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ABSTRACT: 

 

Moving from the controversial results on the link between urban structure and performance aspect, this article wants to encourage the 

development of the independent research on urban structure, and more generally on spatial patterns, at different scales to enable 

future further correlations with a wider set of performance aspects (environmental, social, economic, medical). The work also 

exploits the potential of several unsupervised learning algorithms, whose performance and power are increasingly promising and 

whose use is becoming more widespread in different fields; but for which there are still many challenges concerning the correct 

application in urban areas and the interpretability of the results. We propose an approach for the creation of new spatial attributes and 

metrics (features) aiming to quantitatively describe the qualitative distribution of objects (e.g., buildings) in a 2D space. It explores 

an incremental bottom-up process for the creation of groups of objects (e.g., urban patches) and the evaluation of their physical 

properties alone and in respect with a sample area at each iteration. The process consists of 7 phases: data preparation, data 

processing, parameters collection, feature calculation, feature selection, clustering, results comparison. The results can be mainly 

divided in two. First, the feature selection allowed to extract a minimum set of non-redundant, valid, and consistent features that can 

explain qualitative distribution aspects of spatial patterns. Second, the comparison between feature-based and neural network 

clustering, gave useful insights for a preliminary understanding of unsupervised learning techniques internal mechanisms. 
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1. INTRODUCTION 

Given the crucial role played by cities in the evolution of the 

climate change scenarios, understanding how to mitigate their 

environmental impact is more and more urgent. One existing 

approach, widely discussed in the contemporary literature, is 

investigating the relationship between urban structure and 

environmental performances of urban systems (Grosvenor, 

2015). Many studies considered specific morphological aspects 

(density, building footprint, plot, or network properties etc.) 

trying to verify their correlation with specific climatic/energetic 

ones (heat island, ventilation, PV potential etc.). The results, 

often partial and controversial, ended up in confusing the 

domain of urban morphology investigation (Alberti, 1999). This 

article wants to encourage the development of the independent 

research on urban structure, and more generally on spatial 

patterns, at different scales to enable future further correlations 

with a wider set of performance aspects (environmental, social, 

economic, medical etc.). The present study moves from the 

urban studies domain but has a broader interest for all those 

disciplines dealing with the analysis of the distribution of 

objects in space, no matter at which scale. Milan municipality, 

together with ideal samples specifically generated for this 

purpose, is taken as a case study to test a novel approach for 

investigating spatial patterns.  

Among the different components of urban systems (Tadi et al., 

2020), it has been decided to focus on the relationship between 

Volumes and Voids analysing figure ground maps of urban 

fabrics. As the input data are binary images, the proposed 

method can be easily exported to other domains with an interest 

on image analysis, sharing techniques among different domains 

as done in previous urban related studies (Adolphe, 2001; 

Biraghi et al., 2019). 

 

Image analysis consists of processing an image into key 

components to extract meaningful information. The field of 

image analysis has grown incredibly fast in the last years and 

has undergone a dramatic change: once, most of techniques and 

algorithms were built upon a mathematical/statistical 

description of images while, nowadays, machine learning 

methods are much more popular (Goodfellow et al., 2016). 

Unfortunately, most of the algorithms used, such as neural 

networks, and more in general unsupervised learning techniques 

as clustering, are generally perceived as being 'black boxes'. 

While these algorithms are very powerful and allow to analyse 

huge amounts of data and all possible image features, it is 

extremely difficult to document how specific decisions are 

reached and, above all, what features of the analysed image led 

to that decision (Qiu & Jensen, 2010). This type of algorithm 

therefore has the advantage of performing operations that are 

impossible for the human mind, but, precisely because of its 

complexity, it is not able to fully explain how it works. In this 

framework, this study proposes an approach for the creation and 

validation of new spatial attributes and metrics (features) aiming 

to quantitatively describe the qualitative distribution of objects 

(e.g. buildings) in a 2D space.  

The topic of building distribution is not widely discussed in the 

literature of urban studies, probably for the difficulty of its 

objective characterisation, for the absence of an evident 

straightforward link with performance aspects, and for the 

difficulty of choosing the proper scale or morphological unit for 

its investigation. This study wants to move the first step in this 

promising direction to enrich the set of tools in the hands of 

urban designers and decision makers for understanding complex 

systems as cities. The results obtained could enlarge the existing 

pool of spatial metrics for different disciplinary domains and to 

suggest an approach to potentially open neural networks black 

boxes. 
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2. METHOD 

This study explores an incremental bottom-up process for the 

creation of clusters, the evaluation of their physical properties 

alone and in respect to a sample boundary area at each iteration. 

The final purpose is of extracting features able to numerically 

characterize differences among spatial patterns. The process can 

be seen as a physical clustering of polygons at different 

progressive distances and will be explained in detail in the data 

processing section (2.2).  

