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ABSTRACT: 

 

Orchard tree inventory plays an important role in acquiring up-to-date information on planted trees for effective treatments and crop 

insurance purposes. Determining tree damage could help assess orchards’ health faster and cheaper. Having accurate information on 

the tree’s status could also help managers to plan necessary fieldwork and predict productivity. Traditional orchard inventory is often 

performed manually, and thus is time-consuming, costly, and subject to error. An alternative is computer vision algorithms that could 

automatically detect orchard trees based on UAV imagery. The objective of this study is to develop a method using advanced computer 

vision algorithms to automatically detect apple trees on UAV multispectral images. This task is challenging since apple trees are 

overlapping over the UAV images, and hence distinguishing different crowns could be difficult. Motivated by the latest advances in 

UAV imagery and deep-learning models, addressed the tree detection problem by exploring the two CNN models YOLO (You Only 

Look Once) and DeepForest for detecting apple trees on UAV images. We first constructed a labelled dataset by dividing the study 

area into equally sized patches. Then we manually annotated all apple trees seen in RGB images. The annotated dataset was then 

randomly divided into three subsets (training, validation, and testing), for training and testing machine learning models.  The performed 

experiments demonstrate the efficiency and validity of the proposed approach for orchard tree inventory. In particular, the proposed 

framework achieved a precision of 91% and an F1-score of 87% by adopting the DeepForest model for tree detection.  

 

1. INTRODUCTION 

Orchard tree inventories are critical for obtaining current 

information on planted trees for successful treatments and crop 

insurance. Therefore, surveying orchard trees, including counting 

their numbers and determining their locations, pattern, and 

distribution is important for predicting production volumes and 

for the purpose of plantation management. The apple orchard tree 

is considered one of the most popular fruit trees in North 

America. It is an important fruit crop and a key category of 

agricultural production. To improve apple orchard production, 

developing methods to survey and monitor apple tree evolution 

and production quality is an essential step for farmers. Existing 

approaches rely on human expertise to extract quantitative 

orchard tree parameters (e.g. orchard density, crown widths, tree 

height, leaf area index, and tree position (Belcore et al., 2020). 

However, traditional orchard inventory is often performed 

manually, which is labor-intensive and time-consuming. In 

addition, such traditional methods are costly and subject to errors. 

Recent advances in remote sensing provided new tools that offer 

an alternative to traditional methods, such as satellites, airplanes, 

and unmanned aerial vehicles (UAVs). UAVs are revolutionizing 

all kinds of industries: These aircraft are becoming more popular 

due to their cost and time effectiveness when compared to 

traditional field surveys. Another reason for their popularity is 

that they can handle a variety of payloads, including optical and 

hyperspectral cameras, light detection and ranging systems 

(LiDAR), synthetic aperture radars (SAR), inertial measurement 

units (IMU), and global positioning systems (GPS) The high 

spatial resolution UAV images combined with computer vision 

algorithms are making tremendous advances in domains such as 
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forestry (Grenzdörffer et al., 2008), self-driving cars (Yang and 

Coughlin, 2014), and bird counting (Zaman et al., 2011).  

 

The aim of this work is to develop a method that takes advantage 

of advanced computer vision algorithms combined with UAV 

imagery to automatically detect orchard apple trees in the 

imageries. This paper is structured as follows. Section 2 

introduces background concepts and related works on orchard 

trees detection with UAV images. Section 3 provides a detailed 

description of the proposed framework. The experimental results 

are presented and discussed in section 4. Finally, section 5 

concludes the paper and suggests directions for future work. 

 

2. RELATED WORKS 

This section presents related works, including traditional and 

modern tree detection methods, with a focus on UAV images. 

