
RESEARCH OF VECTOR TILE CONSTRUCTION TECHNOLOGY BASED ON

APACHE SEDONA

Zhang Hongping1,2, Du Mingyi1, *, Huang Wei2, Ding Lei2, Tang Dejin2, Jiang Jie1

1 School of Geomatics and Urban Spatial Information, Beijing University of Civil Engineering and Architecture, Beijing, China –

(dumingyi, jiangjie) @ bucea.edu.cn

2 National Geomatics Center of China, Beijing, China- (zhanghongping, huangwei, dinglei,tangdejin)@ngcc.cn

Commission IV

KEY WORDS: Web map, Vector tile, Pyramid model, Parallel processing, Apache Sedona

ABSTRACT:

With the development of spatial information technology, the amount of geographic information data shows an explosive growth,

which puts forward higher demands on the time efficiency and visualization effect of geographic information data release. vector tile

maps have become the main map service mode in the fields of Internet maps and GIS industries because of the advantages of its

powerful interactive capabilities, efficient data transmission and lower storage costs. In order to construct massive vector tiles

quickly and enhance the scalability of vector tiles application, this paper researched the vector tiles construction technology based on

the distributed computing framework. Firstly, we introduced the construction process of vector tiles such as pyramid model, data

organization and data generalization, Specifically, the data generalization methods of different geometric types were discussed.

Second, Apache Sedona, the distributed computing framework were researched and the advantages for vector data processing is

introduced. Then, the Sedona based parallel construction technology is proposed, and pipeline optimization of Spark is applied in

this process. Third, a comparative experiment to evaluate the performance were conducted, the result showed that the parallel

construction technology had obvious performance advantages, the greater the volume and extent of vector data, the greater the

advantage.

* Corresponding author

1. INTRODUCTION

With the development of HTML5 and WebGL technologies, the

vector tile service represented by Mapbox has gradually

replaced raster tiles and become the mainstream service mode of

web maps. Vector tiles are the segmentation and storage of

vector data layers in the form of tiles. Compared with raster tiles,

vector tiles have the advantages of small volume, high

generation efficiency, dynamic interaction, and support for

online editing and style modification, and the traditional raster

tiles do not have the characteristics (Zhu, X. L., et al., 2016).

At present, spatial data with high precision, large coverage, and

many layers is exploding. For instance, the national land

coverage and geographic national conditions data in a single

year can reach TB scale, and the number of geometric objects

can even reach more than one billion (Zhang, J., X., et al.,

2016). In this context, how to construct vector tiles for map

services quickly and efficiently with the massive spatial data has

become one of the current research hotspots.

The raster tile is to render vector data into JPG/PNG format

according to the pyramid model, and vector tile is to store data

in binary format with the Mapbox MVT specification using

Google Protocol Buffers (PBF) (Vladimir, et al., 2018).

Therefore, the number of data layers, geometric complexity, and

the amount of feature nodes have a greater impact on the

efficiency of vector tile construction and map rendering. In

recent years, researches on vector tile map have been conducted

(Chen, J., P.& Ding J., X, 2017). To make the tile size more

smaller, an improved Visvalingam algorithm for simplifying

Linear Elements was proposed according to the application

requirements of the vector tile map service (Jin C., et al., 2019).

Usually, the distribution characteristics of spatial data are

ignored, resulting in unbalanced data volume among vector tiles

at the same level, some studies researched the method for dense

and sparse vector tiles construction considering the spatial

distribution characteristics of spatial data (Zhu, X., X, et al.,

2017). With the rise of Hadoop and Spark, there are many

studies on parallel construction technology for spatial data

analysis and management (Shin,2021;). Geospark, a cluster

computing framework for processing spatial data was

introduced, and it is a combination of Spark and geo-

information (Yu, J., et al.,2016, Huang Z, et al.,2017). A

scalable geospatial data visualization framework (GeoSparkViz)

is introduced in the apache spark ecosystem, but it focus on

spatial big data visualization rather than vector tiles (Yu,.J.,

2018). The parallel computing framework Spark and Hadoop

are both used to build the vector tile pyramid model (Nie,

P.,2020), however, spatialRDDs are not used in their research.

