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ABSTRACT: 

With the development of spatial information technology, the amount of geographic information data shows an explosive growth, 

which puts forward higher demands on the time efficiency and visualization effect of geographic information data release. vector tile 

maps have become the main map service mode in the fields of Internet maps and GIS industries because of the advantages of its 

powerful interactive capabilities, efficient data transmission and lower storage costs. In order to construct massive vector tiles 

quickly and enhance the scalability of vector tiles application, this paper researched the vector tiles construction technology based on 

the distributed computing framework. Firstly, we introduced the construction process of vector tiles such as pyramid model, data 

organization and data generalization, Specifically, the data generalization methods of different geometric types were discussed. 

Second, Apache Sedona, the distributed computing framework were researched and the advantages for vector data processing is 

introduced. Then, the Sedona based parallel construction technology is proposed, and pipeline optimization of Spark is applied in 

this process. Third, a comparative experiment to evaluate the performance were conducted, the result showed that the parallel 

construction technology had obvious performance advantages, the greater the volume and extent of vector data, the greater the 

advantage. 

* Corresponding author

1. INTRODUCTION

With the development of HTML5 and WebGL technologies, the 

vector tile service represented by Mapbox has gradually 

replaced raster tiles and become the mainstream service mode of 

web maps. Vector tiles are the segmentation and storage of 

vector data layers in the form of tiles. Compared with raster tiles, 

vector tiles have the advantages of small volume, high 

generation efficiency, dynamic interaction, and support for 

online editing and style modification, and the traditional raster 

tiles do not have the characteristics ( Zhu, X. L., et al., 2016). 

At present, spatial data with high precision, large coverage, and 

many layers is exploding. For instance, the national land 

coverage and geographic national conditions data in a single 

year can reach TB scale, and the number of geometric objects 

can even reach more than one billion (Zhang, J., X., et al., 

2016). In this context, how to construct vector tiles for map 

services quickly and efficiently with the massive spatial data has 

become one of the current research hotspots. 

The raster tile is to render vector data into JPG/PNG format 

according to the pyramid model, and vector tile is to store data 

in binary format with the Mapbox MVT specification using 

Google Protocol Buffers (PBF) (Vladimir, et al., 2018). 

Therefore, the number of data layers, geometric complexity, and 

the amount of feature nodes have a greater impact on the 

efficiency of vector tile construction and map rendering. In 

recent years, researches on vector tile map have been conducted 

(Chen, J., P.&  Ding J., X, 2017). To make the tile size more 

smaller, an improved Visvalingam algorithm for simplifying 

Linear Elements was proposed according to the application 

requirements of the vector tile map service (Jin C., et al., 2019). 

Usually, the distribution characteristics of spatial data are 

ignored, resulting in unbalanced data volume among vector tiles 

at the same level, some studies researched the method for dense 

and sparse vector tiles construction considering the spatial 

distribution characteristics of spatial data (Zhu, X., X, et al., 

2017). With the rise of Hadoop and Spark, there are many 

studies on parallel construction technology for spatial data 

analysis and management (Shin,2021;). Geospark, a cluster 

computing framework for processing spatial data was 

introduced, and it is a combination of Spark and geo-

information (Yu, J., et al.,2016, Huang Z, et al.,2017). A 

scalable geospatial data visualization framework (GeoSparkViz) 

is introduced in the apache spark ecosystem, but it focus on 

spatial big data visualization rather than vector tiles (Yu,.J., 

2018). The parallel computing framework Spark and Hadoop 

are both used to build the vector tile pyramid model (Nie, 

P.,2020), however, spatialRDDs are not used in their research. 

It can be seen from the above research that how to construct 

massive vector tiles quickly and efficiently has become the key 

part of vector data mapping and visualization. In this paper, we 

present the vector tile construction technology framework based 

on Apache Sedona. First, the vector tile construction process 

including pyramid model, data organization and data 

generalization is introduced. Second, Apache Sedona, the 

distributed computing framework is researched and the 
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advantages for vector data processing are analysed. Then, the 

Sedona based parallel construction technology is proposed. 

Third, a comparative experiment to evaluate its performance is 

conducted. Finally, we close with some concluding remarks. 

