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ABSTRACT:

The visual analysis of videos in context with mapped information requires support in the challenges of linking different spatial
perspectives (e.g., street level and survey perspective), bridging different levels of detail, and relating objects in different visual
representation. Uncertainty in the spatial relation between camera views and map complicates these tasks. We implemented
visualizations for the visual analysis of street level videos (i.e., video key frames) embedded in their spatial context. As part of this,
we developed a design rationale for visual cues that help link the video key frames and a map in cases where the spatial relation
between camera view and map is of uncertain accuracy. We implemented three cue types (simplified viewshed, object-based dot
cues, street centre line cues) for an image data set with heterogeneous camera localization accuracy and assessed the resulting
cue properties. Based on this, we argue in favour of cue designs that minimize uncertain information required for their display
at the expense of cues’ spatial explicitness in cases of potentially low camera localization accuracy. When localization accuracy
is expected to be at least moderate, particularly, dot cues that refer to unambiguous points of reference within easily recognizable
objects of ample size present a promising option to support view co-registration.

1. INTRODUCTION

Embedded in their spatial context, video recordings of spatio-
temporal events, such as floodings or accidents, are a valuable
source of information for in-depth event analysis. However,
the analysis of images or videos in context with mapped
information entails the visual challenges of linking different
spatial perspectives (e.g., street level and survey perspective),
bridging different levels of detail and objects in different visual
representation (Plumlee and Ware, 2003b, Wang et al., 2007,
Wang, 2010). Without visual cues that establish links between
the street level camera views and the survey map, this process
may be challenging, time consuming or literally impossible for
users with limited local knowledge.
Particularly, in cases, where a detailed spatial relationship
between map and image objects must be established to un-
derstand an event, cues in addition to camera position and
direction of view are desirable (Plumlee and Ware, 2003a, Tory,
2003, Wang, 2010). However, cues, such as camera coverage
or cues that indicate homologous objects in the camera view
and the map, require information on 3D camera position and
orientation. In application scenarios such as video surveillance
(Wang et al., 2007, Girgensohn et al., 2007), virtual environ-
ments (Plumlee and Ware, 2003b) or street view applications
(Kopf et al., 2010), the spatial relation between views is usually
known and adequate for the targeted use and visualization. For
the analysis of unstructured, crowd-sourced video collections,
visual localization or image-to-model localization may yield
estimates of camera position and orientation (Baboud et al.,
2011, Tompkin et al., 2012, Karsch et al., 2014, Brejcha et al.,
2018, Meyer et al., 2020). However, such information comes
at varying, potentially unknown degrees of accuracy. Making
use of this information for visualization purposes may result in
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unreliable visual cues with compromised functionality.

For a project aimed to leverage eyewitness videos for crisis
management, we developed visualizations to support the ana-
lysis of street level videos together with a map. We developed a
design rationale for visual cues that help link camera views (i.e.,
video key frames) and a map when the spatial relation between
camera and map is of unknown, potentially limited accuracy,
while the aim of the visual analysis is detailed scene under-
standing.

Task Description: The design rationale followed the consid-
eration of non-application specific, low-level ’integrative’ tasks
(Wang, 2010) in the context of spatial scene understanding, in
the planview are aimed at relating information from the map
and from the videos:

1. Coarse alignment of views: Identification of approximate
camera positions and viewing directions on the map and
with respect to each other.

2. Visual assessment of camera localization accuracy.
3. Detailed visual registration of camera views and map:

Identification of mapped objects in the camera views and
localization of objects in camera views on the map.

Nature of Data and Uncertainty: Our design targets video key
frames that are recorded at the street level in built-up areas and
georeferenced through visual localization (Meyer et al., 2020).
However, the images used for the implementation of the visual-
izations originate from a street view data set recorded with low-
cost sensors (Nebiker et al., 2021). The used data set has prop-
erties similar to the data targeted with the design. Likewise, it
comes with heterogeneous camera localization accuracy which
leads to angular, lateral and depth error (Holloway, 1995) in the
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registration of map and image objects. Further, misalignment
may also be introduced by generalisation, positional resolution,
and accuracy of the mapped data.

