2017 with
specific data and was calibrated to Hanover traffic data. As in
many other transportation simulations, the focus was on mo-
torized traffic and no specific bike routing or scoring was im-
plemented. For this study, only the resulting demand of bike
trips (origin-destination pairs) is exploited, representing a 10 %
sample of daily mobility in the city of Hanover. Simulating only
a fraction of the total population is a common practice to reduce
the required computing power when running complex MATSim
models. In this way, a total of 31627 trips were obtained for the
exemplary weekday of 2017.

Other sources of origin-destination data would also be possible,
such as from bike or e-scooter sharing services
[al., 2021)), to bypass the effort to create an own complex traffic
model. However, these samples must be assumed to have spe-
cific usage behavior and therefore lack representativeness for
bicycle trips in general. Due to the population generation in
the simulation, a demographical representativeness for Hanover
can be assumed in the data used here.

Around the city center in Hanover are installed 14 permanent
bike counting stations (dots in ﬁgure@) at traffic arteries. Latest
counts are accessible via the web portal (VMZ Ni and Region|
[Hannover, 2021), but daily ones only for 30 days and monthly
ones for two years. Relevant variations can be seen in the daily
ones by day of week and weather, but also in the monthly ones

the simulation year, counts for four weeks at the end of October
2021 are selected. The median of the weekdays Tuesday to
Thursday is formed in order to smooth short-term variations. In
comparison, the values are in the annual average and in total no
significant increase to 2017 can be identified. The set of counts
is selected as reference for section .11

2.3 Way Network

The popular open-data platform OpenStreetMap is used to ex-
tract bikeable way geometries based on related tags characteriz-
ing those segments and transform it to a routable network graph
via the tool osm2pgrouting. Further, the result was inspected
and adjusted manually. The network is interpreted bidirection-
ally, as large parts of the infrastructure are open for bicyclists
in both directions and otherwise less attention is paid to this in
practice.

In addition, the slope of all paths was calculated from the digital
terrain model (Landeshauptstadt Hannover, Bereich Geoinfor-|
with a high ground resolution of one meter. The
slope of a segment results from its height difference in relation
to the segment length.

3. METHODOLOGY

Figure [3] gives an overview of the workflow. Accidents are to
be filtered and matched and bicycle volumes to be estimated as
components of the final risk score.
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Figure 3. Data processing diagram.

3.1 Accident Processing

As a first step, the accidents are filtered to those within the Han-
over study area and with bike involvement. No general weight-
ing of the accidents according to their severity is applied, be-
cause the focus in this study lies on accident-prone areas. Thus,
each accident counts equally.

Next, based on the given location, they are matched to the
neighboring (within 20 m) network segment with highest bi-
cycle volume. This prevents accident hotspots on main roads
from spreading to low frequented side roads. To include also
intersection points into the study, the accidents of adjacency
edges are additionally assigned to each node to include them as
well.

3.2 Bicycle Volume Estimation

Due to another focus of the original MATSim simulation, the
bike trip demand has not been routed and only their origin-des-
tination pairs were output. First, this must be realized in order
to derive a representative daily bicycle traffic per network seg-
ment. In a first version this is done with shortest-paths, simply
optimized by segment lengths. Since the simulation represents
a 10 % sample of agents, each segment pass is weighted accord-
ingly as ten.

In a second version, the ten shortest routes for each origin-desti-
nation pair are calculated and a weighted choice is realized. The
probability for each route alternative is derived from estimated
utilities, based on the proposed route choice model of (Huber|
et al., 2021). Via ten draws with replacement a upscaling to
100 % is simulated, while preventing exaggeration of picked
routes like in version 1.

3.3 Risk Score Definition

In general, risk describes the number of incidents in relation to
the number of opportunities. So transferred to this case

risk — accidents ’ )
volume

analogous crashes by exposure in (Molino et al., 2009).

For better clarity and transferability, it is convenient to normal-
ize the values used to a consistent period of time. In this case,

the number of average accidents per year (data are from four
years) is calculated and the bicycle volumes are also extrapol-
ated to a year, so an accident probability by passing cyclist can
be derived. The previous mid-week day bicycle volumes are
projected to a year using the average weekly distribution from
(Landeshauptstadt Hannover, FB Planen und Stadtentwicklung,
2021)) and 365 days.

4. RESULTS

Following the procedure described above, the data discussed
at the beginning were prepared and processed for the city of
Hanover. First, the cyclist traffic volumes were generated in
order to be able to use them for normalizing the accidents to
risk scores.

