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ABSTRACT:

At the beginning of the COVID-19 pandemic, most scholars focused on how international transportation (such as airlines) spread the
virus to different countries. At this point, scholars have begun to pay more attentions on how COVID-19 locally transmission via
ground transportation systems. Because many people use these ground services to commute in urban areas, a high passenger volume
may lead to a domestic large outbreak. Without detailed disease spreading path, healthcare professionals are still not sure where and
how to apply these anti-epidemic measures. Therefore, this study chose the Taipei metro system as our study area to investigate the
relationship between metro station passenger volume and COVID-19 transmission. By using the electric metro ticket data, we know
the movement of metro passengers in Taipei, and this OD movement dataset was used to estimate the spreading path of the COVID-
19. In order to simulate possible Covid-19 spreading cases in the real world, two different methods (the agent-based model (a micro-
level simulation) and the effective distance method (a macro-level estimator)) were applied. Then, we compared the COVID -19
arrival order for each station. In our result, the average infectious order of stations of agent based model and shortest path effective
distance is similar. Among all stations, Taipei Main Station is the first infectious station, and the top 15 infectious stations are similar
according to result of the two method. Our result may help the authority choose proper methods to simulate the epidemic local
transmission and then allocate resources effectively in the future.

* Corresponding author
1 : Email : sanl.chiou@gmail.com
2 : Email : peifenkuo@gmail.com

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII1-B4-2022-79-2022 | © Author(s) 2022. CC BY 4.0 License. 79



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-B4-2022
XXIV ISPRS Congress (2022 edition), 6-11 June 2022, Nice, France

1. INTRODUCTION

Approximately two years after the Covid-19 outbreak, this
virus has not been eradicated and still affects our daily lives. In
addition to the spread of new cases globally, the increases in
local cases and local transmission rates have become an
important issue recently. In most countries, the infection
numbers have dropped; however, the accumulated cases are still
on the rise. In other words, at the beginning of the pandemic,
scholars focused on how international transportation (such as
airlines) played a role in spreading the virus to different
countries. At this point in the pandemic, researchers have begun
to pay more attention to how ground transportation systems
(trains, highways, and metro systems) play a role in the spread
Covid-19. Because many people use these services to commute
in urban areas, a high passenger volume may cause a large
outbreak. It follows that the passenger volume of land
transportation and potential transmission risk tend to increase
the spread of Covid-19 (Yin et al., 2021; Liu et al., 2020; Ruan
et al., 2015; Wu et al., 2021). Despite these findings, relatively
few scholars have estimated the actual risk of such modes of
transportation. Some researchers have even suggested that cities
with high infection rates should consider shutting down public
transportation to avoid further transmission (Patel et al., 2020).
Otherwise, asymptomatic individuals are difficult to quarantine,
and are more likely to continue using the transportation systems.

Risk of infection will surge during peak hours or travel for
holidays. For example, Wong (2019) found that almost 440
million people traveled via Wuhan’s railway line during China’s
New Year festivities, which clearly increased the spread of the
disease. Interestingly, among the various ground transportation
options, Zhao et al. (2020) showed that only trains and
passenger volume are significantly related to the spread of
COVID-19. That is, both air and highway travel were shown to
be insignificant. These findings are convincing because the
COVID-19 virus can survive for more than three hours in closed,
humid environments, such as train cars, underground platforms,
and stations. Although the studies discussed above provide
some background information on how the metro system has
increased transmission, the details of how it is spread remain
unclear since most of these studies simply relied on a regression
model or focused on defining the correlation coefficient.
Therefore, these theorem results cannot be used to dictate the
decisions of policymakers or metro station managers. In
addition to developing more effective vaccines, other
approaches may be used to curb the spread of the virus such as
closing down some hub and commonly used stations to reduce
exposure, disinfecting train cars as well as allocating more
manpower to oversee these stations. Questions of where and in
which order we should apply these anti-epidemic measures are
still debated among healthcare professionals.

