
HEXAGONAL GRIDS APPLIED TO CLUSTERING LOCATIONS IN WEB MAPS

A. Beresnev 1, *, A. Semenov 2, E. Panidi 1

1 Department of Cartography and Geoinformatics, Institute of Earth Sciences, Saint Petersburg State University, St. Petersburg,

Russia - st040742@student.spbu.ru; artembert@gmail.com
2 Geosemantica LLC, St. Petersburg, Russia - info@geosemantica.ru

KEY WORDS: Clustering, Hexagonal Grid, Visualization, Geographic Data.

ABSTRACT:

One of the popular ways to clutter reduction techniques is to combine neighboring points into one marker that somehow shows that it
contains multiple entities – this way is called clustering. In this paper, we present a JavaScript library to define optimal size of clusters
and render them. Moreover, markers have to present heterogeneous data inside of clusters.
The presented library relies on server side clustering, no matter if is it a real-time clustering or a static bunch of hexagonal grids. For
the library, a server provides the bunch of grid layers by different cell sizes – from smaller to larger. The library relies on data fetching
provided by external library, such as Mapbox/Maplibre, so it can work with both GeoJSON and vector tiles. Using the HTML Canvas
to render the marker allows to full customizing the marker image: manage the colors and proportions of cluster fractions and the size.

1. INTRODUCTION

Displaying markers on the Web map is one of the easiest tasks
that require only latitude and longitude of giving point. However,
by multiplying the number of points in the small area, close
markers are going to overlap each other, and the map losing its
readability. One of the popular ways to clutter reduction
techniques is to combine neighbouring points into one marker
that somehow shows that it contains multiple entities – this way
is called clustering. Most popular Web maps libraries (Google
Maps, Mapbox, ESRI) implement clustering right in the browser,
which causes severe performance degradation, especially on
large amounts of data. We propose to combine points into
clusters on server-side to increase the performance and
responsibility of Web map. On the server-side, we used a same-
size hexagonal grid that is often used to analyse various spatial
data.

1.1 Terms and concepts

Zoom level – a number between 0 and 23 (or 24) that defines how

large or small the contents of a map appear in a map view. Unlike

paper maps, which have a fixed scale, Web maps are displayed

on different displays with different pixel densities. The zoom

level determines the number of meters contained in a pixel. Thus,

the zoom level is the digital equivalent of a "paper" scale.

2. BACKGROUND

2.1 Client-side and the server-side clustering

Most popular Web maps libraries implements clustering in client
side, it means that server sends all the points to the browser, and
the browser made a calculation to group close points together.
Client-side rendering algorithm that used in Google Maps and
Mapbox calls ‘Supercluster’ were written by Vladimir Agafonkin
(Mapbox, 2022) and Dave Leaver (Leaflet, 2022, Agafonkin,
2014). Their approach calls Hierarchical greedy clustering: it

* Corresponding author

uses spatial index to speed up querying and applies cashing to
reduce the calculation on zoom level change (Hexmoor, 2015)
(Figure 1).

Figure 1. Hierarchical greedy clustering using in Google Maps

and Mapbox (Agafonkin, 2016).

Despite significant performance improvements reached by
‘Supercluster’, browser still need to fetch all point from a server.
100,000 points in GeoJSON could take at least 10 Mb – browser
should spend more than 10 seconds to download it on 3G
(HSPA), expecting parsing and calculation.
Moving clustering from browser to server-side provides
significant performance improvement for two reasons: 1)
network – sending only one point feature for each grid cell
instead of all features; 2) CPU – CPU-intensive clustering
algorithms do not run in browser anymore, they are running on
server side.

2.2 Clustering representation on the map

Popular clustering approaches could be separated into two
groups: distance-based approach and anchor-points-based
approach. The distance-based approach:
hierarchical/agglomerative clustering, k-means clustering
(Bharathwaj, 2020). The Distance-based approach relies on
optimal combining of points: to merge the nearest points.
Anchor-based approach group points around valuable points on
a map: cities, countries, sights etc. It is more geographical than
distance-based. Voronoi polygons are commonly used to group
points around anchors (Figure 2).

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2022
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-435-2022 | © Author(s) 2022. CC BY 4.0 License.

435

Figure 2. Division of the Netherlands by the Voronoi polygons

generated around the cities.

The most significant advantage of the anchor-based approach is
that it does not produce false points in the gravity center of the
cluster. However, it is required to define anchor points on each
zoom level: city centroids could be used as anchor points on
country scale, but they do not fit on city scale (Figure 3).

Figure 3. Readability losing on medium zoom level when

applying anchor-points-based clustering approach.