2. RELATED WORK

2.1 Providing cues for the linking of camera and map
views

A variety of visual cues, view layout and interaction options
have been put forward to support the linking of different spa-
tial perspectives (Plumlee and Ware, 2003b, Plumlee and Ware,
2003b, Tory, 2003). In frameworks and interfaces for the ex-
ploration and analysis of videos together with a map, com-
monly, one or a combination of the following approaches is
applied:

Display of information about the camera view on the map:
In applications where camera position is the only information
available, the display of camera positions and video trajectories
on the map is combined with linked highlighting and options for
spatial video navigation to support video-based space explora-
tion (Mildner et al., 2013, Jamonnak et al., 2020). GeoVisual
(Jamonnak et al., 2020), a GIS for geo-tagged, semantically
annotated multimedia data, is aimed at visual and quantitative
video-based spatial analysis. Videos are browsed along GPS
trajectories on a map or by sliding along a street view interface
that displays available images at a location together with con-
text from Google Street View.
VideoScapes (Tompkin et al., 2012), is an application for
causal exploration of city areas through collections of un-
ordered street-level videos. The videos are structured in a graph
like manner for this purpose. A survey map shows edges (video
sequence trajectories) and nodes (junctions of several video se-
quences). By hovering over edges, the user browses the corres-
ponding video, while the camera’s field of view is displayed and
highlighted on the map. At nodes, the user can switch videos.
The display of camera viewing directions requires at least in-
formation on camera orientation in 2D, as e.g. from a device
compass.
The display of cameras’ coverage on the map is even more spa-
tially indicative but requires 3D camera position and orienta-
tion, the camera field of view and a 3D model of the environ-
ment. Wu & Tory (2009) display the spatial coverage of images
and gridded coverage heat maps on floorplans of buildings for
the use of image collections in construction management (Wu
and Tory, 2009). Other applications display camera position,
viewing direction and field of view or approximate coverage
(Girgensohn et al., 2007, Zhang et al., 2010).

Dynamic view arrangement, alignment, and coupling To
help the integration of different perspectives, some applications
support the alignment of the map with the camera viewing dir-
ections or spatially ordered layouts of views. Wang (2010)
presents a testbed interface for ‘contextualized video’ visualiza-
tion in a surveillance scenario. The testbed provides the choice
of a 2D or a 3D floorplan and associated video views placed
at the plan margin, embedded in the plan view or both. Find-
ings from a user study indicate task dependent advantages of
different view combinations and layouts (Wang, 2010). For ‘in-
tegrative tasks’, Wang (2010) suggests emphasizing the video
and its close spatial context. DOTS (Girgensohn et al., 2007),
another video surveillance interface, provides a spatial multi-
video player: Video views are arranged according to their spa-
tial layout . This way, a tracked person moves from one view to

the next. A survey floorplan is given for context and aligned
forward-up with the video view at the centre of the spatial
player. When the centre view is switched, the layout is re-
arranged around the new view’s position.
Apart from the alignment of video and map view, the coup-
ling of zooming and panning functions over several views is
applied in similar analysis situations in entirely virtual environ-
ments without video views (Plumlee and Ware, 2003b, Pindat
et al., 2013). Further, mutually indicating the cursor position
in different perspective views is a promising option to support
orientation (Kopf et al., 2008, Zhang et al., 2010). Different
dynamic transitions between camera views are also explored in
this regard (de Haan et al., 2010, Tompkin et al., 2012).

Display of information extracted from the video on the map
and in the video view: This cue type requires video informa-
tion extraction (e.g., objects of interest) and is specifically tar-
geted at supporting spatio-temporal event analysis. Usually, it
is coupled with timeline and spatial interaction options. The
video surveillance tool DOTS (Girgensohn et al., 2007), dis-
plays persons’ trajectories, as extracted from the videos, in the
video as well as on the floorplan. Videos can be played by
dragging a person icon along the floorplan. Stein et al. (2018)
present a tool for soccer play analysis. Player tracking and ana-
lytics from different camera views are projected onto a normal-
ized pitch and back onto the camera view. Active players are
mutually highlighted.