A cluster can be defined as a group of similar elements 

positioned or occurring closely together. (Encyclopaedia 

Britannica). The closeness of the objects belonging to a cluster 

may be either topological or physical, but the second meaning is 

more interesting for the application to this branch of urban 

studies.  In fact, especially in regional studies, clusters are used 

as a representation of spatially close objects, considered unique 

new objects not totally corresponding to the sum of their 

individual consistency. The most common cluster in urban 

studies are urban patches that have been widely used to describe 

urban form at city and regional scale (Frey 1999; Huang, Lu, 

and Sellers 2007). McGarigal (2004) defines patches as discrete 

areas of homogeneous environmental conditions. Alternatively, 

they can be seen as groups of elements within a certain mutual 

distance. According to Frankhauser (2004), the criteria used for 

their definition is not strongly scientifically based and the 

choice of the threshold distance is rather arbitrary. What is clear 

is that macroscopic patterns emerge from the interaction of the 

systems low-level (microscopic) adaptive agents (Brownlee 

2007), as, in this case, buildings. The uncertainty related to the 

definition of these objects suggested a change of perspective 

trying to explore their continuity in space, explaining them as 

one step of a continuous bottom-up clustering process using 

buildings as input geometry. Figure 1 shows the portion of 

Milan at 8 different resolutions (or zoom level), corresponding 

to process iterations that will be later explained in detail. 

 

 

Figure 1. Resolution-clusterization analogy. From building to 

urban patch bottom-up process   

 

The proposed analysis could be performed using both raster and 

vector data. The latter have been chosen for the need of having 

a more accurate representation of the objects. The process can 

be summarised in 7 phases: data preparation, data processing, 

parameters collection, feature calculation, feature selection, 

clustering, and neural network comparison. Each of them is 

presented in a dedicated subsection. 

 

2.1 Data preparation 

For this study, different kind of samples have been used to 

better explore the limits and the potential of the proposed 

methodology. They all have two inputs, one square cell (sample 

area) and several polygons within it (objects) and can be divided 

in two main groups: ideal samples and real urban samples.  

Ideal samples are arrangements of black shapes on a white 

100x100 unit cell and can be divided into manual and random 

ones. Manual samples have been drawn by the authors 

specifically to show extreme behaviours of the different 

parameters considered that will be presented in section 2.3. 

They consist in 25 layouts, significantly different from each 

other, all made of 16 black pixel-like squares of the same size 

(Figure 2).  

 

 

Figure 2. Manual samples   

 

Random samples are obtained starting from a regular grid of 

100 points covering the whole cell and selecting randomly a 

certain number of points from it. Given the novelty of the 

proposed methodology, different number of points were taken 

to test it on different percentage of coverage (black area over 

white area). This was done to create the conditions, for a subset 

of experiments, for the exclusion of the most simple and 

common features in the following steps of the process. In this 

way, the algorithms were forced to consider fewer common 

features. Separate experiments were made using 16, 25, 36 and 

49 points used to generate first simple squares, and then 

applying random rotation and scaling to them keeping the total 

black area and the number of objects as constant. For both 

cases, 250 layouts were produced for each quantity, obtaining a 

total of 2000 ideal samples.  

To overcome the rigidity of the initial grid, another set of 2000 

samples was generated using a different method. For every 

layout, the cell was randomly populated with a random number 

of points (domain: 16 to 49) used to generate polygons of 

random number of sides (3 to 6), randomly rotated (0 to 2Pi) 

and scaled (0.5 to 12) with their centroids as centre of rotation 

and scaling. This new set of samples has no more constant 

number of features neither coverage value, being so closer to 

the variety that might be found in real cases of different 

domains.  

Real samples are extracted from the city of Milan first creating 

a grid of 200x200m cell size covering the whole municipality, 

then keeping only those cells including at least one building. 

Buildings were derived from the INSPIRE compliant 

“Volumetric Unit” layer of the Topographic Database (DBT), 

downloaded from Lombardy Region Geoportal. This layer was 

first dissolved, then filtered to eliminate volumes with an area 

smaller than 100sqm, and finally simplified using the Douglas-
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Peucker method (Douglas & Peucker, 2006) with a tolerance of 

2m to reduce the computational time of the following steps. The 

objects input resulted from the intersection between buildings 

and the previously obtained sample area. Figure 3 shows one 

sample layout for each of the sets that include manually drawn, 

randomly generated and real urban cases. 