 

2. CONSTRUCTION OF VECTOR TILES 

2.1 Tiles construction model 

The vector tile refers to a specific data format formed by 

dividing the original data into blocks according to the 

predefined tile model. The tile model generally needs to satisfy 

the user's quick access to data in different areas and different 

scales. Since the calculation and indexing method of the 

pyramid model is simple and fast, it is more suitable for high 

concurrent access scenarios on the Internet. Therefore, in the 

field of Internet maps, the pyramid level model is generally used 

to generate map tiles, and this model is also applied in this 

paper. The pyramid model is a multi-resolution hierarchical data 

model. Under the condition that the geographic range remains 

unchanged, from the top to the bottom of the tile pyramid, the 

scale value becomes smaller and smaller. It divides the map 

according to the quad-tree rule. As shown in Figure 1, the scale 

and resolution relationship between adjacent layers is 1:2, the 

number of tiles is 1:4, and the tile size is consistent at different 

layers. The size of vector tile refers to the resolution of the tile 

on the screen, that is, the length and width of the tile, generally 

according to the square tile of 512◊512 pixels.  

 

 
 

Figure 1. Quardtree spatial index of tiles from level 0 to level 2 

 

As the level increases, the scale of the tile increases, the spatial 

range represented by a single tile decreases, and the spatial 

range relationship between adjacent levels of tiles is 1:4. The 

number of vector tiles at each level can be calculated according 

to  

 

                               （1） 

 

where i represents the level of the pyramid model. 

 

2.2 Vector tile data organization 

Unlike raster tiles that only store image information, vector tiles 

store both geometric information and attribute information. For 

the organization of vector tile data, neither ISO nor OGC has 

issued a unified data standard. Currently, the open source 

Mapbox Vector Tile Specification (MVT) is the mainstream 

vector tile data organization file format, which is not only 

supported by the tools such as Tippecanoe from Mapbox, but 

also supported by many GIS softwares like GeoServer, mapnik, 

etc. Google Protocol Buffer（pbf）, a compact binary format 

for structured data, is used to encode vector tiles. This kind of 

vector tile format can reduce data redundancy, greatly save 

storage space, and improve the data transmission efficiency on 

the Internet. A vector tile does not contain information about its 

bounds and projection. The file format assumes that the decoder 

knows the bounds and projection of a vector tile before 

decoding it.  

 

2.2.1 Layers: Like GeoJson, a vector tile consists of a set of 

named layers, such as POIs, road, water, etc, and each layer 

contains geometric features and their metadata. A vector tile 

should contain at least one layer, and a layer should contain at 

least one feature. The attributes of each feature are stored with 

one or more key-value pairs, which can be used for map styles 

and attribute query. In order to improve front-end rendering 

efficiency and reduce tile size, the vector data from the original 

projected coordinate system are converted to the screen 

coordinate system, and the float coordinates are converted to 

integer screen coordinates. The coordinate system of the vector 

tile is the screen coordinate system, the upper left corner of the 

tile is the origin of the coordinate system, the direction of the x-

axis is positive to the right, and the direction of the y-axis is 

positive downward. An extent field should be included to 

describe the width and height of the tile. In this paper, we 

expanded the vector data of 0.5% of each tile extent as a buffer 

for rendering features that overlap multiple adjacent tiles.  

 

2.2.2 Features: Features are used to describe the geometric 

object with geometry and type fields. Each feature should 

contain at least one type, and the type field must be a value in 

the enumerable types, such as Point, Linestring, Polygon, and 

Unknown. The tag and id fields are optional, if there are 

attributes for the feature, the data should be saved in the tag 

fields, and the values of id field should be unique among the 

other features in the layer. 

 

{ 

    "type": 

"FeatureCollection", 

    "features": [ 

        { 

            "geometry": { 

                "type": "Point", 

                "coordinates": [-

8247861.1000836585,49702

41.327215323 

                ] 

            }, 

            "type": "Feature", 

            "properties": { 

                "aa": "world", 

                "bb": "world", 

                "cc": 2 

            } 

        }] 

} 

(a)GeoJson struct                          (b) MVT struct  

layers { 

  version: 2 

  name: "points" 

  features: { 

    id: 1 

    tags: 0 

    tags: 0 

    tags: 1 

    tags: 0 

    tags: 2 

    tags: 1 

    type: Point 

    geometry: 9 

    geometry: 2410 

    geometry: 3080 

  } 

  keys: "aa" 

  keys: "bb" 

  keys: "cc" 

  values: { 

    string_value: "world" 

  } 

  values: { 

    double_value: 2 

  } 

extent: 4096 

} 

Figure 2.  Examples of GeoJson and MVT struct  
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Figure 2 shows a geojson example was converted to the mvt. 

