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ABSTRACT: 
 
Urban traffic analysis has acted an important role in the process of urban development, which can provide insights for urban planning, 
traffic management and resource allocation. Meanwhile, the advancement of Intelligent Transportation Systems has produced a variety 
of traffic-related data from sensors and cameras to monitor urban traffic conditions in high spatio-temporal resolution. This research 
applies spatial regression models combined with computer vision and deep learning to analyse traffic flow distributions via various 
factors in the urban areas and traffic flow data. We include road characteristics and surrounding environments such as land use/cover, 
nearby points of interest (POI) and Google Street View images. The results show that the daily average traffic flow on main roads is 
much higher than smaller roads, and nearby POIs numbers have positive effect on traffic flows. The impact of land cover type is 
insignificant in the linear regression model, while demonstrates significant contribution to traffic flows in spatial regression models. 
Although the spatial autocorrelation still exists after the spatial regression, the spatial error model generates a better fit on the dataset. 
Further analysis will focus on extend the current model with the time parameters and understand what influence the changes of traffic 
flow in the different spatio-temporal scales. 
 
 

1. INTRODUCTION 

As a crucial component for the complex urban system, urban 
traffic analysis has drawn attentions from researchers and 
planners for decades (Batty, 2008). The increasing development 
of Intelligent Transportation Systems with various urban sensing 
technologies (Buch et al., 2011), has produced a variety of traffic-
related data (Close-circuited television (CCTV) images, cycling 
counts, and traffic volume data) to monitor urban traffic 
conditions in high spatio-temporal resolution. These data provide 
a more real-time understanding of the traffic flows in our cities 
compared to traditional travel survey methods, which offer the 
next level of understanding of the urban transportation system.  
 
To analyse the emerging urban big data, computer vision (CV) 
and deep learning (DL) methods have been used frequently in 
traffic analysis recently. Some researchers applied DL and CV to 
measure the city developments by understanding transport modes 
and pedestrian activities (Ibrahim et al., 2021). A Convolutional 
Neural Networks (CNN)-based method was proposed to convert 
traffic information into an image presenting the spatio-temporal 
features via a two-dimensional matrix (Ma et al., 2017). High 
accuracy was shown on this image-based traffic speed analysis. 
The DL coupled with CV has shown advantages over tackling 
complex issues and processing images more precisely and 
efficiently. Accurate and timely traffic flow analysis is 
increasingly significant, as it shows strong demand in individual 
travellers, business sectors, and government agencies for travel 
decision, urban planning, and resource allocation.  
Many studies measuring the factors that affect urban traffic flows. 
A research in Yogyakarta, Indonesia was interested in how the 
speed limit, number of lanes and the density of signalised 
intersections affected travel time (Irawan et al., 2010). Another 
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study showed the density of bus-stops not only affects the bus 
speed, but also the speed of other vehicles (He and Zhao, 2013). 
As a result of having unseparated lanes, non-motor vehicles were 
shown to have high degree interactions with motor vehicles on 
the urban road. There is a general consensus that weather 
conditions significantly affect urban traffic. Researchers 
introduced a model to predict traffic speed accurately by a 
comprehensive understanding of rainfall impact (Jia et al., 2017). 
 
Some other urban elements also play an important role in urban 
mobility analysis. Nian et al. (2010) applied the spatial lag model 
(SLM) to explore the relationship between Point of Interest (POI) 
and taxi travels. Xu et al. (2019) proposed a framework to 
identify urban mobility patterns based on POI data. Another 
study aggregated the regional POIs by categories to generate an 
artificial POI-image for each urban grid, which promotes the 
human mobility prediction at the citywide level (Jiang et al., 
2021). In addition to POI, land cover of urban areas also 
influences the mobility trends. A research using a sequential 
modelling process to analyse the impact of land use on urban 
mobility patterns, emissions and air quality (Bandeira et al., 
2011). Recently, a study inferred urban land use from taxi 
trajectory data and bus smart card data (Liu et al., 2021). The 
variation in the number of origin/destination points over time was 
initially used to characterize land use types. Besides, street 
imagery is a new and emerging urban big data source with high 
spatial resolution. Studies have reported using this data to audit 
road infrastructure and other built environment features. Goel et 
al. (2018) used Google Street View(GSV) from 34 cities in Great 
Britain, to predict travel pattern at the city level.  
 