Among the existing studies of disease spreading simulation
modeling, most of their approach could be classified as macro-
level or micro-level analysis. Macro level analysis incorporates
statistics and mathematical formulas, which are commonly
referred to as equations-based models (EBM) to represent the
macroscopic trends of disease spreading. For example, Lin
(2020) utilized an effective distance model based on passenger
volume to illustrate the regional transmission risk of COVID-19
in Chinese cities. By using mathematical formulas, the results
show that COVID-19 spreads faster in cities with higher
connection density. According to the above-mentioned
literatures, the results of macro-level analysis could illustrate
the general trend of disease spreading pattern, which is more
meaningful to policymakers because it covers a larger study
area with less detailed data (Jia et al, 2018). However, this kind
of analysis could not simulate how the disease spread from

individual to individual, nor could it show the movement
pattern of infected people for more detailed analysis.

On the other hand, with regard to the micro-level analysis, the
majority of current study utilized an agent-based model (ABM)
to simulate the disease spreading from individual to other
Individuals in this analysis are referred to as agents, and they
have a variety of characteristics (e.g., age, health status) and
behaviors (commute/stay at home). The characteristics of this
agent may determine their actions, which may contribute to
disease spreading. For example, agents can interact with one
another when they are in the same station or train car. Under
such circumstances, the infectious agent would be able to
transmit the disease to the nearby susceptible agent (Gomez et
al., 2021; Gaudou et al., 2020).

Furthermore, ABMs can capture various disease spreading
scenarios that result from the combination of individual
behaviors in a model governed by a set of coded rules. Tang et
al. (2009) conducted a study that compared two different
disease spreading scenarios to accurately demonstrate the
transmission of Severe Acute Respiratory Syndrome (SARS). In
the first scenario, they assumed that every agent's neighbor has
the same chance of becoming infected because the agent
(infected people) move randomly, which is known as random-
diffusion While the second scenario assumed that only the
neighbor along the shortest path can get infected by the agent
and all the other neighbors have no chance where it referred as
objective traveling. The results show that the second scenario
infected a larger population because objective travel will most
likely go through hubs (frequently visited places) and random
diffusion will only go to neighboring nodes (Wang et al., 2014).
Since the hubs get more infected people than other locations,
traveling through them carries a higher risk of transmission
(Rose et al., 2006; Gonzalez et al., 2008; Balcan et al., 2009).
Moreover, this scenario may more accurately depict the real
situation in which humans usually take the shortest path and do
not engage in a random walk process (drunk man behavior).
Such agent-based models were commonly used to test new anti-
epidemic policies and estimate the outcomes of various
transmission scenarios. However, these models mostly focus on
travel modes such as buses, airplanes, cruise ships, rather than
metro systems. In fact, very few researchers (Ben-Zion et al.,
2010; Takeuchi et al., 2007; Zhou et al., 2012) have
incorporated metro data into micro-level simulations that would
include thousands of metro users clustered into several
subgroups to increase the transmission disease risk.

After defining the scenario, some previous paper also suggest
to use the mobility data to evaluate the transition risk, and
emphasize the relative risk of the public transportation usage (Li
et al., 2021; Kumar et al., 2021; Xu et al., 2013). Most related
research used mobile phone data to investigate the migration of
people. Furthermore, Wei et al., 2021 also used daily population
flow of mobile phone to build city wise COVID-19 epidemic
model. However, in our case, these kinds of data are expensive
and hard to collect. Therefore, we utilized the Taipei metro
ticket data to describe the movement of people/passengers
through the various stations. In our data, hourly passenger
volume data was utilized to generate the number of agents per
hour and their aggregated O-D for each station was then
determined. Following this default setting, we built an agent-
based model that incorporates a susceptible and infectious
individual who enter the metro station, wait, and then take the
train to their destinations. The infectious individual, who will be
assigned randomly, may transmit the disease to the susceptible
one if they are at the same station at the same time. Then,
according to the final simulation results out of over 100, the
order of stations in which the infectious individual came into
contact can be determined.
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In comparison of macro and micro level methods, previous
studies compared the equation-based model (EBM) and agent-
based model (ABM) performance in simulating the infection
disease spreading (Hunter et al., 2018; Skvortsov et al., 2007).
The comparison was conducted by using a simulation data of
human airborne infection diseases with population number in a
town of Ireland. For the ABM, it followed the objective
traveling scenario. While the EBM was based on the population
compartmental model. This model is most common type of
EBM used for infectious disease modelling, which included the
susceptible, exposed, infected, and recovered (SEIR) population
in their equation. The result shows that ABM was able to
capture stochasticity of real world and agent interactions
enables it to give a better overall view of an outbreak. However,
Sreenivas et al., (2012) argue that EBM may produce similar
conclusion compared to ABM when larger sample sizes were
applied. Considering the ABM takes longer to setup and run,
the EBM tend to be less computationally intensive and provides
more general result which may preferred by the policy makers.