It can be seen from the above research that how to construct

massive vector tiles quickly and efficiently has become the key

part of vector data mapping and visualization. In this paper, we

present the vector tile construction technology framework based

on Apache Sedona. First, the vector tile construction process

including pyramid model, data organization and data

generalization is introduced. Second, Apache Sedona, the

distributed computing framework is researched and the

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2022
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-639-2022 | © Author(s) 2022. CC BY 4.0 License.

639

advantages for vector data processing are analysed. Then, the

Sedona based parallel construction technology is proposed.

Third, a comparative experiment to evaluate its performance is

conducted. Finally, we close with some concluding remarks.

2. CONSTRUCTION OF VECTOR TILES

2.1 Tiles construction model

The vector tile refers to a specific data format formed by

dividing the original data into blocks according to the

predefined tile model. The tile model generally needs to satisfy

the user's quick access to data in different areas and different

scales. Since the calculation and indexing method of the

pyramid model is simple and fast, it is more suitable for high

concurrent access scenarios on the Internet. Therefore, in the

field of Internet maps, the pyramid level model is generally used

to generate map tiles, and this model is also applied in this

paper. The pyramid model is a multi-resolution hierarchical data

model. Under the condition that the geographic range remains

unchanged, from the top to the bottom of the tile pyramid, the

scale value becomes smaller and smaller. It divides the map

according to the quad-tree rule. As shown in Figure 1, the scale

and resolution relationship between adjacent layers is 1:2, the

number of tiles is 1:4, and the tile size is consistent at different

layers. The size of vector tile refers to the resolution of the tile

on the screen, that is, the length and width of the tile, generally

according to the square tile of 512◊512 pixels.

Figure 1. Quardtree spatial index of tiles from level 0 to level 2

As the level increases, the scale of the tile increases, the spatial

range represented by a single tile decreases, and the spatial

range relationship between adjacent levels of tiles is 1:4. The

number of vector tiles at each level can be calculated according

to

 （1）

where i represents the level of the pyramid model.

2.2 Vector tile data organization

Unlike raster tiles that only store image information, vector tiles

store both geometric information and attribute information. For

the organization of vector tile data, neither ISO nor OGC has

issued a unified data standard. Currently, the open source

Mapbox Vector Tile Specification (MVT) is the mainstream

vector tile data organization file format, which is not only

supported by the tools such as Tippecanoe from Mapbox, but

also supported by many GIS softwares like GeoServer, mapnik,

etc. Google Protocol Buffer（pbf）, a compact binary format

for structured data, is used to encode vector tiles. This kind of

vector tile format can reduce data redundancy, greatly save

storage space, and improve the data transmission efficiency on

the Internet. A vector tile does not contain information about its

bounds and projection. The file format assumes that the decoder

knows the bounds and projection of a vector tile before

decoding it.

2.2.1 Layers: Like GeoJson, a vector tile consists of a set of

named layers, such as POIs, road, water, etc, and each layer

contains geometric features and their metadata. A vector tile

should contain at least one layer, and a layer should contain at

least one feature. The attributes of each feature are stored with

one or more key-value pairs, which can be used for map styles

and attribute query. In order to improve front-end rendering

efficiency and reduce tile size, the vector data from the original

projected coordinate system are converted to the screen

coordinate system, and the float coordinates are converted to

integer screen coordinates. The coordinate system of the vector

tile is the screen coordinate system, the upper left corner of the

tile is the origin of the coordinate system, the direction of the x-

axis is positive to the right, and the direction of the y-axis is

positive downward. An extent field should be included to

describe the width and height of the tile. In this paper, we

expanded the vector data of 0.5% of each tile extent as a buffer

for rendering features that overlap multiple adjacent tiles.