2.3 Hexagonal grid

The compromise method to define anchor points for clusters is
using a regular grid. In mathematics, a tiling means
decomposition of the space into a collection of geometric shapes
representing some logical subspaces covering the whole space.
There are only three types of regular tiling: Triangular, square
and hexagonal. Advantages of hexagon over square and triangle
contains:

1. Hexagon has uniform distance between tiles centers
2. Hexagons shape closest to the circle

Both These advantages are significant to render the cluster
marker inside the grid cell (Figure 4).

In spite of the triangle and the square, the hexagon is not infinitely
decomposable, but this issue could be solved by principles of
Gosper fractal that gives hexagons a hierarchical organization.
So, it becomes available to use spatial indexing to optimize
clustering in different grid sizes (Figure 5).

1 https://github.com/uber/h3-js

Figure 4. A comparison of properties of regular grids: (a)

Triangular, (b) orthogonal, (c) hexagonal (Uher et al., 2019).

Figure 5. Multi-resolution hexagonal grids: (a) aperture 3, (b)

aperture 4, (c) aperture 7 (Uher et al., 2019).

2.4 Existing hexagonal grid frameworks

H3 by Uber (Uber, 2022) and dggridR (Barnes, 2018) are the
most remarkable from the various open-source implementations
of hexagon frameworks.
The H3 grid by Uber is based on applying a regular hexagon grid
to each face of an icosahedron, and then projecting those faces to
the spherical surface of the Earth using inverse gnomonic
projection (Figure 6). An icosahedron-based map projection
results in twenty separate two-dimensional planes rather than a
single plane. The icosahedron can be unfolded in many ways,
producing a two-dimensional map each time. H3, however, does
not unfold the icosahedron to build its grid system, and instead
lays its grid out on the icosahedron faces themselves, forming a
geodesic discrete global grid system (Brodsky, 2019).

H3 library is developed on C language. It provides bindings to
multiple languages to make its usage easier. The most popular
bindings are h3-js1 – bindings for JavaScript and h3-py2 – for
Python.
DggridR by Richard Barnes provides hexagonal, triangular and
diamond grids on several projections , but the recommended one
by the author is Icosahedral Snyder Equal Area Aperture 3
Hexagonal Grid. This grid, along with the other icosahedral grids,
ensures that all cells are of equal area, with a notable exception.
At every resolution, the Icosahedral grids contain 12 pentagonal
cells which each have an area exactly 5/6 that of the hexagonal
cells, that makes it close to H3 grid by Uber.
DggridR library is written in C++ language and supplies as an R
language library without additional bindings to another
languages, that make its usage harder than h3 by Uber.

2 https://github.com/uber/h3-py

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2022
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-435-2022 | © Author(s) 2022. CC BY 4.0 License.

436

Figure 6. Representation of H3 grid on a planet scale (Brodsky,

2019).

3. DEVELOPED LIBRARY

In this paper, we present a JavaScript library to define optimal
size of clusters and render them.
The goal: present heterogeneous data inside of cluster’s marker.

3.1 Requirements

Basing on prospected applying, we define the requirements for
developing library:

1. Marker should show different types of data it contains
2. Library has to support integration with
Mapbox/Maplibre (the most popular JavaScript libraries to
show map)
3. Markers have to react on maps events: zooming and
dragging – them have to follow the map smoothly
4. Grid sizes are various, library have to adopt for any of
them
5. Minimum and maximum zoom level for each grid size
should be counted by the library
6. Markers have to show the amount of containing points
7. Markers containing the same number of points have to
be the same size during zooming the same grid layer

3.2 Input data

The presented library relies on server side clustering, no matter if
is it a real-time clustering or a static bunch of hexagonal grids.
For the library, a server provides the bunch of grid layers by
different cell sizes – from smaller to larger. It could be a list of
given sizes: [2000, 4000, 6000, 8500, 13000…]. The other input
value is a minimum size of marker in pixels.

3.3 Expected behavior

A server provides several layers containing grids by different cell
size. When the user zooms the map, layers automatically have to
change. While user see the same layer, markers have to stay in
place in the center of the grid cell. When the user zooms in
enough, the map have to hide the current grid layer and show the
next, which contains smaller cells – that time markers have to
place centers of new cells (Figure 7).

Figure 7. Expected behaviour – sketch.

3.4 Defining zoom levels for given grid layers

The main goal of the library is to define minimum and maximum
zoom level for each layer. The min zoom level for each layer is
based on visibility and clarity of complex multi-color marker. It’s
mean that marker should not be smaller than defined number of
pixels (that should be defined empirically based on map content
and color). If we use a hexagonal grid, the size of the marker is
equal to the inscribed circle radius of the hexagon cell (Figure 8).

Figure 8. Main dimensions of hexagonal, where r = the

inscribed circle radius.