 

 

Figure 3. Sample layout of the different sets. From left to right: 

Manual; Random 16; Random 49 rotated and scaled, Random 

full; Milan (Duomo and Galleria Vittorio Emanuele II) 

 

This operation was done using QGIS 3.16 while all the ideal 

samples and the steps from 2 to 4 of the methodology (data 

processing, parameters collection and feature calculation) were 

done using Grasshopper, the visual programming interface of 

McNell Rhinoceros 6. All the algorithms are available in a 

dedicated shared folder. 

 
layouts 

number

Object 

number

Void 

area

Void 

number

Point 

Distance
Cipq

Ideal Manual 25 16 0.95 1
17.16 to 

115.27
0.049

Random 16 500 16 0.95 1
42.05 to 

76.21
0.049

Random 25 500 25 0.92 1
45.68 to 

71.01
0.031

Random 36 500 36 0.88 1
48.97 to 

69.43
0.022

Random 49 500 49 0.84 1
51.64 to 

65.55
0.016

Random full 2000
16 to 

45

0.1 to 

0.92

1 to 

15

49.78 to 

68.99

0.02 to 

0.07

Real Milan 3382
0 to 

56

0.18 to 

1

1 to 

18

4.31 to 

239.91

0.01 to 

0.8  

Table 1. Size of the different sets with the range of values for 

the V0 statistics of all the parameters. H-index is not considered 

as V0 is not applicable as always equal to 1 

 

2.2 Data processing 

The core of this study is the data processing phase. The 

proposed processing consists in buffering the input objects by 

an incremental distance value until specific parameters 

requirements are satisfied (see section 2.3). The idea moved 

from the study of Tadi et al. (2017) on urban porosity, where a 

metric called building distribution factor (BDF) was proposed 

with the goal of characterising buildings’ arrangement. That 

metric was substantially the reciprocal of a density-based spatial 

clustering (DBSCAN) at a given distance (20m) performed on 

buildings’ centroids. Even if the results were promising, the 

main limit of that approach were two: building shape was not 

considered and the distance was arbitrarily defined. 

The first issue was easily solved by directly applying a buffer to 

buildings as polygons dissolving the result and then converting 

from multipart to single part features. The second one by 

repeating this operation starting from a distance of 1m and 

increasing it by 1m until all the buildings were finally gathered 

in a single cluster. Figure 4 presents a visual application of the 

incremental buffer process to an urban area, highlighting just 

selected distance thresholds. 

 

 

Figure 4. Incremental buffer applied to a urban portion of 

Milan. At 140m (limit distance) all input buildings (210) are 

gathered in a single cluster (Biraghi, 2019). 

 

Plotting these values on a graph, with the number of iterations 

on the x axis and the number of clusters on the y axis, 

highlighted the peculiar nature of this discrete function 

(monotonically decreasing) and the fact that its trend was 

significantly different between urban contexts (Figure 5). 

 

 

Figure 5. Graph showing the reduction in clusters number at 

every buffer iteration (Biraghi, 2019) 

 

One key element of this process is the incremental buffer 

distance and its relationship with the sample area cell size. In 

fact, modifying it, the number of iterations required to reach 

limit values changes, and so does the number of clusters at each 

iteration. Given the transferability of this approach to different 

disciplinary domains, it is better to generalize distances defining 

a unit (u) that, case by case, can correspond to different lengths. 

In the ideal samples presented, e.g., the buffer distance is equal 

to 1/100 of the sample area cell side. To maintain the same 

proportion, in Milan samples, measuring 200m per side, a buffer 

distance of 2m was adopted. It is important to define u as a 

distance where almost at each iteration something happens. In 

an urban context, e.g., adopting a u of the order of cm or mm 

would increase considerably computational time without adding 

any value in term of detail or accuracy. 

 

2.3 Parameters collection 

The cluster number graph suggested to search for other possible 

parameters to be investigated, and similarly plotted, to describe 

objects distribution aspects that were not covered by the simple 
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count of clusters at each iteration. In this study, 5 additional 

parameters, for a total of 6, are considered and here described. 

Figure 7 presents a comparison between 5 different manual 

samples (Figure 6) on the graph of each of the parameters. 

Object number (On) has already been introduced and consists in 

counting the number of objects at each iteration. At each 

iteration, their value is equal or lower than that of the previous 

one. Another interesting property is that, at different distances, 

all layouts end up being grouped in a single cluster. The lower 

extreme of this discrete function is so 1. Its graph (Figure 7.a) is 

a monotonically decreasing function and is characterized by the 

number of steps, their entity and by how fast the limit value of 1 

is reached.  

Void area (Va) is based on the ratio between the total void 

fraction over the total sample area. The value at the first 

iteration is the reciprocal of the coverage while, at the limit 

distance, it turns to 0 because the whole sample area is filled by 

the buffered objects. Its graph is a continuous monotonically 

decreasing function too (Figure 7.b). Layouts with a 

homogeneous distribution of objects on the sample area will 

saturate earlier the sample area while layout concentrated in a 

small portion require more iterations. It is also affected, as can 

be imagined, by the number of objects in the sample area. 