 

2.1 Classical Machine Learning Methods 

 

Classical machine learning-based object detection methods 

comprise three main stages: image pre-processing, feature 

extraction, and classification. The methods include local maxima 

filtering, template matching, valley following, watershed region 

growing, circular structures fitting, and support vector machines 

(SVM) with Histogram of Oriented Gradients (HOG). Maillard 

and Gomes (2016) adapted the “template matching” image 

processing approach on Very High Resolution (VHR) Google 

Earth images acquired over a variety of orchard trees. The 

template is based on a “geometrical optical” model created from 

a series of parameters, such as illumination angles, maximum and 

ambient radiance, and tree size specifications. The overall 
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accuracy was above 90% with walnut, mango, and orange trees, 

but fell under 75% with apple trees. It appears that the openness 

of the apple tree crown is most probably responsible for this 

poorer result. Malek et al. (2014) detect palm trees on UAV RGB 

images by extracting a set of key points using the Scale-Invariant 

Feature Transform (SIFT). The key points are then analyzed with 

an extreme learning machine (ELM) classifier which is a priori 

trained on a set of palm and no-palm tree keypoints.  

Canopy Height Models (CHMs) were used by Mohan et al. 

(2017) to evaluate the applicability of a structure-from-motion 

(SfM) local-maxima based algorithm for automatic individual 

tree detection (ITD) on UAV images acquired with low 

consumer-grade cameras. Based on local maxima and the 

outcome of a classification process that can distinguish between 

trees, soil, and shadows, Random Forest regression was used to 

estimate the number of trees (Fassnacht et al., 2017). These 

features are fed into a Support Vector Machine (SVM) with a 

Radial Basis Function to classify the tree species (RBF). 

Similarly, Wang et al. (2019) used an SVM to classify images 

into vegetation and non-vegetation features. These features were 

used to train an SVM to recognize palm trees once HOG was 

extracted. This approach appeared to be confined to recognizing 

palm trees and fails when palm trees were mixed in with other 

tree species. Based on Digital Surface Models, García-Murillo et 

al. (2020) proposed a system for detecting individual citrus trees 

using a segmentation method based on Extended Maxima 

Transforms and a controlled-marker watershed for single tree 

segmentation. Haddadi et al. (2020) proposed a method that 

detects apple orchard trees using multispectral UAV images 

based on Normalized Difference Vegetation Index (NDVI) 

entropy and variance features. Their method achieved a 93% 

accuracy. 

 

2.2 Deep-Learning Approaches 

 

Lately, deep learning (DL) methods have flourished as they 

surpassed classical Machine Learning (ML) algorithms in a large 

spectrum of computer vision applications. Deep learning 

methods have demonstrated their ability to extract robust 

semantic information from massive datasets, allowing them to 

manage many tough conditions such as scale change, rotation, 

and appearance variation, thanks to their deep and sophisticated 

architectures. Convolutional Neural Networks (CNNs) are the 

most popular deep learning models that have the capability to 

extract millions of high-level features of objects that can be used 

effectively for object detection. Several studies explored various 

Deep Learning algorithms to detect trees over UAV RGB 

imagery. 

Ferreira et al. (2020) detected Amazonian palm trees and their 

related species using a morphological operations-based approach 

performed in the score maps of palm species derived from a fully 

CNN. Safonova et al. (2019) developed a new CNN architecture 

that predicts damage stages of fir trees in candidate regions 

chosen by a detection strategy. Jintasuttisak et al. (2022) applied 

YOLO-V5, the state-of-the-art CNN, for detecting date palm 

trees on UAV images. Csillik et al. (2018) detected citrus and 

other crop trees from UAV images using a simple CNN 

algorithm, followed by a classification refinement using super-

pixels derived from a Simple Linear Iterative Clustering (SLIC) 

algorithm. Li et al. (2017) proposed a deep convolutional neural 

network (DCNN)-based framework for large-scale oil palm tree 

detection using high spatial resolution UAV images. To detect 

and categorize trees in aerial images, Santos et al. (2019) 

employed a deep learning-based technique. They trained and 

tested three different detection algorithms: Faster R-CNN (Ren 

et al., 2015), YOLOv3 (Redmon and Farhadi, 2018), and 

RetinaNet (Lin et al., 2017b). Similarly, using images collected 

from UAV along seismic lines, Fromm et al. (2019) trained 

Faster R-CNN, Single Shot Multi-Box Detector (SSD) (Liu et al., 

2016), and R-FCN CNN architectures (Dai et al., 2016) to detect 

seedlings. This analysis of the various methodologies reveals that 

CNN-based techniques are becoming more prevalent in tree 

detection.  