Display of static mapped information in the camera view:
In our own approach, we propose the display of map elements
in the camera view to provide orientation and connect the street
view perspectives with each other and with their spatial con-
text in the survey map. This approach is inspired by similar
uses of map data overlays in photographs (Kopf et al., 2008,
Karsch et al., 2014) and Augmented Reality (AR) (Veas et al.,
2012). Veas et al. (2012) project topographic vector elements
into views of a multi-view outdoor AR-application to embed
the views in their spatial context. Also, they include vector
elements to extend the view of a single camera to show con-
tent from variable perspectives. Kopf et al. (2008) augment
photographs with geo-data (e.g. roads, landmark and location
names) and present it side-by-side to a map. The augmented
photograph’s view frustum is displayed on the map and while
moving the cursor in one view, its position is indicated in the
other.

This type of cue seems less explored in application to video
analysis. This might be due to the circumstances that for many
applications, e.g., video surveillance or sports analytics, the
spatial context is restricted and potentially well-known (Gir-
gensohn et al., 2007, de Haan et al., 2010) or perceptually very
similar in the video and the map, e.g., a soccer pitch (Stein et
al., 2018). However, Zhang et al. (2010) implemented an al-
gorithm for semi-automatic registration of tourist videos to a
3D city model and automated landmark labelling in the videos.
They include the annotated videos into a map-based interface,
where camera position, field of view and landmark highlighting
are displayed dynamically as the video is played. In addition,
clicking on building in the video highlights the same on the
map. After a user test they conclude that “deep integration” of
videos with a map can improve navigation (Zhang et al. 2010,
p. 268).

2.2 Dealing with inaccuracy and uncertainty

In surveillance applications or virtual environments, usually, in-
formation on the spatial relation between different views is suf-
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ficiently accurate for the display of visual cues, such as camera
viewpoint, direction, and coverage (the latter also requires an
adequate 3D model of the environment). In applications that are
more like ours (Kopf et al., 2008, Tompkin et al., 2012, Zhang
et al., 2010, Karsch et al., 2014), camera position and orienta-
tion from low-cost sensors or from image registration processes
varies in accuracy and may compromise the quality and func-
tionality of the resulting visualizations. However, visualization
issues related to uncertain input information and unsatisfactory
visualizations as a result of poor registration are not discussed
broadly in the above-mentioned work. Zhang et al. (2010) dis-
cuss limitations of their registration process and problems with
the resulting stability of annotations. They conclude that des-
pite these problems, users gain information through the camera-
map registration. Issues with GPS position accuracy (Mildner
et al., 2013, Tompkin et al., 2012) or varying results of im-
age registration are mentioned (Karsch et al., 2014) elsewhere.
However, their effects on the visual results are not discussed in
detail.
More commonly, issues of visual coherence that relate to lim-
ited registration accuracy, are discussed (Azuma, 1997, Azuma
et al., 2001, Zollmann et al., 2021) and addressed in the con-
text of AR-applications: Holloway (1995) developed a model
to analyse the consequences of registration error. He decom-
poses misalignment of virtual and real points into an angular,
a lateral and a depth error component. MacIntyre & Coelho
(2000) propose level of error filtering (LOE), to dynamically
adapt visualizations to the estimated current error of the track-
ing system. With LOE, an object highlighting frame is sized up
and eventually replaced by a textual description as the tracking
error increases to prevent ill-placed or misleading attentional
cues. This is extended to the use of error ellipses of object
vertices to calculate expanded and shrunk convex hulls of ob-
jects for error robust highlighting and labelling (MacIntyre et
al., 2002). Möller et al. (2012) present an indoor navigational
aide that switches visualization modes (from AR to VR) when
location estimation becomes unreliable. Pankratz et al. (2013)
address the problem of tracking errors in AR-navigational aids
with visualizations that indicate the degree of tracking error,
e.g., through a change in symbol shape and colour.

Following postulates from AR research (MacIntyre and
Machado Coelho, 2000, Möller et al., 2012, Pankratz et al.,
2013), we believe that registration errors from visual localiz-
ation are a problem that should be considered in visualizations
building on such data. Otherwise, automated workflows will
yield confusing or misleading visualizations when localization
accuracy is limited. We draw from studies on AR-visualization
(Veas et al., 2012), augmented photographs (Kopf et al., 2008),
and 2D-3D view registration (Tory, 2003) to develop a design
rationale for visual cues that help link different perspective
views when their spatial relation is uncertain. The objective of
the cue design is integration with an interface that provides in-
teractive arrangement, alignment and browsing of views to sup-
port the outlined tasks (c.f. 1) associated with the analysis of
videos in their spatial context (Wang et al., 2007, Wang, 2010).