Previous researchers mostly only explored the multiple aspects 
of urban environment in qualitative research, like mobility 
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pattern analysis, with limited aspects considered for quantitative 
analysis, such as factors influence traffic flows. Those existing 
study overlooks the integrated influence of road characteristics, 
and other surrounding environments on urban traffic flow, such 
as land use/cover, nearby points of interest and Google Street 
View. The analysis of traffic flows plays a crucial role in the 
process of urban development, providing insights for urban 
planning, traffic management and resource allocation. To tackle 
these issues, this research will apply spatial model using DL 
coupled with CV to analysis the relationship between urban 
elements (built environment, natural environment, etc.) of the 
city and traffic dynamic. 
 
 

2. STUDY AREA AND DATA 

2.1 Urban Traffic Flow 

The urban traffic flow data are collected from August 5, 2019 to 
December 05, 2019 by road detectors from Glasgow City Council 
(GCC). Traffic flow data of GCC area is available from Glasgow 
Open Data portal (https://gcc.developer.azure-api.net/). During 
the study period, 1032 sites of traffic flows were recorded, from 
which 487 valid sites has been used in this research, locating from 
main road (motorway) to fifth class road (local road), with the 
time interval of 15 minutes. The detailed data clean process is 
listed below in the Figure 1. In this research, the traffic data of 
each site are aggregated as daily average traffic flow across 5 
months for further analysis.  
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 

Figure 1. Data cleaning flowchart.  
 

2.2 Urban Road Network and Point of Interest (POI) 

Road network data and POI was obtained from Digimap 
(https://digimap.edina.ac.uk/), a web-based service delivering 
digital map data and high-quality cartographic products for UK 
higher education. Road network data provides details of road 
types, names, directionality, length, width, elevation, start node 
and end node. POIs of GCC area are categorised into 9 groups, 
including Retail, Manufacturing and Production, 
Accommodation, Eating and Drinking, Attractions, Commercial 

Services, Sport and Entertainment, Transport, Education and 
Health, and Public Infrastructure. In this research, the number of 
POIs on each site is calculated within a 100 metres buffer, group 
with the largest proportion as the major POI of this site. 
 
2.3 Google Street View (GSV) 

GSVs of 458 valid traffic flow sites are downloaded from the 
Street View Static API (https://developers.google.com), 
provided by Google Maps Platform. GSVs of each site are 
recorded from 4 perspectives, 0°, 90°, 180°, 270°. This research 
applies pre-trained DeepLab model from TensorFlow to perform 
semantic segmentation on GSVs 
(https://github.com/tensorflow/models/tree/master/research/dee
plab). The outputs demonstrate the pixel percentage of 19 typical 
cityscape objects (Figure 2), from which road, building, 
vegetation, and car are considered in this research.  

 
Figure 2. Example output of GSV semantic segmentation. 

 
2.4 Land Cover 

The Urban Atlas (https://land.copernicus.eu/local/urban-atlas/) 
provides comparable land cover and land use data for Functional 
Urban Areas (FUA) in Glasgow in 2018. The land cover types of 
GCC area are divided into 27 groups (Figure 3), which are 
aggregated into 6 categories, including continuous urban fabric, 
discontinuous urban fabric, green urban areas, industrial, 
commercial, public, military and private units, roads and railways 
and others. The image classification is at 10 metres resolution.  
 

 
 

Figure 3. Land cover types of Glasgow. 
 
 

3. METHODOLOGY 

3.1 Semantic Segmentation 

Semantic segmentation is a problem of assigning one label li to 
each pixel pi of an image I, where li is one of K different classes. 

Removed sites with incorrect coordinates (n=59) 

Removed sites with invalid records > 1% (n=48) 

Removed sites with distance from the nearest road > 15m 
(n=9) 

Removed sites with zero flow records > 25% (n=400) 

Removed sites without road characteristics (n=30) 

Original number of sites: 1033 

Number of sites: 487 
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3.1.1 Object Region Representations: The representations 
of all the pixels are aggregated weighted by their degrees 
belonging to the kth object region, forming the kth object region 
representation (Yuan et al., 2021): 
 

�� =  ∑ ���������                                 (1) 
 

Where �� is the representation of pixel pi. ���� is the normalized 
degree for pixel pi belonging to the kth object region. 
 