 

3 PROPOSED METHOD 

The goal of our research is to develop a model that accurately and 

automatically detects apple orchard trees on UAV multispectral 

images. In this paper, we explored the use of two models: YOLO-

V5, the latest version of YOLO (Bochkovskiy et al., 2020) and 

DeepForest (Weinstein et al., 2020). The models were applied to 

orthomosaics representing an apple orchard that constructed from 

high-resolution UAV images (Figure 1). The resulting detected 

tree locations were compared with our ground-truth annotations. 

  

 
 

Figure 1. Example of model’s input image. 

 

As illustrated in Fig. 2, visual recognition of trees could be a 

complex task even for a human. This is mainly due to several 

challenges, such as the similarity in appearance between apple 

trees and the other trees present in the orchard, appearance 

variation between apple trees (intra-patch variability), and 

appearance variability between different patches (inter-patch 

variability). The intra-patch variability could be explained by the 

variety of apple species present in the surveyed orchard which 

has 18 different species (e.g., Cortland, Gala, Sun- rise’, 

’Cortland’, ’Virginia Gold’, ’Gala’, ’Honey Gold’, ’mix’, ’Jona 

Gold’, ’Russet’, ’Spygold’). The inter-patch variability could be 

explained by the difference in tree ages. There are patches where 

only very young trees exist. 

 

 
Figure 2. Examples of challenges in orchard orthomosaic: (a) the 

presence of other trees apart from apple trees, (b) the 

presence of very young trees, (c) the overlapping tree 

crowns indicated in the two middle rows. 

 

The workflow of the proposed apple-tree detection system is 

presented in Fig. 3. It consists of two main phases: the training 

phase (comprising training and validation) and the testing phase. 

Prior to those two steps, the captured dataset should be prepared. 

The details of each phase, that is, data preparation, training, 

validation, and testing are presented in the following sub-

sections. 
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Figure 3. Flowchart of the methodology used in the study. 

 

3.1 Data Aquisition 

 

Images were captured during the summer 2016 over two apple 

orchards in Souris, PEI, Canada (Lat. 46.44633N, Long. 

62.08151W). Our data consists of UAV images taken using a 

MicaSense RedEdge narrowband camera (MicaSense Inc., 

Seattle, U.S.A.) mounted on a DJI Matrice 100 quadcopter 

(Dajiang Innovations Dajiang Baiwang Technology Co., Ltd. 

Shenzhen, China). It has five sensors, blue, green, red, red edge, 

and near-infrared. 

 
Figure 4. The study area used in this research. 

 

In general, UAV images have high data volume given that they 

can cover dozens of hectares. Due to the huge volume, 

complexity, and computational cost, we split the orthomosaic 

into small patches of 512*512 pixels using a regular grid (Figure 

5). The patch size is chosen to fit the models’ input. Then, we 

performed manual annotation which consists in localizing our 

objects of interest (apple trees) manually using bounding boxes. 

Through the data annotation step we generate text files encoding: 

Object id, bounding box localization (center coordinates: x-

center, y-center,width, height) of our object of interest (Figure 6) 

 

 
Figure 5. Splitting the UAV orthomosaic into 512*512 patches. 

 
Figure 6. Data annotation step. 

 

Finally, the apple tree images were divided into three datasets: 

Training, validation, and testing. The labelled data of the training 

dataset were used to train the models. The validation dataset was 

used during the training process to assess how well the network 

was performing during training. The testing dataset was used to 

quantify the performance of our methods.  