3. DESIGN RATIONALE

We composed an interface prototype with D3.js (Bostock,
2021) to support the outlined view registration tasks (c.f. 1)
in a scene of interest. The interface includes a close-up view
of video key frames and their nearby spatial context (Wang,
2010). On-demand, the orientation of the close-up map can be
switched from north-up to align with the viewing direction of a

key frame (Darken and Cevik, 1999, Plumlee and Ware, 2003a).
This interface presents a starting point for the design and integ-
ration of visual cues that support the linking of camera and map
views.

3.1 Requirements

With the described tasks and data characteristics at hand, we
defined design requirements for visual cues that help link street
level camera and survey perspective map views under varying
conditions of spatial accuracy.

1. Cues should indicate a camera’s viewpoint, viewing
direction and depth. Indicating the viewpoint and view-
ing direction of one view in another, is a crucial aid for
linking information from those two views (Plumlee and
Ware, 2003a). Providing depth cues for images may fur-
ther support the visual registration of far-field image ob-
jects with the map (Livingston et al., 2009).

2. Cues ideally support pre-attentive pattern matching
between views. According to insights from an empirical
study (Tory, 2003), this could strongly support the linking
of different perspective views.

3. Referents of object-based cues should be recognizable
in the map and in the camera view. For object-based
cues to function, the object of reference should be visu-
ally identifiable in both views. E.g., individual parking
lots or streetlamps may be visible in a video, but not avail-
able in the map, while large trees may be mapped, but
not easily identified among other vegetation in street level
videos. Beyond, the referent position on the object should
be visible and recognizable in the image. Referent pos-
ition visibility facilitates the mental matching of cue and
object (Furmanski et al., 2002), recognizability may help
perceive misalignment.

4. Cue design should consider and minimize the issues
of unknown and varying data accuracy. Spatially ex-
plicit cues (e.g., indication of analogues objects) promise
to be powerful. However, with increasing uncertainty of
the input data (camera localization, map data), such cues
are expected to lose their functionality and may become
misleading (Azuma et al., 2001, Pankratz et al., 2013).
Hence, while trying to conform to requirement III, cue
design should minimize the uncertain information required
for display.

5. The density of cues per image and per scene should be
high enough to be informative with respect to require-
ment I and II, but not as high as to cause clutter and
confusion. Too many cues will lead to view occlusion
problems and may be difficult to process, particularly for
users with limited local knowledge (Wang, 2010).

3.2 Cue Design

Based on the outlined requirements, we designed visual cues
that establish links between street level camera and survey map
views. Viewshed computation and cue selection was done us-
ing GRASS GIS (GRASS Development Team, 2022), image
processing relied on the Python library matplotlib (Matplotlib
Development Team, 2021).

3.2.1 Camera position and simplified viewshed on the
map: Camera position and a simplified viewshed is symbol-
ized with a circle and an outline on the map (Fig. 2A). A colour-
code links the symbols with the respective camera frame. These
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cues indicate the street level view’s recording position and dir-
ection on the map, but not in the camera view. Also, they do not
provide direct links between camera views or indicate image-
objects’ geolocation, except where the (near-end) lateral side of
the viewshed intersects with mapped objects that are recogniz-
able in the image. The computation of the viewshed requires in-
formation on camera position, viewing direction, and the cam-
era field of view. The viewshed was limited to 75 m from the
camera and the vertical angle of the camera field of view was
not considered in the computation. The viewshed was calcu-
lated using a simplified model of the environment. It contained
information on terrain elevation (Amt für Geoinformation Kan-
ton Basel-Landschaft, 2018) as well as buildings from a 2D data
set (Amt für Geoinformation Kanton Basel-Landschaft, 2021)
that best matched the visible building outlines as seen from the
street level view. A uniform height was set for all buildings. A
fixed elevation above ground was assumed for the camera. This
was possible due to the nature of the image data set and elimin-
ated problems arising from large errors in camera z-coordinates
(Nebiker et al., 2021). The viewshed raster was resampled at
2 meters for vectorization, isolated areas (<100 m2) were dis-
carded and the viewshed outline buffered (2 m), smoothened
and clipped (5 m) around the camera position. This general-
ization results in an outline that is easy to read but introduces
inaccuracies itself (Fig. 1). The simplified viewshed was used
also in the selection of visible cue objects in the key frames (see
below).