Void number (Vn) works as the object number parameter but 

focuses on its negative. The voids are objectified and counted at 

each iteration until there’s no void space left. Its limit distance 

consequently coincides with that of Void area parameter. In the 

built environment domain, the voids at iteration 0 represent 

closed courts, an important morphological element for 

characterizing the urban fabric, while at different iterations, they 

can highlight semi-closed courts, squares, or potential public 

spaces. Considering that at each iteration some existing void can 

disappear, being filled by the growing buffer, and some other 

can appear, cropped by the buffer in between neighbouring 

objects, its trend is not monotone (Figure 7.c). 

Point distance (Pd) represents an experimental way of 

determining the position of objects in the space. It consists of 

the average distance of all objects from a point located at u=0.2 

and v=0.1 of the cell domain. Small values indicate the objects 

located in the bottom left quarter of the image, high values those 

in the top right one and intermediate values are for objects 

located on the quarter of circle connecting top left and bottom 

right quarter. Its function is continuous but not monotonic 

(Figure 7.d) and it’s affected by the changes in the object 

number as new aggregations can have a different centroid 

respect to the parent ones. It stops changing significantly when 

a single object includes all the input ones. 

 

 

Figure 6. Manual samples compared in Figure 4. From left to 

right: 0; 12; 13; 16; 21.  

 

Figure 7. Graphs comparing 5 manual samples for the 6 

available parameters. Each graph shows a single parameter (y 

axis) plotted for all the iterations (x axis) up to reaching its limit 

value. a) Object number; b) Void area; c) Void number; d) Point 

distance; e) H-index; f) Cipq 
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H-index (Hi) is a commonly accepted metric to evaluate the 

scientific production introduced by Hirsch (2005). It can be 

defined as the number of papers (h) that have received at least h 

citations. To adapt this concept to spatial analysis papers have 

substituted by the objects at the current iteration and citation by 

the input objects (iteration 0). This information is somehow 

complementary to the simple object number parameter and the 

two are not correlated. The maximum value, that is not 

necessarily reached by all the layouts, is the square root of the 

input object number. For 16 objects, e.g., no more than 4 

clusters of 4 objects each can be identified (Figure 7.e). 

 

Cipq (Ci), is the acronym of Compactness isoperimetric 

quotient (Osserman, 1978) and is a measure of how a 2d shape 

differs from a circle, the most compact shape. It was selected 

among the number of existing compactness measures 

(Bribiesca, 2008) because of its direct relationship with the 

proposed data processing method. If fact, the result of the buffer 

(with round corner) at an infinite number of iterations is always 

a circle, no matter the number and the shape of the input 

objects. More compact layouts will so arrive earlier to values 

close to 1 while linear or concave ones require higher number of 

iterations. Given that the value of 1 is the limit to infinite, to 

reasonable number of iterations for stopping the process must 

be found. Looking at Figure 7.f it can be noticed that its graph is 

a continuous monotonically increasing function, and that 

already at values in between 0.7 and 0.9 significant differences 

among layouts emerge. 

 

2.4 Feature calculation 

It was then clear that the richness of information enclosed in the 

graph couldn’t be compressed in a single metric, no matter its 

complexity. At the same time, visually comparing the graphs 

was not the ideal solution for the development of a scientific 

method and something more measurable was needed. Given the 

explorative nature of the approach, arbitrarily select one or more 

measures to describe each graph didn’t seem the optimal 

solution. For this reason, a wide set of statistics was used to 

extract from the graphs their content and to represent it into a 

collection of features, to be considered as attributes of the 

layout that generated the graph. In a following step (see section 

2.5) these features will be processed to objectively determine 

their relevance for the purpose of the study. A total of 25 

statistics was considered including commonly used and more 

experimental ones inspired by the work of Holzer et al. (2013) 

on constrictivity. Table 2 collects a synthetic description of 

them, and the acronym used in the rest of the paper.  

As not all of them were meaningful or even applicable for all 

the parameters, only the combinations of parameters and 

statistics able to generate potentially useful features have been 

considered (Table 5). The result is a total of 106 features to be 

tested for correlation and for their ability to characterize 

peculiar aspects of a spatial pattern. 

In the first attempts, some features presented null values for 

certain layouts. The reasons were mainly: the number of 

iterations performed was not high enough; Calculation method 

of certain statistics; impossibility to compute certain stat (es. 

Mode with no duplicate values and the related statistics).  

The first issue was solved by increasing the number of iterations 

from 50 to 150. To avoid this risk, a general principle to be 

adopted is defining the iterations limit as the max distance 

among two points of a sample area divided incremental buffer 

distance. 