3.1.2 Object Contextual Representations: The relation 
between each pixel and each object region as below: 
 

��� =  
��(��,��)

∑ �
�(��,��)�

���

                               (2) 

 
Where k(X, f) = φ(�)�ψ(f) is the unnormalised relation function, 
φ(·) and ψ(·) are two transformation functions implemented by 1 
× 1 conv → BN → ReLU. This is inspired by self-attention for a 

better relation estimation. 
 
3.1.3 Augmented Representations: The final representation 
for pixel pi is updated as the aggregation of two parts, the original 
representation Xi, and the object contextual representation Yi: 
 

�� =  g(��
� ��

�)�                               (3) 
 

Where g(·) is a transform function used to fuse the original 
representation and the object contextual representation, 

implemented by 1 × 1 conv → BN → ReLU. 

 
3.2 Regression 

3.2.1 Linear Regression Model: A linear regression model 
will be applied to identify the major elements (built environment, 
natural environment, etc.) of the urban system influence the 
spatio-temporal distribution of traffic flows (Seber and Lee, 
2012): 
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Where                               
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Where � is a vector of traffic flow on each location; � is a matrix 
of urban factors (built environment, natural environment, etc.) 
affecting urban traffic flow in Glasgow; �  is a vector of 

regression parameters that to be estimated based on variables and 
�  represents a vector of unobserved variables, also known as 
error term for the regression model. 
 
3.2.2 Moran’s I Test: Moran’s I is a measure of 
autocorrelation in spatial data and it is used to quantify the 
autocorrelation in traffic flow residuals of linear regression. The 
formula can be defined as follow (Draper and Smith, 1998): 
 

� =
�

�

����

���
                                       (9) 

 
Where n is the number of average traffic flows; W is the spatial 
weight matrix for road links in the network; S is the sum of spatial 

weights in W. if W is row standardised then 
�

�
= 1. According to 

the formula, the value of Moran’s I is from 0 to 1, which means 
the lager the Moran’s I is, the more spatial autocorrelation 
between traffic flow residuals. 
 
3.2.3 Lagrange Multiplier Test: The drawback of Moran’s I 
is that is does not reveal the type of autocorrelation. Currently, 
there are two types of model are used for analysing the spatial 
dependence: spatial lag model and spatial error model. Lagrange 
Multiplier (LM) test is designed to test which type of spatial 
regression model is most appropriate for the traffic flow data. The 
LM test can be interpreted as chi-square tests with one degree of 
freedom. LM test for spatial lag model can be defined as 
(Darmofal, 2015): 

����� = �
�����

���
�

�

�
�������

�
�������
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(10) 

 
� = � − �(���)����                          (11) 

 
LM test for spatial error model takes the form: 
 

������� = �
�����

���
�

�

[��(��� + ��)]��         (12) 

 
Where n is the number of average traffic flows; �  are the 

residuals of fitted linear regression model; ��  is estimated 
parameters of linear regression model; W is the spatial weight 
matrix for road links in the network; I is the value of Moran’s I 
and tr is the matrix trace operator. 
 
3.2.4 Spatial Error Model: Spatial error model assumes the 
error terms across different spatial units are correlated, which 
violates the assumption of uncorrelated error terms in linear 
regression model. Thus, the spatial error model eliminates the 
spatial dependence of error terms by including a spatially 
weighted errors in the error term. The basic form of a spatial error 
model is (Draper and Smith, 1998): 

� = �� + �                                     (13) 

 � = ��� + �                                   (14) 

�~�(0, ���)                                    (15) 

where W is the spatial weight matrix for detectors, and function 
of neighbourhood contiguity by distance is applied for identify 
the neighbours of each detector; � are the residuals of fitted linear 
regression model; � is a scalar autocorrelation parameter and � is 
a vector of mean zero, normally distributed errors. In this case, 
the weighted sum of errors �  are spatially adjacent to y is 
included in the error term. Unlike the linear regression model, 
Maximum Likelihood Estimation (MLE) methods are applied to 
determine the parameters in the spatial error model. 
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4. RESULTS 

4.1 Distribution of Traffic Flow 

4.1.1 Statistical Distribution: A visualisation of the daily 
average traffic flow in Glasgow from August 5th to December 5th 
in 2019 has been shown in Figure 4:  
 

 
 

Figure 4. Histogram of daily average traffic flow. 
 