 

3.2 DeepForest 

 

DeepForest is a deep learning model developed to detect 

individual trees on high-resolution RGB imagery using deep 

learning (Weinstein et al., 2020). It supports the application of 

the model to new data, fine-tuning the model to new datasets with 

user-labeled crowns, training new models, and evaluating model 

predictions. This simplifies the process of using and retraining 

deep learning models for a range of forests, sensors, and spatial 

resolution. DeepForest is mainly based on the Retinanet model, 

a one-stage object detector that allows the focal loss function to 

tackle the excessive foreground-background class imbalance 

between RetinaNet and state-of-the-art two-stage detectors like 

Faster R-CNN with FPN while running at faster rates. As shown 

in Fig. 7(a), RetinaNet is a network architecture based on ResNet 

as a backbone (He et al., 2016). It generates a rich, multiscale 

convolutional Feature Pyramid Network (FPN) (Lin et al., 2017a) 

illustrated in Fig.7 (b) that is connected to two subnetworks: one 

for classifying anchor boxes (Fig.7 (c)) and another one for 

regressing object boxes (Fig.7 (d)).  
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Figure 7. RetinaNet architecture: (a) ResNet backbone, (b) 

Feature Pyramid Network, (c) Classification subnet, 

and (d) Box regression subnet. 

 

DeepForest includes one prebuild model that was trained on data 

from the National Ecological Observatory Network (NEON) 

using a semi-supervised approach. The model was pretrained on 

data from 22 NEON sites using an unsupervised LiDAR-based 

algorithm (Silva et al., 2016) to generate millions of moderate 

quality annotations for model pretraining. The pretrained model 

was then retrained based on over 10.000 hand annotations of 

airborne RGB imagery from six sites. The full workflow of 

DeepForest prebuilt model is shown in Figure 8. 

 

 
Figure 8. Prebuilt model training workflow. Redrawn from 

Weinstein et al. (2020). 

 

3.3 YOLO-V5 

 

You Only Look Once (YOLO) is a one-stage object detector 

(Wang et al., 2020). Its network architecture is made up of three 

primary parts: the backbone shown in Fig. 9 (a), the neck 

illustrated in Fig. 9 (b), and the head in Fig.9 (c). The YOLO-V5 

model backbone is based on the Cross Stage Partial Network 

(CSPNet). It aims to extract high-level features while 

maintaining high accuracy and shortening model processing 

time. This is accomplished by splitting the base layer’s feature 

map into two sections and then merging them using a suggested 

cross-stage hierarchy. The fundamental idea is to separate the 

gradient flow in order to make it propagate over several network 

paths. Furthermore, CSPNet can significantly minimize the 

amount of computation required and increase both the speed and 

accuracy of inference. It deals with three important problems: 

Strengthening the learning ability of a CNN, removing 

computational bottlenecks, and reducing memory costs.  

 
Figure 9. The network architecture of YOLO-V5s. 

 

The model neck is used to collect feature maps from various 

stages to generate feature pyramids. In this level, the Path 

Aggregation Network (PANet) (Liu et al., 2018) and Spatial 

Pooling Pyramid (SPP) (He et al., 2015) are adopted for 

parameter aggregation from different backbone levels for 

different detector levels, instead of FPN used in YOLO-v3 

(Redmon and Farhadi, 2018). The Spatial pyramid pooling can 

maintain spatial information by pooling in local spatial bins. 

These spatial bins have sizes proportional to the image size, so 

the number of bins is fixed regardless of the image size. This 

contrasts with the sliding window pooling of the previous deep 

networks, where the number of sliding windows depends on the 

input size. The Path Aggregation Network is conducted for 

improving performance. Its ability to preserve spatial 

information accurately helps in the proper localization of pixels 

for mask formation. The property that makes  PANet so accurate 

is that it takes an additional bottom-up path to the top-down path 

taken by FPN (Lin et al., 2017a). This helps in shortening that 

path by using clean lateral connections from the lower layers to 

the top ones. It uses features from all the layers and lets the 

network decide which ones are useful. It performs a Region of 

Interest (ROI) Align operation on each feature map to extract the 

features for the object. This is followed by an element-wise max 

fusion operation to enable the network to adapt to new features.  