2. METHODOLOGY

The Taipei Metropolitan Mass Rapid Transit system (MRT),
the site of our study, is the first and largest in MRT system
Taiwan. This system includes six main lines (Wenhu Line,
Tamsui Xinyi Line, Songshan Xindian Line, Zhonghe Xinlu
Line, Bannan Line, and Ring Line.), two sublines, and 131
stations. Approximately two million passengers use the MRT
system per day. With a total length of 152 km, its service area
covers all of Taipei City and parts of New Taipei City. The
hours of operation are from 5:00 am to 24:00 pm.

In order to simulate possible future Covid-19 spread
scenarios, we used typical weekday ticket data (May 1, 2019).
1,780,712 trips took place during the study period. To illustrate
the passenger movement and the possible paths of COVID-19
spread to various MRT stations, we assumed that the metro
speed is 50 mph and used GIS to generate the metro line map
based on the coordinates of the stations. It is shown as Figure 1.

Figure 1: MRT network (shape file with real world station
location information, and green triangle is the MRT stations).

The MRT ticket dataset was provided by the Department of
Transportation, Taipei City Government. The raw dataset was
generated by MRT ticket sales records. In the record, the
entry/exit station ID shows where these users enter/exit the

metro system. Finally, the price column indicates the cost of the
trip. This dataset was used to calculate the passenger volume of
each MRT station during the study period. Otherwise, the
descriptive statistic of passenger volume data is shown in Table
1, and the table summarized the passenger volume of in/out
stations and OD pairs. The top 8 of maximum passenger volume
infout station are same, and it includes  Taipei Main
Station(Origin passenger volume 126474; Destination
passenger volume : 122568), Ximen(0:66470;D:67610), Taipei
City Hall(0:51987; D:51499), Zhongxiao Fuxing(O:47507;
D:47103), Zhongshan(0:40580; D:42528), Bangiao(0:35910;
D:38480), Xinpu(0:34493; D:33103) and Dingxi(0:30387;
D:31641), and the top six passenger volume OD pairs are
composed of those station, such as from Taipei Main Station to
Ximen and from Taipei City Hall to Taipei Main Station. The
lowest in/out traffic volume station is Wanfang Community
station(0:1759; D:1486), and there are 167 OD pairs only have
one trip, such as Qizhang to Wanfang Community, Sanchong to
Xinhai and Dahu park to Xiangshan. We utilized the effective
distance method and the agent based model to calculate the O-D
flow matric of each station in order to ascertain how COVID-19
spreads in the following three scenarios: (1) the disease source
is randomly distributed; (2) the disease source passenger is
weighted and randomly distributed.

Variable Mean SD Min Max

Origin
Passenger
Volume
Destination
Passenger
Volume
oD
Passenger
Volume

Table 1: Descriptive Statistic of MRT trip data.

16316.00 | 15365.59 | 1759 | 126474

16316.00 | 15176.54 | 1486 | 122568

154.20 296.88 1 7394

In order to describe the relationship between high dependence
on the metro system and the spread of the coronavirus to
various stations in Taipei, we used the agent-based model (a
micro-level simulation) and the effective distance method (a
macro-level estimator). The results were compared to the Covid
-19 arrival order for each station.