4.1 Bicycle Volume

The resulting bike volumes of both approaches (versionl and
version 2) are compared against the values of permanent bike
counting stations in table [I] In total, the overall sum of sim-
ulated volumes differs by 153 % in version 1 and by -8 % in
version 2 from the ground truth sum at the counting stations.
Significant deviations arise when looking at individual count-
ing stations. Version 1 obviously performs worse, compared to
version 2, whose route variation seems to lead to a more real-
istic distribution. Thus, version 2 is visualized in figure |Z| and
used for further analysis. At six stations the deviation is below
50 %, at five others below 80 % and at three others up to several
factors. Station 1 is almost ignored in the simulation. For sta-
tions 7 and 10, on the other hand, the volume was estimated to
be two to three times too high, whereas their respective stations
across the street show hardly any deviation from the target. Pos-
sible reasons for this deviations are discussion in section 3.11

4.2 Risk Score

The resulting bicycle volumes for each way segment are used to
normalize the matched accidents based on the risk score defin-
ition in section [3.3] In order to smooth the results and not pay
excessive attention to individual underrepresented outliers, only
segments with a minimum volume of 100 and more than one
accident are further taken into account.
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Figure 4. Histogram of the risk score distribution and marked
median at 0.17e-5 and 95-quantile at 0.95e-5.

The resulting distribution of risk scores is given in figure[d] with
the median at 1.7e-6 and the 95-quantile at 9.5e-6. In other
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Reference Simulated Volume

ID | Station Name Count vl A [%] v2 A [%]
1 Walderseestralle 3251 180 -94 50 -98
2 Lister Meile 3739 6950 86 2744 -27
3 Klagesmarkt 2724 | 5330 96 1717 -37
4 Lange Laube 2786 | 11110 | 299 4489 61
5 Justus-Garten-Briicke 4321 3870 -10 1166 -73
6 Stadtparkweg 2461 3750 52 1532 -38
7 Friedrichswall Nord 2003 15740 686 5803 190
8 Friedrichswall Siid 2182 6830 213 2634 21
9 Schwarzer Bar Nord 2724 9040 232 2636 -3
10 | Schwarzer Bir Siid 1408 | 16970 | 1105 6232 343
11 | Hildesheimer Str. Ost 3552 7340 107 2885 -19
12 | Hildesheimer Str. West | 2272 3120 37 1088 -52
13 | Rudolf-v.-B.-Ufer Ost 635 770 21 219 -66
14 | Rudolf-v.-B.-Ufer West | 3389 3850 14 1362 -60

Sum 37444 | 94850 153 34557 -8

Table 1. Overview of bike counts at the reference stations and the two simulated versions with volume per day (v1 & v2) and relative
error (A) to the reference.

words, for bicyclists, the estimated chance of an accident at half
of the spots considered (i.e. spots with more than one accident
and 100 bicyclists per day) is less than 1:600000. At nearly
5 % of the spots, it is more than 1:100 000.

However, the results also allow a look at individual sections
based on their risk score. Figure [5] shows the resulting 5 %
spots with the highest ratio of accidents to cyclists with crosses.
The top ten riskiest spots are highlighted in green. Additionally,
the heatmap of figure (1| is given for direct comparison of the
identified relative spots to the previous absolute accident spots.

The ten most risky spots are listed in table 2] with more details.
It can be seen that some of them are located in the city center,
but others are as well located in places on the periphery.

5. DISCUSSION

In the following discussion, the results shown are put in context
and limitations of the presented approach are pointed out.

5.1 Bicycle Volume

The sum of counted bicycles at all stations differs in estimation
v2 by the experience-based uncertainty range of the counting
stations of a few percent. Furthermore, relatively large fluc-
tuations are to be assumed for bicycle traffic due to external
influences such as the temperature and rainfall. Thus, the gen-
erated volumes can be considered valid as an approximation of
the total scale.

There are two different explanations for the particularly large
deviations at the three individual stations 1, 7 and 10.

Case one refers to station 1. The station is located on a well-
traveled and attractive bikeway. This is not fully taken into ac-
count by the routing model and a shorter alternative is picked.
In reality, cyclists often accept the detour for the attractive
route.

Case 2 refers to stations 8 and 9: Given the moderate deviations
at both stations from the reference, the significant overestima-
tion at Stations 7 and 10, which are on the opposite side, in-
dicates that the incoming demand on the east-west axis is too

high in the original model, as there are no convincing alternat-
ive routes either.

The problem of case 1 could be addressed by a more sophist-
icated route-choice model that includes large-scale alternatives.
On the one hand, this requires a sufficiently reliable and trans-
ferable model such as the applied by (Huber et al., 2021)), where
however no universal one has been established for bicycles yet.
On the other hand, the model requires suitable and sufficiently
reliable data for the study area, which was unfortunately not
available everywhere for Hanover at the time of the study with
regard to the bicycle infrastructure.

In order to address the second case, it is necessary to start one
step earlier and to calibrate the actual traffic model more spe-
cifically for bicycle traffic in order to achieve a more suitable
(spatial) distribution of demand and which would additionally
allow a temporal calibration. The underlying demand model
from (Bienzeisler et al., 2020) was developed and calibrated
with a focus on motorized transport and the accuracy of the
model suffers when considering individual road segments (Bi-
enzeisler et al., 2022). Due to these limitations, the temporal
dimension was omitted and only average daily volumes of bi-
cycle traffic were considered. There are existing bike contribu-
tions for MATSim (Ziemke et al., 2017), but they have to be
implemented separately. In current simulation models, the cyc-
lists are merely teleported between start and destination, as in
(Bienzeisler et al., 2020), without concretely interacting with
the network.