Generally speaking, daily average traffic flow in Glasgow City 
Council Area follows the normal distribution, which satisfies the 
null hypothesis of the linear regression model. Besides, it is 
evident that the median traffic flow along the roads of Glasgow 
is approximately 1419, while in most areas, there are about 1257 
vehicles travelled each day. 
 
4.1.2 Spatial Distribution: It can be observed from the Figure 
5 that there is considerable variation in the daily average traffic 
flow across Glasgow. A spatially West-East divide pattern can be 
detected that the number of vehicles travelled in the west part of 
Glasgow generally higher than those travelled in the east part of 
Glasgow.  
 
The daily traffic flow gets higher towards the centre of Glasgow 
and lower in peripheral areas, particularly the East and Northeast. 
However, there is a cluster of high traffic flow visible in the 
Southeast and the Northeast part of Glasgow, which will be 
examined using local Moran’s I later in detail. Also, there is clear 
evidence that recorded sites located near to one another tend to 
have similar traffic flow values, indicating the existence of spatial 
autocorrelation, which will be examined further in the next 
section. 
 

 
Figure 5. Spatial distribution of daily average traffic flow in 

Glasgow. 

 
4.2 Linear Regression Model 

Before the model implementation, reference categories are 
selected for each categorical variable, for comparing with other 
categories. In this study, reference categories are identified as 
follows: 
 

Variable 
Reference 
Category 

Description 

Road 
hierarchy 

A road 

A major road intended 
to provide large-scale 
transport links within 
or between areas. 

POI group No group No POI recorded 
within 100m of the 
detector. 

Land cover Continuous urban 
fabric 

 

 
Table 1. Reference category 

 
 

Variable Category Estimate Std.Error Pr(>|t|) 

(Intercept)  1501.828  256.953 9.66e-09*** 

Road 
hierarchy 
  
  

B road -365.147  112.975  0.001* 
Local road -460.232  122.991  0.001*** 

Minor road -378.286  76.280  1.00e-06*** 

POI number  4.436 1.407  0.002** 

POI group Attractions 963.624  405.973  0.018* 

Land cover Industrial, 
commercial, 
public, 
military and 
private units  

164.872 101.456 0.104 

Vegetation 
(GSV) 

 -3.069 343.435 0.992 

R2: 0.1417  P-value: 1.688e-05  

 
Table 2. Linear regression model results (P-value<0.001***) 

 
 

4.2.1 Results of Linear Regression Model: Table 2 reveals 
the best model results. The VIF (Variance inflation factor) of 
different variables are all below 5, it is safe to assume that no 
multi-collinearity exists within variables. The results of linear 
regression model of daily average traffic flow demonstrate that 
some categories of route hierarchy, POI and POI number have 
significant effect on traffic flows in Glasgow with p-value below 
0.05, while land cover type and the coverage of vegetation along 
the roads have insignificant effect on traffic flow.  
 
As expected, traffic flow on major road (A road) is much higher 
than other low-level roads. Areas with POI like attractions, which 
include places of botanical and zoological, historical, and cultural, 
recreational, tourism and bodies of water, are positive related to 
the daily traffic flow in Glasgow. Besides, places with high POI 
number attract more vehicles than lower ones.  
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4.2.2 Residual Analysis of Linear Regression Model: The 
spatial dependence of linear regression model residuals can be 
observed from the map below (Figure 6). The residuals of model 
have similar spatial distribution to daily traffic flow, which 
demonstrates two significant clusters with low and high values 
separately. 
 

 
 

Figure 6. Spatial distribution of residuals of the linear 
regression model. 

 
The global Moran’s I test also justifies that the residuals are 
spatially auto-correlated (p < 0.01). Therefore, the linear 
regression is insufficient to model the relationship between daily 
average traffic flow and road factors. A spatial regression model 
is employed as an alternative 
 

Observed Moran’s I Expectation Variance 

0.0307992444 -0.0021555470 4.0733e-06 

P-value: <2.2e-16   

 
Table 3. Moran’s I for regression residuals 

 
4.3 Spatial Regression Model 

4.3.1 Lagrange Multiplier Test: The results of Moran’s I do 
not reveal the type of spatial autocorrelation of residuals. Thus, 
the LM test is applied. The LM test for the spatial lag and the 
spatial error dependence are designed to test which type of spatial 
regression model is most appropriate for a given dataset. In this 
case, the LM test is employed to determine the type of spatial 
regression model that should be employed to eliminate spatial 
autocorrelation. 
 