Figure 1. Outline of a viewshed computed at 0.25 m [black] and
at 2 m [red] resolution.

3.3 Object-based line cues

We display colour-coded road centre lines (Bundesamt für
Landestopografie swisstopo, 2021) in the camera view and the
map to support view linking (Fig. 2C). Line cues that refer-
ence unambiguous linear features have the potential to indic-
ate the approximate camera viewpoint, viewing direction and
image depth by indicating the location of image objects relat-
ive to cues, and to support pattern matching between views, all
given that, the linear features are sufficiently salient. In the case
of road centre lines, this implicates, they include distinct seg-
ments, e.g., crossroads. Line cues with a recognizable referent
may also serve as a visual estimate of registration accuracy. The
display of linear objects requires the registration of map points
in x, y and z with the camera view.

3.4 Object-based dot cues

We designed dot cues using a street number data set with
individual points at building fronts (Amt für Geoinformation

Kanton Basel-Landschaft, 2021). Points that are inside the
viewsheds of at least two cameras were selected for the dis-
play of dot cues. The dots are equally colour-coded through
all views (Fig. 2B). In the camera view, the cues are displayed
2m above ground and scaled and sorted with respect to viewing
distance. The image cues are displayed with a uniform blur and
transparency. In combination with the distance-dependant scal-
ing and sorting, this may support the interpretation of depth in
the camera view (Drascic and Milgram, 1996). Similar to line
cues, dots with recognizable referents (buildings) in the camera
view might indicate approximate camera position, direction of
view and the geolocation of image objects through their relation
to cues. Dot cues may also provide patterns to match between
different views. Dot cues still require the registration of map
points in x, y, with the camera view. However, choosing an
object of ample size (building) and within the object a referent
position that is unspecific with respect to elevation (thus neg-
lecting the dimension which is the least informative regarding
orientation in our case), makes the registration more flexible
with respect to error and thus may help preserve cue function-
ality when camera localization accuracy is limited. Through
their referent position at the building front, near the entrance,
the dots may provide some visual indication of registration ac-
curacy. Compared to the line cues, however, this function is
expected to be weaker in favour of the improved error robust-
ness.

3.5 EVALUATON AND DISCUSSION OF VISUAL CUE
QUALITY

We implemented the three cue types on a selection of 110 street
level images from a data set with heterogeneous georeferencing
accuracy (Nebiker et al., 2021). The images were selected to
yield scenes (15) of 7-8 images. All selected images covered
the street centre in some part. The images of a scene were dis-
played in a static layout with a map at the centre (Fig. 2). For
every scene, the localization accuracy varies between images.
A formal evaluation of the designs’ functionality would have
been desirable at this point but was not attempted, due to the
lack of a data set with more homogeneous localization accur-
acy.
We conducted a visual assessment of the resulting cue qual-
ity in the scenes with the outlined tasks (c.f. 1) in mind: We
assessed the resulting visualizations with respect to readabil-
ity and expected support in coarse and detailed image-to-map
registration and error indication. For dot and line cues, this
included the consideration of feature information value. Fur-
ther, we identified cases where misplaced cues potentially be-
come misleading. In relation to this, we quantified misaligned
dot cues (dot centre appears on wrong building) and incorrect
viewshed-building intersection for the near-end lateral side of
the camera views. For isosceles-like viewsheds, building inter-
sections of both lateral sides were considered. Based on this
visual assessment, we infer and discuss the potential and lim-
itations of the different designs with respect to the design ra-
tionale. The findings from the evaluation procedures are repor-
ted per cue type. The sections contain concluding findings in
italics, followed by the observations that led to these findings
and some suggestions for design improvements.