The name of the layer is points, and there is only one geometric 

object of Point type. The coordinates, type and attribute index 

values are stored in the feature. The extent of the tile only 

specifies the range of the tile, not the size of the tile after 

rendering. For example, the mvt with an extent of 4096 does not 

mean that the final rendered image is an image of 4096◊4096 

pixels. The size of the rendered image is not determined by the 

extent. 

 

2.2.3 Metadata: Due to the vector tiles are rendered on the 

browser, the metadata such as format, bounds, layers and should 

be provided to the JavaScript API firstly. On the basic of 

Mapbox metadata, we expanded some other fields like producer 

and release date according the actual production. All the fields 

considered for vector tiles in this paper are in Table 1: 

 

Field Description  

name name of the vector tile dataset  

type 
map type, such as basic map or thematic 

layers 

version  version of vector tiles  

projection  vector tiles projection, such as EPSG:3857 

tilesize size of vector tiles, such as 512 pixels 

minlevel the min level of the vector tiles  

maxlevel the max level of the vector tiles 

center  the center point of the vector layers 

format 
vector tile format, such as geojson, mvt or 

customed pbf format 

bounds 
the max Bbox of the vector dataset, all the 

tiles of different levels are included  

json 
layers, layer id, layer zoom levels, 

descriptions, etc, in the format of json 

url the url to access vector tiles 

producer 
vector tiles production personnel or 

department  

release_date release date of vector tiles 

description descriptions of the vector tiles 

 

Table 1. Metadata for vector tiles  

 

2.3 Vector data generalization 

The size of each vector tile determines the transfer efficiency on 

the Internet and rendering efficiency on the canvas. Therefore, 

the generalization of vector data is the most important part in 

the process of vector tiles construction. In fact, the problem of 

vector data generalization has always been a difficult problem 

in the field of map synthesis, and it has not been well solved so 

far. In this paper, we combined attribute filtering and feature 

simplification for different kinds of layers to reduce the tile 

since and improve rendering efficiency. 

 

For the Attribute filtering, vector tiles are multi-scale and do not 

render all vector features at once, and all the features are 

displayed according to the cartographic synthesis theory and 

pyramid model. In the case of road layer, the expressway is 

displayed from level 6, national and provincial highway is 

displayed from level 7, small and dense urban and rural roads 

are displayed from level 16. The attributes filtering conditions 

are set before generating the tiles, then each level only contains 

the needed features that should be displayed, and the others are 

not included in the tiles, which can greatly reduce the number of 

features contained in low-level tiles and improve the rendering 

efficiency of tiles. 

 

As to the POIs, the points of each tile should be filtered 

according to the level and classification firstly, if the number of 

POIs does not exceed the threshold, the generalization process 

will not be performed, otherwise the POIs will be simplified 

based on the grids of each tiles. Only one POI is reserved for all 

categories in each grid, and if the category and importance of 

POIs in a grid are the same, the random deletion method is 

adopted. 

 

As shown in Figure1, the Douglas–Peucker algorithm that takes 

into account topological relationships is used to simply the line 

and polygon features. The overall process is as follows: 1) 

reading all the features of the same layer; 2) extracting the 

adjacent edges; 3) using two object lists to save independent 

edges and adjacent edges, and establishing the relationship 

between them; 4) simplifying the edges separately, and the 

endpoints should not be removed; 5) reorganizing the edges and 

forming the feature.  