2.2.2 Features: Features are used to describe the geometric

object with geometry and type fields. Each feature should

contain at least one type, and the type field must be a value in

the enumerable types, such as Point, Linestring, Polygon, and

Unknown. The tag and id fields are optional, if there are

attributes for the feature, the data should be saved in the tag

fields, and the values of id field should be unique among the

other features in the layer.

{

 "type":

"FeatureCollection",

 "features": [

 {

 "geometry": {

 "type": "Point",

 "coordinates": [-

8247861.1000836585,49702

41.327215323

]

 },

 "type": "Feature",

 "properties": {

 "aa": "world",

 "bb": "world",

 "cc": 2

 }

 }]

}

(a)GeoJson struct (b) MVT struct

layers {

 version: 2

 name: "points"

 features: {

 id: 1

 tags: 0

 tags: 0

 tags: 1

 tags: 0

 tags: 2

 tags: 1

 type: Point

 geometry: 9

 geometry: 2410

 geometry: 3080

 }

 keys: "aa"

 keys: "bb"

 keys: "cc"

 values: {

 string_value: "world"

 }

 values: {

 double_value: 2

 }

extent: 4096

}

Figure 2. Examples of GeoJson and MVT struct

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2022
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-639-2022 | © Author(s) 2022. CC BY 4.0 License.

640

Figure 2 shows a geojson example was converted to the mvt.

The name of the layer is points, and there is only one geometric

object of Point type. The coordinates, type and attribute index

values are stored in the feature. The extent of the tile only

specifies the range of the tile, not the size of the tile after

rendering. For example, the mvt with an extent of 4096 does not

mean that the final rendered image is an image of 4096◊4096

pixels. The size of the rendered image is not determined by the

extent.

2.2.3 Metadata: Due to the vector tiles are rendered on the

browser, the metadata such as format, bounds, layers and should

be provided to the JavaScript API firstly. On the basic of

Mapbox metadata, we expanded some other fields like producer

and release date according the actual production. All the fields

considered for vector tiles in this paper are in Table 1:

Field Description

name name of the vector tile dataset

type
map type, such as basic map or thematic

layers

version version of vector tiles

projection vector tiles projection, such as EPSG:3857

tilesize size of vector tiles, such as 512 pixels

minlevel the min level of the vector tiles

maxlevel the max level of the vector tiles

center the center point of the vector layers

format
vector tile format, such as geojson, mvt or

customed pbf format

bounds
the max Bbox of the vector dataset, all the

tiles of different levels are included

json
layers, layer id, layer zoom levels,

descriptions, etc, in the format of json

url the url to access vector tiles

producer
vector tiles production personnel or

department

release_date release date of vector tiles

description descriptions of the vector tiles

Table 1. Metadata for vector tiles

2.3 Vector data generalization

The size of each vector tile determines the transfer efficiency on

the Internet and rendering efficiency on the canvas. Therefore,

the generalization of vector data is the most important part in

the process of vector tiles construction. In fact, the problem of

vector data generalization has always been a difficult problem

in the field of map synthesis, and it has not been well solved so

far. In this paper, we combined attribute filtering and feature

simplification for different kinds of layers to reduce the tile

since and improve rendering efficiency.

For the Attribute filtering, vector tiles are multi-scale and do not

render all vector features at once, and all the features are

displayed according to the cartographic synthesis theory and

pyramid model. In the case of road layer, the expressway is

displayed from level 6, national and provincial highway is

displayed from level 7, small and dense urban and rural roads

are displayed from level 16. The attributes filtering conditions

are set before generating the tiles, then each level only contains

the needed features that should be displayed, and the others are

not included in the tiles, which can greatly reduce the number of

features contained in low-level tiles and improve the rendering

efficiency of tiles.