Based on known grid-cell size of levels in meters, the horizontal
distance represented by one pixel could be resolved using the
formula (1):

������� = � × ���(��������) ÷ 2���� ����� � � (1)

where, S = horizontal distance in one pixel, m
 C = equatorial circumference of the Earth

The maximum zoom level of each layer is the minimum of the
bigger one (Table 1).

Grid cell radius, m min
zoom
level

max
zoom
level

2000 11.614 14.000
4000 10.614 11.614
6000 10.029 10.614
8500 9.527 10.029

13000 8.914 9.527
19000 8.367 8.914
32000 7.614 8.367

Table 1. Zoom levels for each layer of hexagonal grid

calculated by developed library.

3.5 Rendering of markers

Based on the requirement to embed markers to Mapbox/Maplibre
library (Porter et al., 2021), and on demand to show different
types of data inside of marker, we decided to render markers as

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2022
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-435-2022 | © Author(s) 2022. CC BY 4.0 License.

437

an HTML5 Canvas elements (Li et al., 2018). Canvas is a
technology to render graphic in a Web page as a bitmap. It
provides the way to draw geometric figures from JavaScript code
in a real time. Canvas element can be used as a marker in
Mapbox/Maplibre.
Proposed CanvasMarker is a JavaScript function by given
interface:

function CanvasMarker(
 data: PieChartItem[],
 size: number
): HTMLCanvasElement

interface PieChartItem {
 label: string;
 value: number;
 color: string;
}

To prepare the marker, we create the new HTMLCanvasElement
by given size. Then we render a sector for each type of data
containing in this cell, the angular dimension of a given type is
proportional to its fraction. When all sectors are ready, we need
to clip the center form the pie chart:

export function CanvasMarker(
 data: PieChartItem[],
 size = pieChartSizes.diameter
): HTMLCanvasElement {
 const canvas = document.createElement("canvas");
 canvas.width = size;
 canvas.height = size;
 const ctx = canvas.getContext("2d") as
CanvasRenderingContext2D;
 const x = canvas.width / 2;
 const y = canvas.height / 2;
 const total = getTotal(data);

 let startAngle: Radian;
 let endAngle: Radian;

 for (let i = 0; i < data.length; i++) {
 startAngle = calculateStartAngle(data, i, total);
 endAngle = calculateEndAngle(data, i, total);

 ctx.beginPath();
 ctx.fillStyle = data[i].color;
 ctx.moveTo(x, y);
 ctx.arc(x, y, y, startAngle, endAngle);
 ctx.fill();
 }
 clipCenterCircle(ctx);

 return canvas;
}

3.6 Intergation with Mapbox/Maplibre

Mapbox/Maplibre libraries provide a rich API to embed custom
markers to given source layers3. The developed library can be
easily implemented into the map:

const addMarkers: (
 map: maplibregl.Map,
 clustersLayersNames: string[],

3 https://maplibre.org/maplibre-gl-js-docs/api/markers/#marker

 layer: ClustersSourceMetadata
) => void = (map, clustersLayersNames, layer) => {

 const visibleFeatures = map.querySourceFeatures(layer.table,
{
 sourceLayer: layer.id,
 }) as any as ClusterFeature[];

 const visiblePoints = filterClusterPoints(visibleFeatures);
 const [minCount, maxCount] = [
 Math.min(...visiblePoints.map((item) =>
parseInt(item.properties.num, 10))),
 Math.max(...visiblePoints.map((item) =>
parseInt(item.properties.num, 10))),
];

 visiblePoints.forEach(({ geometry, properties }) => {
 const marker = new maplibregl.Marker({
 element: CanvasMarker(
 preparePieChartData(properties),
 resolveClusterSizeInLayerRange(
 parseInt(properties.num, 10),
 minCount,
 maxCount
)
),
 });
 marker.setLngLat(geometry.coordinates).addTo(map);
 existingMarkers[getUniqueId(layer.id, properties)] =
marker;
 });
};

export function filterClusterPoints(
 points: ClusterFeature[]
): ClusterFeature[] {
 return points.filter((item) => {
 if (item.geometry.type !== "Point") {
 return false;
 }
 if (!item.properties.id || !item.properties.num) {
 return false;
 }
 return true;
 });
}

4. RESULTS AND DISCUSSION

The developed library provides the way to render markers for
clusters over the hexagonal grid. The library relies on data
fetching provided by external library, such as Mapbox/Maplibre,
so it can work with both GeoJSON and vector tiles. Using the
HTML Canvas to render the marker allows to full customizing
the marker image: manage the colors and proportions of cluster
fractions and the size. Comparing to existing solutions, like
Recyclemap.ru by Greenpease, the presented library show the
content of clusters and visually distinguish clusters by the amount
of contained points (Figure 9).

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2022
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-435-2022 | © Author(s) 2022. CC BY 4.0 License.