3.6 4.1 Viewshed cues

The viewshed provides limited support in the fast coarse align-
ment of images and map: The viewshed does provide the in-
formation needed for the coarse alignment of views. However,
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Figure 2. Identical scene with different types of colour-coded
visual cues that link camera views and map. From top to bottom:
simplified viewshed, dot cues, street centre line cues. (images:

(Nebiker et al., 2021), geo-data: (Amt für Geoinformation
Kanton Basel-Landschaft, 2021, Bundesamt für

Landestopografie swisstopo, 2021)). Image 2 illustrates a
potentially misleading case for both, viewshed and dot cues. In

image 4, the near-end lateral viewshed outline intersects with the
correct building on the map and might support correct

object-wise alignment, while red and green dot cues misalign in
the image and may be confusing

the 7 to 8 outlines clutter on the map and it takes some time
to visually disentangle them and identify a specific outline and
its corresponding camera position (Fig. 2A). Adding overlay
blending, linked highlighting and image scrolling, when integ-
rating this cue type in an interactive visualization, may mitigate
this problem.

The display of the simplified viewshed outline provides the most
robust support for the detailed linking of image and map ob-
jects: From the visual assessment of the scenes, we hypothes-
ize that the intersection of the near-end lateral outline of the
viewshed with a building close to the camera is probably the
strongest cue for establishing object correspondence. Thus,
misleading cues may result in cases where the near-end lat-
eral viewshed outline intersects with the wrong building (e.g.,
Fig. 2A, image 2). Incorrect intersections occur in 21.8% of the
images. Some of these errors may be due to viewshed general-
isation.

The viewshed provides some indication of camera localization
accuracy: Errors are recognizable, when a viewshed suggests
the visibility of the entire road width or of buildings on both
street sides when, in fact, only one side is visible in the image
(Fig.2A, image 2) or vice versa. The far end of the viewshed is
most indicative, as angular errors are most pronounced at dis-
tance. The mentioned intersection errors at the near end, how-
ever, will be more difficult to identify and have the potential to
mislead the user (Fig.2A, image 2). Blurring viewshed outlines
may help alert the user about potential inaccuracies (Pankratz
et al. 2013).

3.7 Dot Cues

The visual assessment confirms the potential of dot cues to sup-
port coarse scene understanding by fast identification of ap-
proximate camera positions and viewing directions: The visual
assessment revealed that overall, dot cue visualizations provide
pattern like cues, that are easy to read (Fig. 2B). However, 5.5%
of the images provide no cue and another 24.5% of the images
show only one dot, thus, cue information value is limited. Only
in parts, cue shortage is due to the restriction of cues to referent
points that appear in more than one image. In some cases, a
building is well visible in the image, but the building’s referent
point is not (Fig. 2, images 1& 3). In some cases, the restric-
tion of cue visibility to 75 m, may discard cues on prominent
buildings that are recognizable from larger distance and could
help in the linking of camera views (Fig.2, image 4). A more
adaptive cue design that considers building size might improve
dot cue functionality.

Dot cues are less suitable to support detailed image-to-map re-
gistration, when camera localization accuracy is low. Dot cues
poorly convey registration inaccuracies: The two findings are
related. The visual assessment revealed that in 42.7% of the im-
ages, at minimum one dot appears on the wrong building (c.f.
Fig. 2B, images 2 & 4). Further, not only the referent posi-
tion within the building, but also, mapped building units are not
always easily recognizable in the images. Incorrect placement
(dot on wrong building) and difficult to identify referent objects,
result in cues that may be misleading in the task of detailed
object-to-object registration (c.f. Fig. 2B). However, where dot
cues appear on the correct building, they have the potential to
also support detailed image-to-image and image-to-map regis-
tration.
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3.8 Line Cues

Street centre line cues provide information for coarse view
alignment but are not necessarily easy to read (Fig. 3): In
28.2% of the images, the selected section of the street network
does not provide features that are salient enough to indicate the
viewing direction of the camera. For some scenes, on the other
hand, the network results in visually complex cues that prob-
ably prevent fast pattern matching. Other features are difficult
to read because of registration errors.

Support for detailed mental image to map and image to im-
age registration is limited: For street centre line cues, branch-
ing roads and paths technically help object-wise view registra-
tion. However, they are not necessarily (well) recognizable in
the street view (c.f. Fig. 2C, image 3 & 7). As a result, it is
difficult to judge cue accuracy and misplaced cues become mis-
leading. Therefore, the cues provide limited support in detailed
view registration and in the localization of image objects on the
map.