ABMs are useful tools in epidemiology because they can
simulate individual agents in complex systems who move
through and interact with other agents and the environment by
following a set of defined rules based on their own
characteristics. Although ABMs are constructed from an
individual point of view, the output of simulations speaks to a
global perspective. Several scholars have developed these
models specifically for Covid-19 scenarios. For example,
Gaudou (et al., 2020) developed the COVID-19 Modeling Kit
(COMOKIT) in order to simulate agents with complex social
and geographical characteristics. This model can track detailed
interactions between agents and estimate the effect of various
policies. Gomez (et al., 2021) also built a detailed agent-based
model to explore the risk of infection in crowded transportation
routes. Unlike existing models, our agent-based model focuses
exclusively on the Taipei MRT system to most effectively
determine the order in which each station becomes infected with
the Covid virus and compare this result with those obtained
from the effective distance method. Due to the fact that large
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scale analysis of complex travel networks and modes are
beyond the scope of this study, we chose GAMA software to
obtain the agent-based simulations. Although there are other
free and open-source ABM platforms, we prefer GAMA
because it can read and is compatible with the GIS dataset. In
addition, its simple code language (GAML: GAma Modeling
Language) and user-friendly platform make it beneficial for
future studies. It should be noted that in this study, the focus is
on the spread of the virus in the MRT station not in the cars
because there was no seating or detailed passenger location
information available.

In this model, passenger agents enter the Taipei metro system
and take the train to their destination stations. These agents
were generated based on the hourly passenger volume of MRT
data in order to make our simulation as realistic as possible. The
simulation time was from 5:00 to 23:55, and the simulation
cycle was set to five minutes. In order to speed up the
simulation and reduce the burden on the computer, one agent
represented 10 people moving through the MRT in the
simulation video. The number of people entering and exiting
each station was based on real O-D flow data. The agents walk
to their destination stations at an average rate of 35 kilometers
per hour, which is based on the average speed of MRT.
Furthermore, the infection rate, the probability that the infected
individual will transmit the disease, was set to 0.05. We
assumed that the susceptible individual would be in the same
location as the original disease source. For example, we
assumed that one infected individuals would transmit Covid-
19 via contact in the station with an infection rate of 0.05. Their
entry points into various stations, including the Taipei main
station, are random, and based on the passenger volume.
According to our criteria, we performed the simulation 100
times to calculate the average order in which MRT stations
become infected.

Proposed by Brockmann (2013), effective distance is based
on passenger volume and the meta-population model, which
incorporates the SEIR model and movement between cities or
stations. It is assumed that the virus will appear more quickly in
stations with higher instances of passenger interaction than
those without.

deff=1-InL 1)

Zle

where  w;; = the passenger flow fromito j

2.jw = the total passenger flow from station j.

D" = minr, X)) e y dyl’, @
where I} = the set of all possible paths from i to j

>.jw = the total passenger flow from station j.

In Equation 1, ¥};w is the total passenger flow from station j.

In Equation 2, Fi]- represents the set of all possible paths from

station i to station j, through which all nodes cannot pass more
than once. A path is composed of consecutive links (k).

3. RESULTS

Using the most basic setting, our results showed the order of
infection at the top 15 MRT stations, according to three
different methods. Because the agent-based model requires
multiple simulations (100) times, the order of infection was
based on the average of several simulations. It should be noted
that the order value is relative and is only useful for ranking.

Table 2 shows the top 15 stations with the lowest average
order, according to the agent-based model. The Taipei main
station is the hub and the earliest to become infected, according
to this model. Others include major commuting or transfer
stations, such as Zhongxiao Fuxing and Zhongxiao Xinsheng.
Some stations lead to tourist attractions or the central business
district, such as Ximen.

Station Average
Rank Name Order
1 Taipei Main Station 8.4
2 Ximen 13.49
3 Zhongxiao Fuxing 16.67
4 Zhongshan 17.61
5 Taipei City Hall 19.45
6 Zhongxiao Xinsheng 19.69
7 Guting 23.06
8 Chiang Kai-Shek Memorial Hall 23.7
9 Longshan Temple 24.36
10 Dongmen 24.4
11 Shandao Temple 24.83
12 Zhongxiao Dunhua 25.52
13 Shuanglian 25.55
14 NTU Hospital 26.47
15 Yuanshan 27.42
Table 2: a list of infection order, according to the agent-based
model.