 

PANet uses information from both fully convolutional layers and 

fully connected layers to provide a more accurate mask 

prediction. Finally, for the head, the YOLO-v3 anchor-based 

head architecture is adopted for the used YOLO version. Within 

each portion of the network described above, YOLO-V5 has 

numerous key components, including Focus, CBL (Convolution, 

Batch Normalization, and Leaky- ReLU), CSP (Cross-Stage 

Partial Connections), and SPP (Spatial Pyramid Pooling). The 

Focus module divides the input image into four parallel slices, 

which are then utilized to construct feature maps with the CBL 

module. The CBL module is a basic feature extraction module 

that employs a convolution operation, batch normalization, and a 
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leaky-ReLU activation function. The CSP module is a CSPNet-

based module that is used to improve the model’s learning 

capability. The SPP module is a module that allows the mixing 

and pool of spatial elements (He et al., 2015). It concatenates to 

its initial features after down sampling the input features through 

three parallel max-pooling layers.  

 

YOLO-v5 implies some new data augmentation techniques such 

as Mosaic and SAT (Self-Adversarial Training). The Mosaic 

technique is illustrated in Figure 10. It mixes 4 training images 

(contexts) to allow the detection of objects outside their normal 

context. SAT is basically altering the original image to create the 

deception that there is no desired object on the image and force 

the Neural Network to detect an object on this modified image in 

the normal way. The model depths of each version of the YOLO-

V5 network are different, but they are all based on the same 

network structure, which is made up of three primary parts: the 

backbone, the neck, and the head. The letters s, m, l, and n in the 

names of the various YOLO-V5 sub-versions represent the 

increasing depth of the network architecture used. 
 

 
Figure 10. Mosaic data augmentation technique. 

 

4 EXPERIMENTAL RESULTS 

In this section, we compare the performance of the YOLO-V5 

based approach (of all sub-versions) with the performance of 

DeepForest method. Each method was trained with the image 

training dataset and the same set of hyperparameters. 

(Epoch=500, batch size=8). The performance was compared both 

quantitatively and qualitatively. All experiments were conducted 

on a PC with Intel Core i7-7700 CPU, NVIDIA GeForce GTX-

1080 GPU, and 64 GB of RAM. The operating system used by 

the PC was Windows 10.  

 

4.1 Data 

 

The apple tree images were divided into three datasets: training 

(66%), validation (19%), and testing (15%). Therefore, the 

number of images in the training, validation, and testing datasets 

were 73, 21, and 16 respectively. Table 1 provides the number of 

patches and labeled apple trees in each dataset with the 

corresponding percentage. 

 

Dataset Number of 

patches 

Number of 

labeled trees 

Percentage 

(%) 

Training 73 3303 66 

Validation 20 620 19 

Testing 16 853 15 

Table 1. Number of patches and labelled apple trees in each 

dataset with the corresponding percentages. 

 

4.2 Quantitative performance 

The predictions and the ground-truth data were used to compute 

the following performance metrics:  

1. Precision P (Equation 1) is the percentage of correct 

detections among all the detected trees. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
  (1) 

 

2. Recall R (Equation 2) is the percentage of correctly 

detected trees over the total number of trees in the 

ground truth. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
        (2) 

 

3. F1-score (Equation 3) is the harmonic average of 

precision and recall.  

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
  (3) 

 

4. Average Precision, AP (Equation 4), combines 

precision and recall into a single metric measuring the 

area under the precision-recall curve resulting in a 

score ranging from 0 to 1.  

𝐴𝑃𝑘 =  ∑ [𝑟𝑒𝑐𝑎𝑙𝑙𝑠(𝑖) − 𝑟𝑒𝑐𝑎𝑙𝑙𝑠(𝑖 + 1)]

𝑚−1

𝑖=1

∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠(𝑖) (4) 

 

5. Mean Average Precision, MAP (Equation 5), is the 

average of AP. 

𝑚𝐴𝑃 =  ∑ 𝐴𝑃𝑘

𝑛

𝑘=1

     (5) 

 

Where  

6. TP = true positives = number of correctly detected 

trees 

7. FP = false positives = number of objects incorrectly 

detected trees 

8. FN = false negatives = number of missed trees 

9. n = number of thresholds. 