V0 parameter value at iteration 0

Dl limit distance after which parameter become constant

V=D
value at which the parameter is  equal to the number of 

iterations 

Vsum sum of the parameter values for all the iterations 

Stepsum sum of all the unique parameter values for all the iterations

Dstepmax
distance at which there's the maximum step in the parameter 

value

Stepmax
maximum step in the parameter value (difference between 

consecutive iterations)

VD5 parameter value at iteration 5

VD10 parameter value at iteration 10

VD25% parameter value at 25% of the limit distance (rounded)

VD50% parameter value at 50% of the limit distance (rounded)

DV25% distance at which the parameter value is the 25% of V0

DV50% distance at which the parameter value is the 50% of V0

Mode
parameter value that appears more frequently (Karl Pearson, 

1895)

ModeCount number of time that the mode value occurs

D0Mode first distance at which mode value occurs

D1Mode last distance at which mode value occurs

Mean sum of the parameter values divided by their number

Max largest parameter value occuring

R2Lin coefficient of determination R
2
 for a linear regression

R2Log coefficient of determination R
2
 for a logarithmic regression

mLin slope of the fit line of the linear regression

LinLog
R2Lin - R2Log + 0.5. Values above 0.5 are better 

represented by a line, value below by a log function

Gini Gini index is a measure of statistical dispersion (C. Gini, 1912)

HHI
Herfindahl-Hirschman Index is a measure of market 

concentration (A. O. Hirschman and O. Herfindahl, 1945)  

Table 2. List with the acronym and the description of the 

statistics considered 

The second issue was manually fixed by replacing NULLs with 

the proper value. In future implementations, automatic value to 

assign in case of NULL can be set for specific features (mostly 

referring to H-index parameter). The third issue was solved by 

discarding the layouts still presenting NULLs. The missing ratio 

for the different features in different datasets was quite low 

(between 0.05% and 14.5%) so we preferred to keep all the 

features (on which our analysis is focused) and delate some 

samples. The complete list of features with the correspondent 

number of NULLs for each set is available in the online shared 

folder. 

 

2.5 Feature selection 

The feature selection phases, as well as the following clustering 

one (section 2.6), was performed using the recently developed 

QGIS Hierarchical Clustering plug-in (Folini, Lenzi and 

Biraghi, 2022), and can be divided in two steps. Step 1 

eliminates those features with a mutual correlation higher than 

0.8, keeping only the one with the lowest average correlation, 

and also those features resulting as constant or quasi-constant 

(frequency ratio = 19; percent of unique values = 5; 

https://topepo.github.io/caret/pre-processing.html#nzv). As the 

plug-in works with shapefiles as inputs, the preliminary output 

of this phase is a shapefile where only the selected features are 

kept, removing from the attribute table all the others.  

Step 2 of this phase moves from this result and applies an 

entropy-based algorithm for feature ranking and selection (Dash 

& Liu, 2000) to further select a smaller subset of features. The 
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algorithm is based on the idea that datasets with a higher 

entropy - disordered points, not all at the same distance from 

each other - tend to form clusters more easily. The features are 

therefore ranked according to their impact on the value of the 

initial entropy, and only those whose elimination increases it 

(and so worsens the dataset for clustering) are preserved.  

In the results section the selected metrics for the various 

experiments on the different sets (introduced in Table 1) are 

presented. 

 

2.6 Clustering 

The features selected are then used as dimensions for a 

clustering process using different algorithms. The goals of the 

clustering are mainly two. On one side examining the quality of 

the clustering based on the selected features and visually 

compare layouts belonging to different clusters. The results of 

this preliminary informal evaluation were considered satisfying 

by the authors and in line with the expectations. On the other, 

producing a result comparable to that of the neural network 

(section 2.7) to evaluate the correspondence between the two 

and consequently determine potential links between the selected 

features among the sets described above and the completely 

unsupervised feature selection performed by the network. 

Considering that, the Neural network algorithm was applied 

only to the case of Milan real samples. Being this the only case 

where different layouts were printable on a map and 

representing a context well known by the authors, the result was 

visually interpreted looking for macroscale patterns.  The ideal 

cases were mainly used to analyse the features selected and 

validate the results obtained. 

The clustering algorithms used were Hierarchical and K-means 

(Zaki & Meira, 2014) defining clusters number looking at the 

Between Sum of Squares (BSS) and Within Sum of Squares 

(WSS) diagrams. For the case of Milan, possible clusters 

number was derived from existing well-routed classifications as 

Local climate Zones (LCZ), Land Use of Agricultural and 

Forestry Soils (DUSAF), and local urban planning tools as the 

Milano territorial governance plan (PGT). In LCZ, 10 of the 

existing classes refer to the built-up area, and this number can 

be reduced to 5 ignoring building heights (compact, open, 

lightweight, large, sparsely). DUSAF also presents 10 classes, 

reducible to 7 by neglecting some functional distinction and 

even to only 3 at the lower level of detail. In table R03 of Milan 

PGT the Morphological norms clearly subdivide the urban 

fabric in 3 macro classes (NAF, ADR and ARU) that can be 

more ambiguously detailed in 5 or even 7 classes. 10, 7 and 5 

clusters values were so considered as cluster numbers. 

 

2.7 Neural network 

This last step aims to further evaluate the clusters obtained in 

the previously described feature space, by comparing them with 

the one obtained through an even more unsupervised approach. 