5.2 Risk Score

In figure [ it can be seen that a (small) part of the locations
have a comparatively high risk value. Since the peak values
are several factors larger than the median, sufficient sensitivity
can be assumed despite the underlying volumes being subject to
uncertainty. An increased accident risk for cyclists compared to
the average can be assumed for those.

A direct comparison of the spatial distribution of the riskiest
spots in figure ] with the heatmap of the absolute hotspots
shows that the first supposedly risky locations have shifted. The
spots, which are normalized by bicycle volume, are no longer
located in the intersections of the main roads near the center,
but often in the area of minor roads.
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Figure 5. Overview of 5 % (crosses) and top ten (green crosses with labels) riskiest accident spots. The heatmap of absolute accident
spots is in the background from figure |I| for comparison.

rank | accident | accident | focus | accident | bike volume | severity count | accident type count (UTYP1)
risk chance object count [daily] 1|2 3 1 2131451617

1 2.6e-5 | 1:39107 | node 4 120 4 4

2 2.5e-5 1:40085 | node 4 123 1 3 1 1 2

3 2.1e-5 1:47798 | edge 3 110 3 2 1

4 2.1e-5 | 1:48511 | node 14 521 2 12 11 |1 2

5 2.0e-5 | 1:49536 | node 8 304 1 7 314 1

6 1.8e-5 | 1:54750 | edge 5 210 5 1 |1]3

7 1.7e-5 | 1:59182 | edge 5 227 2 3 1|2 2

8 1.6e-5 | 1:61920 | edge 4 190 4 3 1

9 1.5e-5 | 1:65504 | edge 4 201 4 1 3

10 1.5e-5 | 1:66482 | node 5 255 5 2 3

Table 2. Listing of the spots with ten highest risk scores, the respective chance and their key indicators. Focus object indicates whether
the focus is at an intersection or on the road. The severity goes from dead (1) to slightly injured (3). The accident types are driving
accident (1), turning accident (2), entering/crossing accident (3), passing accident (4), accident by stationary traffic (5), longitudinal

traffic accident (6) and other (7). Their locations are marked in ﬁgureEl

In addition to the map, table [2] provides a more detailed de-
scription of the ten riskiest spots. Most of them had about four
accidents and a daily bicycle traffic volume of a just few hun-
dred was estimated. Therefore, for the most part, these are
indeed places that do not have an outstandingly high accident
frequency in absolute terms, and therefore would not receive
special attention. However, since they are also relatively little
frequented by cyclists, they have an increased risk in relative
terms, i.e. per cyclist. In this way, therefore, the view for danger
spots in side streets can be increased, even if these do not stand
out in absolute numbers. A look at the other indicators also

shows that, as in the overall data set, minor injuries dominate,
but serious injuries also occurred in some cases. There were no
deaths in accidents at these ten locations. Among the accident
types, intersection/turning situations (2 & 3) are frequently rep-
resented and driving accidents (1), i.e. loss of control (due to
obstacles).

To put the highest estimated accident risk (roughly 1:40 000) in
a nutshell, commuting through this section on a regular basis
(500 times a year) is not unlikely to get involved in an accident
once in a lifetime of 80 years.

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLI1-B4-2022-427-2022 | © Author(s) 2022. CC BY 4.0 License. 432



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-B4-2022
XXIV ISPRS Congress (2022 edition), 6-11 June 2022, Nice, France

6. CONCLUSION AND OUTLOOK

This paper shows how bicycle origin-destination demand from
traffic simulations can be used to normalize accident data into
a risk score based on the resulting volumes per road segment.
This can be used to identify high risk locations without focus-
ing only on absolute accident hotspots, or as a factor for route
optimization to avoid such spots.

Estimating realistic bicycle volumes at street level proves to
be an existing challenge. The comparison to reference counts
unfolds deviations of the presented estimation at single loca-
tions, but confirms the general magnitude. Compared to the
weaknesses in representativeness of work with real routes men-
tioned in (Lee and Sener, 2021)), a weakness in the identifica-
tion of realistic routes based on representative demand is indic-
ated here. Well-generalized and transferable approaches have
already been established for motorized vehicles, which would
also be desirable for bicycles in the future. However, in order
to apply more comprehensive bicycle routing models, appro-
priately detailed and accurate data on the way network is also
required. During this work, respective weaknesses in the avail-
able OpenStreetMap data for Hanover have been noticed.

In general, it was shown that when considering bicycle acci-
dent hotspots, in addition to the absolute values, these should
also be set in relation to the volume of bicycles. Thus, in addi-
tion to (expected) absolute clusters at main intersections, there
are also risk spots in relation to the volume of bicycles, which
are often located on minor roads and thus might otherwise have
received less attention, but also represent a risk. The developed
methodology allows to convert any kind of origin-destination
matrix (maintained by many municipalities) into a routed bi-
cycle demand. Thus, it can be adapted and applied to different
input data determining a risk score for other cities.

Even if the resulting accident risks should not be taken with
too much precision due to the uncertainty of the volumes, it
is still feasible to identify points of increased risk. Thanks to
the continuous scale, they can be transferred to other use cases,
such as the (down) weighting of respective route sections for
navigation.
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