As to the POIs, the points of each tile should be filtered

according to the level and classification firstly, if the number of

POIs does not exceed the threshold, the generalization process

will not be performed, otherwise the POIs will be simplified

based on the grids of each tiles. Only one POI is reserved for all

categories in each grid, and if the category and importance of

POIs in a grid are the same, the random deletion method is

adopted.

As shown in Figure1, the Douglas–Peucker algorithm that takes

into account topological relationships is used to simply the line

and polygon features. The overall process is as follows: 1)

reading all the features of the same layer; 2) extracting the

adjacent edges; 3) using two object lists to save independent

edges and adjacent edges, and establishing the relationship

between them; 4) simplifying the edges separately, and the

endpoints should not be removed; 5) reorganizing the edges and

forming the feature.

Batch features input

Adjacent edges

extraction

Independent edges Adjacent edges

Douglas–Peucker

algorithm

Features

reorganization

Figure 3. Vector data generalization method

3. SEDONA BASED PARALLEL CONSTRUCTION

TECHNOLOGY

3.1 Apache Sedona framework

Apache Sedona (incubating) is a cluster computing system for

processing large-scale spatial data. Sedona extends Apache

Spark / SparkSQL with a set of out-of-the-box Spatial Resilient

Distributed Datasets / SpatialSQL that efficiently load, process,

and analyze large-scale spatial data across machines (Apache

Sedona, 2021). The predecessor of Senona is geospark, it is the

combination of GIS and Spark. RDD (Resilient Distributed

Dataset), which is called a distributed dataset, is the most basic

data abstraction in Spark. It extends RDDs to form spatial

RDDs (SRDDs) and efficiently partitions SRDD data elements

across machines and introduces parallelization of spatial

transformations and operations to provide a more intuitive

interface for users to write spatial data analysis programs.

Figure 4 shows the architecture of Apache Sedona, which

contains 3 layers (Apache Sedona, 2021).

3.1.1 Spatial RDD layer: It supports various spatial data input

formats, such as text and wkt text. The data is transformed and

processed and stored in SRDDs, and the JTS topology suite is

integrated to support spatial objects. Depending on the type of

spatial object, spatial RDDs are defined as PointRDD,

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2022
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-639-2022 | © Author(s) 2022. CC BY 4.0 License.

641

RectangleRDD, PolygonRDD and LineString RDD. Some

geometry operations for SRDDs are built-in, and hence

geometric operations can interact with Spark Layer through

RDD operators such as Map, Sort, Filter, and Reduce.

,

3.1.2 Spatial Query Processing Layer: Based on the Spatial

RDDs Layer, it supports spatial queries (such as range queries

and join queries) of large-scale spatial datasets. Users can call

the spatial query provided by the spatial query processing layer

after the geometric objects are stored and processed in the

SRDD layer, and all the process is in the memory.

3.1.3 Spatial SQL/Python API Layer: SQL interface follows

SQL/MM Part3 Spatial SQL and OGC Standards. All

SedonaSQL functions (list depends on SedonaSQL version) are

available in Python API.

Figure 4. Architecture of Apache Sedona

3.2 Vector tiles parallel construction process

The original vector layers with necessary mapping attributes are

stored in the PostgreSQL according to the different categories,

such as POIs, roads, water, buildings and boundary. Figure 5

shows the overall parallel construction method adopted in this

paper.

Shapefile PostgresSQL ESRI FileGDB

Spatial RDDs and indexes creation of different layers

Tile bbox calculation base on the

tile-pyramid model

Tile spatial query and

clip in Spatial RDDs

Geometry generalization

Layers merge and tile construction

PBF Geojson

DataSource

Sedona based

vector tile

construction

process

Tile output

Figure 5. Sedona based vector tile construction process

3.2.1 Data preprocessing: Before importing the data though

SparkSQL, the problems such as coordinate system, self-

intersection and multicurve should be preprocessed. Due to the

size of different features is not equal, for example, the size of

some water and vegetation features are nearly 100M, and most

of the other features are less than 1M, this will result in data

skew while parallel construction in Sedona. The size of the

features is determined by the points, therefore, we split the

features with the points more than 10 thousand to keep features

balancing.