Street centre line cues provides some indication of registration
error (Fig. 2C, Fig. 3): Line cues are indicative of lateral
and angular errors because deviations from the street centre are
perceived (Azuma, 1997). Also, positive deviations from the
ground plane (floating lines) are readable.

Figure 3. Examples of street centre line cues that are difficult to
read because of a complex network situations (top), because of

registration error (bottom left) or lack of directional information
(bottom right) (images: (Nebiker et al., 2021); geo-data:

(Bundesamt für Landestopografie swisstopo, 2021)).

4. DISCUSSION

In our work on visualizations to support the visual analysis
of geolocated videos together with a map, we focused on the
design of visual cues that link the street level camera views and
the survey perspective map. Based on a design rationale, we
implemented three cue types (simplified camera viewshed, col-
oured street centre lines and dot cues that reference points at
buildings fronts) on a data set of 110 street view images with
heterogeneous localization accuracy (Nebiker et al., 2021). We
visually assessed cue properties in the resulting visualization to
gain insight on the resulting cue functionality. The visual as-
sessment led to the following insights: While by design, the
display of key frames’ simplified viewshed on the map is not
as informative as the mutual display of object-based cues, the
viewshed cues provide the most reliable information for de-
tailed visual image to map registration for the used data set.
Identifying image objects on the map with the help of line and

dot cues will be difficult or impossible, depending on the scene,
when camera pose accuracy is low. Line cues provide some
information for coarse view alignment but are not necessarily
easy to read. Dot cues, however, have the potential to support
fast coarse alignment of scenes even when registration accuracy
is limited. None of the designed cue types reliably communic-
ates all types of error.

Test data set and evaluation methodology: The used data set
has properties similar to the data that was targeted with the
design. However, the findings regarding cue salience are de-
pendent on the specific nature of this data set and likely devi-
ate from the results in an unstructured collection of street view
videos. Also, the robustness of the viewshed in the used data
set is partly owed to a stable camera field of view and camera
elevation above ground.
The chosen evaluation methodology has limitations: While the
resulting visualizations can be visually assessed with respect to
each requirement of the design rationale, the assessment of ac-
tual cue functionality with respect to different tasks (e.g. coarse
alignment, object-wise registration) in a multi-view scene re-
quires a user study. Some of the identified draw backs might not
affect cue functionality strongly: E.g., sparse dot cues might not
be a major issue with respect to the coarse alignment of views,
because of salient image features that help bridging between
views with few cues. A user evaluation of cue functionality
based on a test data set with controlled variation in localiza-
tion accuracy would be desirable, as this could provide insights
on differential cue functionality in relation to different levels of
localization accuracy.

Integration in interactive, dynamic visualizations: Further,
the integration of color-coded cues in an interactive multi-view
display that covers more than one scene raises the question of
scalability with respect to the used color-coding. Also, work is
needed to evaluate cue functionality in more dynamic, interact-
ive visualizations with many views.

5. CONCLUSION

We addressed visualizations to support the visual analysis of
street level videos in relation to their spatial context. We de-
veloped a design rationale for visual cues that help link street
level camera views and a survey map in situations where the aim
of the analysis is detailed scene understanding, but the spatial
relation between camera views and map is uncertain. We de-
signed cues that transfer information from the camera view to
the map (viewshed cues) and cues that transfer information on
mapped objects to the camera views (dot and line cues). We im-
plemented these cues in an image data set with heterogeneous
camera localization accuracy. Based on a visual assessment of
the resulting cue properties, we suggest using cue designs that
minimize uncertain information required for their display when
localization accuracy is expected to be low. For the used data
set, we suggest using viewshed-based cues when localization
accuracy is expected to be low to support detailed camera-map
co-registration. Including object-based dot cues when accur-
acy is expected to be moderate or high has the potential to sup-
port fast coarse alignment of different perspective views. Street
centre line cues are not necessarily easy to read which limits
their functionality. None of the designed cue types reliably in-
dicates all types of error in camera view-map view registration.
A combination of cue types maybe helpful to support all relev-
ant visual tasks. However, cue efficiency with respect to spe-
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cific tasks and different levels of registration accuracy warrants
a user evaluation with accuracy-controlled data.
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