To do this, we used the previously trained VGG16 model 

(Simonyan & Zisserman, 2014) available in Keras 

(https://keras.io/api/applications/) for the feature extraction. 

Having relatively few images available (less than 4000 samples) 

we chose the second fully connected layer as output layer to 

reduce dimensionality. To make the results comparable, we then 

used K-means as the clustering algorithm.  

3. RESULTS 

The last three phases presented in the method chapter produced 

results that are here presented and discussed in homonymous 

subchapters, following their order. 

 

3.1 Feature selection 

Given the number of features considered and the sets tested, the 

complete table with all the results can’t be included in the paper 

but is publicly available online. In this section, a summary of 

the filtering due to Step 1 and Step 2 is presented with the 

purpose of highlighting how parameters were affected (Table 

3). It can be noticed that no features were finally selected in all 

the experiments after both the steps and only 3 (On_DV25%; 

Hi_Dl; Hi_VD50%) were maintained on 5 out of 7 experiments. 

This can be explained by the huge heterogeneity of the samples, 

especially including manual samples, where many features were 

removed as constant, and only 7 features were finally selected.  

 

On Va Vn Pd Hi Ci

Input features 24 14 19 18 15 15

Features selected 

once or more
23 13 19 16 15 11

Features selected 

70% of the times
12 2 15 11 12 2

Features always 

selected
1 0 7 3 3 0

Features average 

selction rate
0.57 0.36 0.78 0.63 0.74 0.33

Features selected 

once or more
21 8 11 11 14 9

Features selected 

70% of the times
3 0 0 0 2 0

Features always 

selected
0 0 0 0 0 0

Features average 

selction rate
0.31 0.09 0.11 0.09 0.35 0.10
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te

p
 1
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Table 3. Summary of the features selected considering all the 

experiments together.  

 

Table 4 presents the number of features selected after Step 1 

and Step 2 for the different experiments.  

Excluding manual samples, the feature selection is quite 

homogenous for all the parameters at step 1, except for Ci in 

Random full samples and Pd in Milan samples. The first can be 

explained by the behaviour of the populate geometry function 

used that has a random but quite homogenous distribution. At 

step 2, the most interesting aspects to be noticed are the only 

one feature selected for Hi parameter (Hi_DStepmax) on Milan 

samples. This can be due to the fact that the input objects in the 

real cases can be both isolated buildings and a single geometry 

representing the aggregation of more buildings, as in the case of 

attached block houses. Using single buildings as input is a 

possibility that must be explored but was not considered for the 

unreliable way in which they’re mapped in the selected context. 

 

Step 1 Step2 Step 1 Step2 Step 1 Step2 Step 1 Step2 Step 1 Step2 Step 1 Step2

Manual 4 1 0 0 11 0 10 3 6 3 1 0

Random 16 18 5 5 1 16 0 13 0 13 9 6 0

Random 25 18 12 6 3 15 1 13 1 15 8 6 0

Random 36 15 12 6 0 15 2 13 2 11 4 6 0

Random 49 11 7 5 0 15 3 12 1 10 4 7 3

Random full 16 9 8 4 18 6 12 0 13 8 2 1

Milan 14 7 5 1 13 3 7 4 10 1 7 7

Ci (15)Hi (15)Pd (18)Vn (19)Va (14)On (24)

 

Table 4. Number of features selected after Step 1 and Step 2 for 

the different experiments. 

 

To make a further comparison among all the features, only the 

Random full and the Milan experiments have been considered. 
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This choice is due to the fact that, as previously explained in 

section 2.1, the other datasets (manual, random 16-25-36-49) 

were created keeping some features constant, namely, the 

combination of all parameters except Pd with the V0 statistic. In 

addition, the rigidity of their layouts (Figure 3) can’t be 

compared with the variety of the other sets. 

Table 5 presents all the combination of parameters and statistics 

that have been considered, telling, for each of them, if they were 

selected, after the two Steps of feature selection, twice (1.0), 

once (0.5) or never (0.0). Bold values indicate the features 

selected for the urban sample of Milan. Similar tables just 

referring to Step 1 and including all the experiments can be 

found online. 