3.2.2 Data import: Use SparkSQL to read the data of specified

extent in the PostgreSQL, for example, the Bbox of some

administrative division. There is a geom field in PostGIS, which

stores the geometric information in wkb format. For sparksql,

the geom field is a varchar field and it is needed to convert it to

Geometry. And then all the spatial features are converted into

SRDDs in memory before parallel processing.

3.2.3 Tiles calculation: According to the pyramid model and

the needed levels of tiles construction, the Bbox of each tile can

be calculate by spatial query operation. Then clip the geometry

objects in the SRDDs based on the tile’s Bbox, and the tile’s

buffer is considered to prevent cracks between adjacent tiles.

Due to the uneven spatial distribution of vector data, there are a

lot of invalid queries and intersection calculations based on in

the traditional tile construction technology, the problems are

very obvious in the west province such as Tibet and Xinjiang.

For instance, as shown in Figure 6, the polyline only crosses the

grid 0,1 and 2. If we need to produce the vector tiles from level

1 to 18, there is no need to do any operation from level 2 to 18

in grid 3. By that analogy, grids 00,02,11 and13 are the same in

the next level process. We used the pipeline optimization of

Spark to solve the problem.

Figure 6. Tile construction process after optimization

3.2.4 Geometry object identification and simplification: Each

geometry is divided into different tiles and tagged with (row,

column, level), and then the generalization algorithm introduced

in 2.3 is used to simply the point, line and polygon features of

different layers and levels based on the threshold values. While

clipping a geometric object, all the related attributes such as

type, category, and some other values are reserved.

3.2.5 Geometric objects merge: The coordinates of geometric

objects should be transferred to screen coordinates, and the tile

data is formed by merging all geometric objects in the same tile

tag (row, column and level), and the tile of PBF format can be

produced and stored in the MongoDB database.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2022
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-639-2022 | © Author(s) 2022. CC BY 4.0 License.

642

4. EXPERIMENT

This section uses a real application case to validate the

construction method proposed in this paper.

4.1 Experimental data

As shown in Figure 7, the Beijing dataset from the National

geographic information service platform (Tianditu) is choosed

as the experimental case, which is located at 115.7° -117.4 ° E

and 39.4° -41.6 ° N.

Figure 7. Experimental data and extent

The experimental data set includes multiple layers such as POIs,

water, rail, road, buildings, vegetation, area of interest (AOI),

annotation of AOI, etc. The size of the dataset is about 1GB,

layers, number of features, nodes are shown in Table 2.

No. Layer Type
Number of

Features
Nodes

1 POIs Point 94,169 94,169

2 Water Polygon 43,098 807,614,448

3 Water Multiline 14,165 3,150,299

4 Rail Multiline 955 39,166

5 Road Multiline 1,057,013 5,809,320

6 Buildings Polygon 5,635,766 40,038,553

7 Vegetation Polygon 351,876 15,700,962

8
Area of Interest

（AOI）
Polygon 6,068 141,326

9 Annotation of AOI Point 604 604

Table 2. Layers and features of the experimental dataset

4.2 Comparison of vector tiles construction

The experiment compares the standalone and Sedona mode for

constructing vector tiles based on Beijing’s dataset. Geoserver

2.20.3 (hereinafter called Geoserver) and PostgreSQL12 +

Postgis2.2 (hereinafter called Postgis) are selected as the

standalone mode experiment softwares because they are both

open source and many commercial GIS platforms which support

vector tiles are developed based on them. The test server is a

virtual machine with 48vCPU, 96GB memory, and 500GB

storage space. The Sedona mode is used with 96 parallelisms to

test the performance.