 

Batch features input

Adjacent edges 

extraction

Independent edges Adjacent edges 

Douglas–Peucker 

algorithm

Features 

reorganization
 

 

Figure 3.  Vector data generalization method 

 

3. SEDONA BASED PARALLEL CONSTRUCTION 

TECHNOLOGY 

3.1 Apache Sedona framework 

Apache Sedona (incubating) is a cluster computing system for 

processing large-scale spatial data. Sedona extends Apache 

Spark / SparkSQL with a set of out-of-the-box Spatial Resilient 

Distributed Datasets / SpatialSQL that efficiently load, process, 

and analyze large-scale spatial data across machines (Apache 

Sedona, 2021). The predecessor of Senona is geospark, it is the 

combination of GIS and Spark. RDD (Resilient Distributed 

Dataset), which is called a distributed dataset, is the most basic 

data abstraction in Spark. It extends RDDs to form spatial 

RDDs (SRDDs) and efficiently partitions SRDD data elements 

across machines and introduces parallelization of spatial 

transformations and operations to provide a more intuitive 

interface for users to write spatial data analysis programs. 

Figure 4 shows the architecture of Apache Sedona, which 

contains 3 layers (Apache Sedona, 2021). 

 

3.1.1 Spatial RDD layer: It supports various spatial data input 

formats, such as text and wkt text. The data is transformed and 

processed and stored in SRDDs, and the JTS topology suite is 

integrated to support spatial objects. Depending on the type of 

spatial object, spatial RDDs are defined as PointRDD, 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-639-2022 | © Author(s) 2022. CC BY 4.0 License.

 
641



 

 

 

RectangleRDD, PolygonRDD and LineString RDD. Some 

geometry operations for SRDDs are built-in, and hence 

geometric operations can interact with Spark Layer through 

RDD operators such as Map, Sort, Filter, and Reduce. 

, 

3.1.2 Spatial Query Processing Layer: Based on the Spatial 

RDDs Layer, it supports spatial queries (such as range queries 

and join queries) of large-scale spatial datasets. Users can call 

the spatial query provided by the spatial query processing layer 

after the geometric objects are stored and processed in the 

SRDD layer, and all the process is in the memory. 

 

3.1.3 Spatial SQL/Python API Layer: SQL interface follows 

SQL/MM Part3 Spatial SQL and OGC Standards. All 

SedonaSQL functions (list depends on SedonaSQL version) are 

available in Python API. 

 

 
 

Figure 4.  Architecture of Apache Sedona 

 

3.2 Vector tiles parallel construction process 

The original vector layers with necessary mapping attributes are 

stored in the PostgreSQL according to the different categories, 

such as POIs, roads, water, buildings and boundary. Figure 5 

shows the overall parallel construction method adopted in this 

paper. 

 

Shapefile PostgresSQL ESRI FileGDB

Spatial RDDs and indexes creation of different layers

Tile bbox calculation base on the 

tile-pyramid model 

Tile spatial query and 

clip in Spatial RDDs

Geometry generalization 

Layers merge and tile construction

PBF Geojson

DataSource

Sedona based 

vector tile 

construction 

process

Tile output

 
 

Figure 5. Sedona based vector tile construction process 

3.2.1 Data preprocessing: Before importing the data though 

SparkSQL, the problems such as coordinate system, self-

intersection and multicurve should be preprocessed. Due to the 

size of different features is not equal, for example, the size of 

some water and vegetation features are nearly 100M, and most 

of the other features are less than 1M, this will result in data 

skew while parallel construction in Sedona. The size of the 

features is determined by the points, therefore, we split the 

features with the points more than 10 thousand to keep features 

balancing. 

 

3.2.2 Data import: Use SparkSQL to read the data of specified 

extent in the PostgreSQL, for example, the Bbox of some 

administrative division. There is a geom field in PostGIS, which 

stores the geometric information in wkb format. For sparksql, 

the geom field is a varchar field and it is needed to convert it to 

Geometry. And then all the spatial features are converted into 

SRDDs in memory before parallel processing. 

 

3.2.3 Tiles calculation: According to the pyramid model and 

the needed levels of tiles construction, the Bbox of each tile can 

be calculate by spatial query operation. Then clip the geometry 

objects in the SRDDs based on the tile’s Bbox, and the tile’s 

buffer is considered to prevent cracks between adjacent tiles. 

Due to the uneven spatial distribution of vector data, there are a 

lot of invalid queries and intersection calculations based on in 

the traditional tile construction technology, the problems are 

very obvious in the west province such as Tibet and Xinjiang. 