 

On a test image, a detection is considered as correct if the overlap 

between the detected tree and the tree in the ground truth was 

greater than 50%. The overlap between the detection and the 

ground truth is computed using the Intersection Over Union 

(IOU) metric. The IOU can be calculated by using the 

intersection of area between the predicted bounding box and the 

ground truth and dividing it by the area of the union, as shown in 

Equation 6. 

 

𝐼𝑂𝑈 =  
𝐴𝑟𝑒𝑎(𝐵1⋂𝐵2)

𝐴𝑟𝑒𝑎(𝐵1⋃𝐵2)
     (6) 

 

 

Where 

1. B1 = area of the ground truth bounding box 

2. B2 = area of the predicted bounding box 
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Table 2 summarizes the quantitative results of the two explored 

models.  

 

Model Precision Recall  F1-score mAP 

DeepForest 0.908 0.830 0.868 0.812 

YOLO-v5s 0.742 0.743 0.742 0.742 

YOLO-v5m 0.668 0.706 0.686 0.69 

YOLO-v5l 0.719 0.548 0.626 0.642 

Table 2. Metrics associated with each model. Values in bold font 

correspond to the best achieved performance. 

 

It can be seen that the mAP of YOLO-V5 sub-versions are 

around 70%, and that the best mAP is 75% when using the 

YOLO-V5 based model. However, the mAP value of 

DeepForest model is 82%. In summary, DeepForest 

outperformed all the tested models with a recall of 83%, a 

precision of 90.8%, an F1-score of 86.8%, and an MAP of 

81.2%. The good result of DeepForest can be explained by the 

fact that the DeepForest model was pre-trained on over 30 

million algorithmically generated crowns from 22 forests and 

fine-tuned using 10,000 hand-labeled crowns. 

 

 

4.3 Qualitative performance assessment  

Qualitative performance assessment consists of the visual 

assessment by plotting together the model-detected and the 

manually delineated trees to analyze how well the model detects 

trees. Visual assessment of predictions across orchard images 

reveals a good overall correspondence between predicted and 

observed bounding boxes, with most errors resulting from the 

insufficient overlap between observed and predicted tree crowns 

rather than the model missing a tree entirely. Fig. 11 shows the 

DeepForest detections for two testing images compared with 

ground truth. We notice from Fig. 11 (1) that the model 

incorrectly detects the other present trees as apple ones. This 

problem could be resolved by applying a mask to filter 

surrounding trees and to focus only on the apple orchard trees. 

 

 
Figure 11. Comparison between the manually detected and 

DeepForest -based trees on the RGB patches. Red 

rectangles correspond to false detections (FP), purple 

rectangles correspond to DeepForest missed 

detections (FN), blue rectangles correspond to 

correctly detected trees (TP). 

 

Fig. 12 shows the YOLO-V5 detections for two testing images 

compared with ground truth. 

 
Figure 12. Comparison between the manually detected and 

YOLO-based trees on the RGB patches. Red 

rectangles correspond to false detections (FP), purple 

rectangles correspond to YOLO missed detections 

(FN), blue rectangles correspond to correctly detected 

trees (TP). 

 

5 CONCLUSION 

In this paper, we explored two state-of-the-art tree detection 

methods, the latest version of YOLO and the DeepForest model, 

to detect orchard apple trees from UAV RGB imagery. We 

started by creating an annotated dataset, then divided the 

available data into training, validation, and testing datasets. The 

two models are trained using the same training set. The validation 

dataset was used to evaluate model performance during training, 

while the testing dataset was utilised to quantify the performance 

of the two models. 

Through qualitative and quantitative performance assessments, it 

has been shown that the tested models produce satisfactory 

results. The DeepForest model had superior performance when 

compared with the latest version of YOLO. 

For future work will investigate the use of multispectral images, 

including the red-edge and near-infrared images. Also, deep 

learning algorithms commonly require vast amounts of labelled 

data. However, the manual labelling of images tends to be costly, 

challenging, and error prone. Generating synthetic data sets 

through data augmentation and exploring semi-supervised 

approaches are interesting techniques to be investigated in future 

work. 
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