 P-value 

Lagrange Multiplier Test for Spatial Lag 
Dependence 

0.2078 

Lagrange Multiplier Test for Spatial Error 
Dependence 

0.0016 

 
Table 4. Moran’s I for regression residuals 

 
The results of the LM test indicate that the spatial error 
dependence was significant (p-value < 0.01), while the spatial lag 
dependence is insignificant with a high p-value. This suggests 

that the spatial error model is more appropriate for eliminating 
spatial autocorrelation in the case of daily average traffic flow. 
 
4.3.2 Results of Spatial Error Model: Similar to the linear 
regression model, the results of the spatial error model on daily 
average traffic flow demonstrate that some categories of road 
hierarchy, POI number and POI of attractions have a significant 
impact on traffic flow along road links with a p-value lower than 
0.05. The coverage of vegetation around roads has an 
insignificant impact on traffic flow (p-value = 0.528). However, 
in the spatial error model, it shows that vehicles are attracted by 
places with land cover type of industrial, commercial, public, 
military, and private units.  
 
The parameter of the spatial error model, Lambda, is significant 
with p-value of 8.658e-06. Besides, the AIC value of the spatial 
error model (7714) is lower than that of the linear regression 
model (7731.8), which indicates that the spatial error model 
generates a better fit on the dataset. 
 

Variable Category Estimate Std.Error Pr(>|t|) 

(Intercept)  1487.092  376.651 7.87e-05*** 

Road 
hierarchy 
  
  

B road -383.472  106.366  0.001** 
Local road -512.777  116.433  1.06e-05*** 

Minor road -417.307  72.043  6.93e-09*** 

POI number  4.154 1.327  0.002** 

POI group Attractions 951.351  381.939  0.013* 

Land cover Industrial, 
commercial, 
public, 
military and 
private units  

196.439 95.624 0.039* 

Vegetation 
(GSV) 

 -206.698 327.737 0.528 

Lambda: 
0.90225 

P-value: 
8.658e-06 

AIC: 
7714 

AIC for lm: 7731.8 

 
Table 5. Spatial error model results (P-value<0.001***) 

 
4.3.3 Residual Analysis of Spatial Error Model: It can be 
seen from Figure 7 that the spatial dependence of residuals is still 
significant. On the map, there are clusters of residuals with high 
value around city centre and northwest part of Glasgow. 
Meanwhile, results of the Moran’s I test for residuals indicate that 
the spatial autocorrelation of residuals is not eliminated (p-value 
< 0.001). Therefore, we can assume that the spatial dependence 
of the regression model is not fully accounted for. Overall, it is 
insufficient to interpret the relationship between daily average 
traffic flow and urban factors via the spatial error model. More 
spatial econometric methods such as spatial Dublin model or 
spatial Dublin error model can be applied further in this analysis.  
 

Observed Moran’s I Expectation Variance 

1.213188e-02 -2.057613e-03 5.102623e-06 

P-value: <1.676e-10   

 
Table 6. Moran’s I for residuals of the spatial error model. 
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Figure 7. Spatial distribution of residuals of the spatial error 
model. 

 
 

5. CONCLUSIONS 

The rapid urbanisation in recent years has brought huge impacts 
on urban traffic due to the growth of urban population, which 
potentially increases the travel demands and the risk of 
worsening traffic conditions caused by the overload of the 
transportation infrastructures. Therefore, urban traffic analysis 
has acted an important role in the process of urban development, 
which can provide insights for urban planning, traffic 
management and resource allocation, and help improve the urban 
transportation efficiency and living environment. 
 
This research quantifies the urban elements that influence the 
daily average traffic flow along road links. Deep learning, 
computer vision and regression models have been applied in this 
research. The spatial error model used is more appropriate for 
daily average traffic flow, although with auto-correlated 
residuals. Both the linear and spatial models suggest that the 
number of vehicles travelled on main roads are higher than 
smaller roads. The places with POIs have positive effect on 
traffic flows, revealing that the more POIs, the higher traffic 
flows are likely to be. In the contrast, the impact of land cover 
type with industrial, commercial, public, military and private 
units is insignificant in linear regression model, while shows 
significant contributions to traffic flows in spatial error model. 
Meanwhile, a variation of coverage of vegetation around roads 
has an insignificant impact on daily average traffic flow in the 
study area. 
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