For instance, as shown in Figure 6, the polyline only crosses the 

grid 0,1 and 2. If we need to produce the vector tiles from level 

1 to 18, there is no need to do any operation from level 2 to 18 

in grid 3. By that analogy, grids 00,02,11 and13 are the same in 

the next level process. We used the pipeline optimization of 

Spark to solve the problem. 

 

 

Figure 6. Tile construction process after optimization 

3.2.4 Geometry object identification and simplification: Each 

geometry is divided into different tiles and tagged with (row, 

column, level), and then the generalization algorithm introduced 

in 2.3 is used to simply the point, line and polygon features of 

different layers and levels based on the threshold values.  While 

clipping a geometric object, all the related attributes such as 

type, category, and some other values are reserved. 

 

3.2.5 Geometric objects merge: The coordinates of geometric 

objects should be transferred to screen coordinates, and the tile 

data is formed by merging all geometric objects in the same tile 

tag (row, column and level), and the tile of PBF format can be 

produced and stored in the MongoDB database. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B4-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-639-2022 | © Author(s) 2022. CC BY 4.0 License.

 
642



 

 

 

4. EXPERIMENT  

This section uses a real application case to validate the 

construction method proposed in this paper.  

 

4.1 Experimental data 

As shown in Figure 7, the Beijing dataset from the National 

geographic information service platform (Tianditu) is choosed 

as the experimental case, which is located at 115.7° -117.4 ° E 

and 39.4° -41.6 ° N.  

 

 

Figure 7.  Experimental data and extent  

The experimental data set includes multiple layers such as POIs, 

water, rail, road, buildings, vegetation, area of interest (AOI), 

annotation of AOI, etc. The size of the dataset is about 1GB, 

layers, number of features, nodes are shown in Table 2. 

 

No. Layer Type
Number of

Features
Nodes

1 POIs Point 94,169 94,169

2 Water Polygon 43,098 807,614,448

3 Water Multiline 14,165 3,150,299

4 Rail Multiline 955 39,166

5 Road Multiline 1,057,013 5,809,320

6 Buildings Polygon 5,635,766 40,038,553

7 Vegetation Polygon 351,876 15,700,962

8
Area of Interest

（AOI）
Polygon 6,068 141,326

9 Annotation of AOI Point 604 604  

Table 2.  Layers and features of the experimental dataset   

4.2 Comparison of vector tiles construction 

The experiment compares the standalone and Sedona mode for 

constructing vector tiles based on Beijing’s dataset. Geoserver 

2.20.3 (hereinafter called Geoserver) and PostgreSQL12 + 

Postgis2.2 (hereinafter called Postgis) are selected as the 

standalone mode experiment softwares because they are both 

open source and many commercial GIS platforms which support 

vector tiles are developed based on them. The test server is a 

virtual machine with 48vCPU, 96GB memory, and 500GB 

storage space. The Sedona mode is used with 96 parallelisms to 

test the performance.  

 

As shown in Figure 7, the execution time of Sedona only costed 

22 minutes, but the time of geoserver and Postgis spend are 

both more than one hour. From the results of the experiment, 

the execution time is less and the algorithm efficiency is higher 

by using the construction method presented in this paper. As the 

volume of data and the map extent increase, the advantages of 

Sedona mode will be more significant. 

 

Figure 7. Total Execution Time of different construction modes 

(in minute) 

5. CONCLUSION  

Vector tiles have become the mainstream service mode of the 

current Internet map, and the construction efficiency of vector 

tiles is an important factor affecting the update of vector data. 

This paper proposed the vector tiles construction technology 

based on Sedona. The parallel tile construction process and the 

pipeline optimization method of Sedona are introduced. We can 

draw the following several conclusions:(1) The parallel vector 

tile construction based on Sedona in this paper is significantly 

faster than the traditional standalone mode. Comparative 

experiments show that the execution time of the parallel 

construction algorithm reduced about 85% than PostGIS. (2) It 

has more efficiency in large scale vector data, especially in the 

area of uneven spatial distribution. (3) It is feasible to construct 

vector tiles based on the high-performance distributed 

computing framework, and it has great advantages in the fields 

of large-scale vector data visualization and mapping 

applications. 

 

Next, further reduction of the vector tile size and improvement 

of the data security will be our next research emphases. In 

addition, we hope to extend the framework to support the raster 

tile construction with the same source data. 
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