As shown in Figure 7, the execution time of Sedona only costed

22 minutes, but the time of geoserver and Postgis spend are

both more than one hour. From the results of the experiment,

the execution time is less and the algorithm efficiency is higher

by using the construction method presented in this paper. As the

volume of data and the map extent increase, the advantages of

Sedona mode will be more significant.

Figure 7. Total Execution Time of different construction modes

(in minute)

5. CONCLUSION

Vector tiles have become the mainstream service mode of the

current Internet map, and the construction efficiency of vector

tiles is an important factor affecting the update of vector data.

This paper proposed the vector tiles construction technology

based on Sedona. The parallel tile construction process and the

pipeline optimization method of Sedona are introduced. We can

draw the following several conclusions:(1) The parallel vector

tile construction based on Sedona in this paper is significantly

faster than the traditional standalone mode. Comparative

experiments show that the execution time of the parallel

construction algorithm reduced about 85% than PostGIS. (2) It

has more efficiency in large scale vector data, especially in the

area of uneven spatial distribution. (3) It is feasible to construct

vector tiles based on the high-performance distributed

computing framework, and it has great advantages in the fields

of large-scale vector data visualization and mapping

applications.

Next, further reduction of the vector tile size and improvement

of the data security will be our next research emphases. In

addition, we hope to extend the framework to support the raster

tile construction with the same source data.

ACKNOWLEDGMENT

This work was supported by National Geo-information Service

Platform “Tianditu” and Technology innovation center for Geo-

information common service.

REFERENCES

Apache Sedona, 2021. https://sedona.apache.org/

Chen, J., P., Ding J., X, 2017. Research on key technology of

vector tile map. Geospatial Information, 15(8):44-47.

Huang, Z., Chen, Y., Wan, L., & Peng, X.., 2017. GeoSpark

SQL: An effective framework enabling spatial queries on spark.

ISPRS International Journal of Geo-Information, 6(9), 285.

Jin, C., An.,X.,Y., Cui, H., F.,& Zhao., Y., J., 2019 An

Algorithm for Simplifying Linear Elements of Vector Tile Maps.

Journal of Geo-Information Science, 21(10):1502-1509.

Nie, P., Chen, G., S. & Jing W., P., 2020. Parallel construction

and distributed storage for vector tile. Journal of Geo-

information Science, ,22(7):1487-1496.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2022
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-639-2022 | © Author(s) 2022. CC BY 4.0 License.

643

Shin, H., Lee, K., & Kwon, H. Y., 2021. A comparative

experimental study of distributed storage engines for big spatial

data processing using GeoSpark. The Journal of

Supercomputing, 1-24.

Vladimir A, John F, Eric F, et al. Mapbox vector tile speci-

fication[EB/OL]. https://github.com/mapbox/vector- tile-

spec, 2018-05.

Yu, J., Wu, J., & Sarwat, M., 2016. A demonstration of

GeoSpark: A cluster computing framework for processing big

spatial data. In 2016 IEEE 32nd International Conference on

Data Engineering (ICDE) (pp. 1410-1413). IEEE.

Yu, J., Zhang, Z., & Sarwat, M., 2018, July. Geosparkviz: a

scalable geospatial data visualization framework in the apache

spark ecosystem. In Proceedings of the 30th International

Conference on Scientific and Statistical Database Management

(pp. 1-12).

Zhang, J., X., Gu, H., Y., Lu, X., J., & Hou, W., 2016. Research

framework of geographical conditions and big data. Journal of

Remote Sensing, 20(5), 1017-1026

Zhu, X., L., Zhou, Z. W., Li, J., Zhao, Y., &Peng Y., L., 2016.

Research for Web Map Vector Tiles Technology. Bulletin of

Surveying and Mapping,11, 106-109.

Zhu, X., X., Zhang, F., & Du., Z., H., 2017. A method of the

dense-sparse vector tile generation accounting for the spatial

distribution of features. Journal of Zhejiang University(Science

Edition), 44(5):591-598.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2022
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-639-2022 | © Author(s) 2022. CC BY 4.0 License.

644