 

Object 

number 

(On)

Void 

area 

(Va)

Void 

number 

(Vn)

Point 

distance 

(Pd)

H-index 

(Hi)

Cipq

(Ci)

V0 0.5 0.0 0.0 0.0 0.5

Dl 0.5 0.0 0.5 0.5 0.5 0.5

V=D 0.0 0.0

Vsum 1.0 0.0 0.0 0.5

Stepsum 0.0 0.0 0.0 0.0

Dstepmax 1.0 0.5 0.5 1.0

Stepmax 0.0 0.0 0.0 0.0

VD5 0.0 0.0 0.5 0.0 0.0 0.5

VD10 0.5 0.5 0.5 0.0 0.0 0.0

VD25% 0.0 0.0 0.5 0.0 0.0 0.0

VD50% 0.0 0.5 0.0 0.0 0.5 0.0

DV25% 1.0 0.0 0.0

DV50% 0.5 0.0 0.0

Mode 0.0 0.0 0.0 0.5

ModeCount 0.0 0.0 0.0 0.5

D0Mode 0.5 0.0 0.0 0.5

D1Mode 0.5 0.0 0.0 0.0

Mean 0.0 0.5 0.0 0.5

Max 0.5 0.0 0.0 0.5

R2Lin 1.0 0.0 0.5

R2Log 0.0 0.5 0.0

mLin 0.5 0.0 0.0

LinLog 0.0 0.0 0.5

Gini 0.0 0.5 0.5 0.5 0.5

HHI 0.5 0.5 0.5 0.5 0.5

Parameters

S
ta

ti
st

ic
s

 

Table 5. Combinations of parameters and statistics used to 

calculate the features and their average selection rate for 

Random full and Milan sets. Milan features are bold. 

 

A total of 5 features were selected for both Milan and Random 

full sets. Four of them belong to the Object number parameter 

(Vsum; DStepmax; DV25%; R2Lin) and one to H-Index 

(DStepmax). DStepmax statistic, describing the iteration at 

which the parameter value presents the bigger step, was selected 

for all the parameters it was combined with in the urban 

experiment. Similarly, also Gini and HHI were selected in 

couple for three different parameters (Vn, Pd and Ci) in the 

urban case. HHI was selected at least once (Random or Milan) 

for all the parameters. Ci_V0 feature was selected after Step 2 

for the case of Milan while it was discarded, already at Step 1, 

for all the other experiments. This is due to the absence of holes 

within the objects in the ideal layouts opposed to the presence 

of courts in real agglomerations of buildings. In the urban case, 

at least on feature for all the parameters was finally selected, 

with a peak of 7 features for the On and Ci parameters. It’s 

interesting to notice the presence of the R2Lin statistic for On 

and that of R2Log for Va, suggesting that the two parameters 

have commonly different trends. The Va parameter, included in 

the analysis for its capability to describe both the percentage of 

void space over the total one and the homogeneity of objects 

distribution in the sample, was selected less time than expected. 

This can be explained by looking at the correlation heatmap 

(Figure 8) of the different experiments that clearly show a high 

average correlation among most of its features. In certain 

experiments as the Random full, high correlation values 

emerged also with Ci features.  

 

 

Figure 8. Correlation heatmap for Milan set 

 

3.2 Clustering 

As mentioned at the beginning, the focus of the work is on the 

selection of features and their ability to highlight more or less 

evident spatial patterns. For this reason, in the construction of 

the dataset and calculation of statistics, the exploration of as 

many parameters as possible was preferred, to the detriment of 

the quality of future clusters. Very often, in fact, the number of 

features selected by the algorithm is very high compared to the 

number of elements. Rather than clusters with high values of 

Silhouette Coefficient or Davies Boulding Index (Zaki & Meira, 

2014), the results of this phase were mainly used, case by case, 

to have a better understanding of the possible issues. Apart from 

the correspondence with the Neural network clustering, that will 

be better explained in the next section, interesting aspects 

emerged while working on the manual and Milan sets.  

Dividing the layouts of the manual set in relatively small 

number of clusters is a tough task both for humans and for 

algorithms because of their heterogeneity. A person, by doing it 

visually, risks to involuntarily overweight one or more feature 

neglecting others. Trying to cluster them considering a single 

parameter at the time is surely simpler, even if not trivial, but 

generates a different clustering for each parameter. Considering 

such a huge number of features together can provide not 

intuitive results, in contrast with visual evidence.  

As there are here no reasons for choosing a specific number of 

clusters, the dendrogram of the hierarchical clustering was 

plotted to visually examine different scenarios. (Figure 9). 
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Figure 9. Dendrogram resulting from the hierarchical clustering 

on the manual set 

 

 

Figure 10. BSS WSS diagram of the hierarchical clustering on 

Milan set 

From the plot we can infer that a good number of clusters could 

be 3. In this way we obtain quite good clusters (having low 

inter–class dissimilarity) but we highlight only few outliers. By 

increasing the number of clusters, the number of outliers also 

increases, but clusters with a reasonable number of elements, 

and significant from the point of view of our analysis, are also 

created. The evaluation of this type of experiment is therefore 

closely linked to the type of analysis to be carried out. Given the 

exploratory nature of our work, there is no correct number of 

clusters, but this procedure provides a valid tool to analyse 

possible results and discover patterns not visible to the human 

eye. In addition, an interesting finding from Milan set, is the 

correspondence between the number of clusters derived from 

the literature (5, 7 and 10, see section 2.6) and those emerging 

from the BSS WSS diagram of the hierarchical clustering using 

the selected features (Figure 9). Results obtained using K-means 

are described in the next section. 