438

Figure 9. Comparison of pie charts visualization on

Recyclemap.org (top) and map generated by developed library

(bottom).

4.1 Limitations

Transformation from map projection coordinate system (meter
units) to screen coordinate system (pixel units) leads to
coordinate distortions, which grows inversely with the scale, so
we cannot recommend to use hexagonal grids on a small scale
(Figure 10).

Figure 10. Variation in metres per pixel with latitude on the

Mercator projection. Sizes of circles are incorrect; they should

be opposite (OpenStreetMap Wiki, 2022).

Proposed solution contains two steps: clustering on the server-
side (1) and the use of hexagonal grid approach (2) instead of
distance-based or anchor points-based algorithms. Any
configurations that were available on the client side now should
be implemented on the server side: such as grid cell size changing
or adding/removing points features to data source.
Focusing on the hexagonal grid in comparison to other clustering
algorithms, the regular grid cells have strictly determined sizes,
so we should prepare the series of grids for each zoom level.

REFERENCES

Agafonkin, V., 2014: Leaflet: an open-source JavaScript library
for mobile-friendly interactive maps. https://leafletjs.com
Accessed January 9, 2022

Agafonkin V., 2016: Clustering millions of points on a map
with Supercluster. Mapbox blog:
https://blog.mapbox.com/clustering-millions-of-points-on-a-
map-with-supercluster-272046ec5c97 Accessed January 9, 2022

Bharathwaj, M., 2020: Towards data science: Clustering
Techniques. Available online:
https://towardsdatascience.com/clustering-techniques-
hierarchical-and-non-hierarchical-b520b5d6a022 Accessed
January 9, 2022

Birch, C.P.D., Oom, S.P., Beecham, J.A., 2007: Rectangular
and hexagonal grids used for observation, experiment and
simulation in ecology. Ecological Modelling, 206(3), 347-359.
doi.org/10.1016/j.ecolmodel.2007.03.041

Barnes, R., 2018: R-Barnes/Dggridr: V2.0.3. Zenodo.
doi.org/10.5281/ZENODO.1322866

Brodsky, I., 2019: H3: Uber’s Hexagonal Hierarchical Spatial
Index. Available online: https://eng.uber.com/h3/ Accessed
January 9, 2022

Burdziej, J., 2011: A Web-based spatial decision support system
for accessibility analysis—concepts and methods. Applied
Geomatics, 4(2), 75-84. doi.org/10.1007/s12518-011-0057-x

Hexmoor, H., 2015: Diffusion and Contagion. In:
Computational Network Science. Elsevier. 45-64.
doi.org/10.1016/b978-0-12-800891-1.00006-8

Mapbox, 2022: supercluster. GitHub repository:
https://github.com/mapbox/supercluster Accessed January 9,
2022

Leaflet, 2022: Leaflet/Leaflet.markercluster. GitHub repository:
https://github.com/Leaflet/Leaflet.markercluster Accessed 9,
2022

Li, D., Mei, H., Shen, Y., Su, S., Zhang, W., Wang, J., Zu, M.,
Chen, W., 2018: ECharts: A declarative framework for rapid
construction of web-based visualization. Visual Informatics,
2(2), 136-146. doi.org/10.1016/j.visinf.2018.04.011

Lu, C.-A., Chen, C.-H., Cheng, P.-J., 2011: Clustering and
Visualizing Geographic Data Using Geo-tree. Presented at the
2011 IEEE/WIC/ACM International Joint Conferences on Web
Intelligence (WI) and Intelligent Agent Technologies (IAT).
doi.org/10.1109/wi-iat.2011.171

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2022
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-435-2022 | © Author(s) 2022. CC BY 4.0 License.

439

OpenStreetMap Wiki. Zoom levels.
https://wiki.openstreetmap.org/wiki/Zoom_levels Accessed
January 9, 2022

Porter, M. E., Hill, M. C., Harris, T., Brookfield, A., Li, X.,
2021: The DiscoverFramework freeware toolkit for multivariate
spatio-temporal environmental data visualization and
evaluation. Environmental Modelling & Software, 143, 105104.
doi.org/10.1016/j.envsoft.2021.105104

Rezaei, M., Franti, P., 2018: Real-Time Clustering of Large
Geo-Referenced Data for Visualizing on Map. Advances in
Electrical and Computer Engineering, 18(4), 63-74.
doi.org/10.4316/aece.2018.04008

Uber, 2022: h3. GitHub repository: https://github.com/uber/h
Accessed January 9, 2022)

Uher, V., Gajdoš, P., Snášel, V., Lai, Y.-C., Radecký, M., 2019:
Hierarchical Hexagonal Clustering and Indexing. Symmetry,
11(6), 731. doi.org/10.3390/sym11060731

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2022
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-435-2022 | © Author(s) 2022. CC BY 4.0 License.

440