Table 3 shows the top 15 stations with the lowest average
order, according to the effective distance method. The Taipei
main station was determined to be infected first, according to
both models. However, the results of random walk effective
distance was slightly different than those of the agent-based
model and the shortest path effective distance.
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Shortest
Shortest | Average Path Average
Rank Path ord Passenger ord
rder volume rder
weighted
Taipei Taipei
1 Main 2.92 Main 2.02
Station Station
2 Ximen 10.16 Ximen 6.46
3 Zhongshan 13.31 Zhongshan 11.40
4 Zhongxmo 13.38 Zhongxmo 12.39
Fuxing Fuxing
Taipei Taipei
5 | City Hall 18.07 Ciity Hall 1564
6 Dingxi 21.94 Dingxi 17.20
Zhongxiao .
7 Xinsheng 22.23 Bangiao 19.79
g | Songliang 2407 | Zhongxiao | 5 5
Nanjing Xinsheng
Nanjing .
9 Fuxing 24.68 Guting 22.62
10 Dongmen 24.75 Dongmen 22.70
11 Bangiao 25.59 Jiantan 22.96
12 | Guting 27.11 Longshan 23.71
Temple
Xhongxiao Xhongxiao
13 Dunhua 27.50 Dunhua 24.38
14 Jiantan 28.04 Xinpu 24.77
Chiang Chiang
15 | Kai-Shek 28.42 Kai-Shek 25.01
Memorial Memorial
Hall Hall

Table 3. the order of infection using effective distance models.

The results indicated that the hub station, Taipei main station,
was one of the earliest to become infected, probably due to its
extremely high passenger volume. Moreover, it is also a major
transfer station to railway, high speed rail, and buses, which
indicates that the infection rate should be even higher than our
estimations. This station was the first to be infected in five
different scenarios, meaning that no matter how many infectious
individuals enter the Taipei metro system randomly, weighted
by passenger volume, Covid-19 follows the shortest path or
random walk. Therefore, Taipei main station was the first to be
affected.

4. CONCLUSIONS

The order of infection results according to the macro
(effective distance shortest path) and the micro (agent-based
model) methods were similar. The top 15 infected MRT station
includes high passenger volume stations, such as Taipei Main
Station, Ximen, Zhongshan, Zhongxiao Fuxing, Taipei City
Hall, Dingxi and Bangiao stations. To prevent the disease
spreading, the authority can implement anti-epidemic strategies,
such as more frequent and rigid cleaning of station seat and
equipment surfaces, temperature checks for staff and
passengers, and improving the ventilation of station. For the
other stations with lower traffic volume but high covid-19 risk,
we can stop-skipping strategy to decrease the transition
risk.(Gkiotsalitis et al., 2021) However, those results from the
macro method (effective distance random walk) were somewhat
different. The reason for this may be that random walk accounts
for all possible transmission paths, which also allow individuals
to reach one station more than once. This kind of complexity is

absent in the agent-based model. However, we might be able to
ignore the random walk results because metro systems are
different from other transportation systems, such as airplanes,
which are affected by complicated routes due to the airline hubs
and networks. In other words, most metro passengers tend to
choose the shortest path to reach their destination. Therefore, it
is reasonable that the agent of this study was designed to move
from one station to another via the shortest path in the MRT
network.

Future studies may include other scenarios, such as determining
the disease source entry in different time periods, such as early
morning, peak hours in the morning, noon, afternoon, and night.
Scholars may also wish to analyze a longer timeframe, such as
weekday/weekend and holidays/events. Infected individuals not
only transmit disease to susceptible individuals in stations but
also in train cars, which is a similar result to that found using
the agent-based model in this study.

Our results indicate that the macro and micro models can
accurately estimate order of infections in the Taipei metro
stations. However, their estimator was different from that used
for the random walk method. A limitation of our study was that
it failed to account for external/internal environmental
conditions within the stations and the risk of infection inside the
cars of the metro system. Future scholars may wish to collect
more data and design more complex settings to better simulate
real world conditions.
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