 

3.3 Neural Network  

As said, the purpose of this last step is to validate the results 

obtained so far. For this reason, the results are presented in 

Table 6 in which, for different pairs of experiments, the score 

metric (Lenzi, 2020) was calculated. The score counts how 

many times two samples (in this case images) are clustered 

together in the different experiments being compared.  

cluster 

number
5 7 10 15 20 5 7 10 15 20

5 1.000

7 0.891 1.000

10 0.790 0.802 1.000

15 0.789 0.786 0.877 1.000

20 0.750 0.770 0.846 0.898 1.000

5 0.690 0.711 0.744 0.757 0.774 1.000

7 0.688 0.715 0.758 0.784 0.813 0.883 1.000

10 0.675 0.707 0.761 0.795 0.830 0.851 0.926 1.000

15 0.683 0.716 0.779 0.821 0.860 0.818 0.877 0.915 1.000

20 0.678 0.713 0.780 0.824 0.868 0.814 0.865 0.901 0.934 1.000

Feature based Neural network
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Table 6. Comparison of the score values for the different 

clustering method (Feature based and Neural network) using 

Kmeans and cluster number values (5, 7, 10, 15, 20) 

 

Looking at the values highlighted in the table, it can be noticed 

that, for the same number of clusters, the feature-based Kmean 

and the neural network based one clustered at least 69% of the 

images in the same way. Moreover, these numbers clearly show 

an increase in the score values between Feature based and 

Neural network clustering as the number of clusters increases 

(grey cells). This is somehow expected and coherent with the 

research assumptions. In fact, to simply classify spatial patterns 

in a small number of extremely heterogenous sets, few simple 

features, like the percentage of void space or the average objects 

size, are usually enough. To represent finer grain differences, 

more dimensions need to be considered. To conclude, it can be 

noticed that experiments with a minor distance in terms of 

cluster number correctly perform better than those with a larger 

one.  

Apart from the calculation of the score, the results of this phase 

were also plotted on the map of Milan and analysed by experts. 

In all cases they turned out to be more than reasonable despite 

the lack of finetuning of the network, and the scarcity of data on 

the one hand and the abundance of features on the other. Figure 

10 presents the Milan map with the morphology in black 

overlapped to the grid cells divided in 10 clusters using the 

feature based K-means algorithm.  

 

 
 

Figure 10. Milan feature based 10 clusters  
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Darker clusters, both red and blue, represent the more compact 

and densely built part of the city. Other 2 clusters, light blue, 

and orange, characterise cells where the compact city 

encounters urban voids. The other lighter fades highlight 

differences among cells with a predominant percentage of void. 

In general, commenting this map is quite hard and a cell-to-cell 

correspondence should be found instead. The use of larger cells 

may produce results of clearer interpretation at the level of the 

hole city.  

 

4. CONCLUSIONS 

Thanks to this study, new measures for numerically 

characterising urban morphology, and more generally, spatial 

patterns, emerged. This will hopefully encourage more 

independent research on the purely structural component of 

systems, both urban and not. The results achieved are far from 

being exhaustive but are promising, particularly in the 

perspective of better understanding the behaviour of 

unsupervised clustering techniques.  

The potential of the proposed approach of being applied, with 

the proper adaptations, to any kind of spatial patterns, 

encourages to keep exploring its potential and limits. In fact, 

keeping phase 2.2 as a constant, the proposed approach can be 

easily applied to new input data (2.1), include new parameters 

(2.3) and apply them additional statistics (2.4) to enlarge the set 

of features to be tested in the last three phases. Also, the 

algorithms presented in section 2.5, 2.6 and 2.7 can be 

substituted with alternative ones, performing similar tasks. In 

particular, in our case, the choice of clustering algorithms was 

dictated by the characteristics of the tools used, which do not 

provide density-based or probabilistic clusters; for the neural 

networks, on the other hand, due to the lack of data, it was not 

possible to draw the most suitable structure for the task. 

Eventually, even details of phase 2.2 could be modified 

substituting, e.g., the incremental buffer with an incremental 

bidimensional scale centred on each object centroid or changing 

the type of buffer from round to square. This last change will 

mostly affect the Vn values reducing the appearance of micro-

voids in orthogonal layouts. To consolidate the results achieved 

in the urban domain, cross-comparisons between a great variety 

of urban contexts as well as different morphologically relevant 

grid size (e.g. 400x400m or 800x800m) have to be considered. 

This study ultimately represents a preliminary domain-specific 

investigation of a promising multidisciplinary technique for 

analysing spatial patterns. Replicating this approach on a variety 

of urban contexts, as well as on samples from other domains, 

will allow to provide clearer evidence on the importance of 

specific features for explicitly or implicitly guide unsupervised 

clustering algorithms. 
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