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ABSTRACT: 

At the beginning of the COVID-19 pandemic, most scholars focused on how international transportation (such as airlines) spread the 

virus to different countries. At this point, scholars have begun to pay more attentions on how COVID-19 locally transmission via 

ground transportation systems. Because many people use these ground services to commute in urban areas, a high passenger volume 

may lead to a domestic large outbreak. Without detailed disease spreading path, healthcare professionals are still not sure where and 

how to apply these anti-epidemic measures. Therefore, this study chose the Taipei metro system as our study area to investigate the 

relationship between metro station passenger volume and COVID-19 transmission. By using the electric metro ticket data, we know 

the movement of metro passengers in Taipei, and this OD movement dataset was used to estimate the spreading path of the COVID-

19. In order to simulate possible Covid-19 spreading cases in the real world, two different methods (the agent-based model (a micro-

level simulation) and the effective distance method (a macro-level estimator)) were applied. Then, we compared the COVID -19

arrival order for each station. In our result, the average infectious order of stations of agent based model and shortest path effective

distance is similar. Among all stations, Taipei Main Station is the first infectious station, and the top 15 infectious stations are similar

according to result of the two method. Our result may help the authority choose proper methods to simulate the epidemic local

transmission and then allocate resources effectively in the future.
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1. INTRODUCTION 

Approximately two years after the Covid-19 outbreak, this 

virus has not been eradicated and still affects our daily lives. In 

addition to the spread of new cases globally, the increases in 

local cases and local transmission rates have become an 

important issue recently. In most countries, the infection 

numbers have dropped; however, the accumulated cases are still 

on the rise. In other words, at the beginning of the pandemic, 

scholars focused on how international transportation (such as 

airlines) played a role in spreading the virus to different 

countries. At this point in the pandemic, researchers have begun 

to pay more attention to how ground transportation systems 

(trains, highways, and metro systems) play a role in the spread 

Covid-19. Because many people use these services to commute 

in urban areas, a high passenger volume may cause a large 

outbreak. It follows that the passenger volume of land 

transportation and potential transmission risk tend to increase 

the spread of Covid-19 (Yin et al., 2021; Liu et al., 2020; Ruan 

et al., 2015; Wu et al., 2021). Despite these findings, relatively 

few scholars have estimated the actual risk of such modes of 

transportation. Some researchers have even suggested that cities 

with high infection rates should consider shutting down public 

transportation to avoid further transmission (Patel et al., 2020). 

Otherwise, asymptomatic individuals are difficult to quarantine, 

and are more likely to continue using the transportation systems.  

Risk of infection will surge during peak hours or travel for 

holidays. For example, Wong (2019) found that almost 440 

million people traveled via Wuhan’s railway line during China’s 

New Year festivities, which clearly increased the spread of the 

disease. Interestingly, among the various ground transportation 

options, Zhao et al. (2020) showed that only trains and 

passenger volume are significantly related to the spread of 

COVID-19. That is, both air and highway travel were shown to 

be insignificant. These findings are convincing because the 

COVID-19 virus can survive for more than three hours in closed, 

humid environments, such as train cars, underground platforms, 

and stations. Although the studies discussed above provide 

some background information on how the metro system has 

increased transmission, the details of how it is spread remain 

unclear since most of these studies simply relied on a regression 

model or focused on defining the correlation coefficient. 

Therefore, these theorem results cannot be used to dictate the 

decisions of policymakers or metro station managers. In 

addition to developing more effective vaccines, other 

approaches may be used to curb the spread of the virus such as 

closing down some hub and commonly used stations to reduce 

exposure, disinfecting train cars as well as allocating more 

manpower to oversee these stations. Questions of where and in 

which order we should apply these anti-epidemic measures are 

still debated among healthcare professionals. 

Among the existing studies of disease spreading simulation 

modeling, most of their approach could be classified as macro-

level or micro-level analysis. Macro level analysis incorporates 

statistics and mathematical formulas, which are commonly 

referred to as equations-based models (EBM) to represent the 

macroscopic trends of disease spreading. For example, Lin 

(2020) utilized an effective distance model based on passenger 

volume to illustrate the regional transmission risk of COVID-19 

in Chinese cities. By using mathematical formulas, the results 

show that COVID-19 spreads faster in cities with higher 

connection density. According to the above-mentioned 

literatures, the results of macro-level analysis could illustrate 

the general trend of disease spreading pattern, which is more 

meaningful to policymakers because it covers a larger study 

area with less detailed data (Jia et al, 2018). However, this kind 

of analysis could not simulate how the disease spread from 

individual to individual, nor could it show the movement 

pattern of infected people for more detailed analysis. 

On the other hand, with regard to the micro-level analysis, the 

majority of current study utilized an agent-based model (ABM) 

to simulate the disease spreading from individual to other 

Individuals in this analysis are referred to as agents, and they 

have a variety of characteristics (e.g., age, health status) and 

behaviors (commute/stay at home). The characteristics of this 

agent may determine their actions, which may contribute to 

disease spreading. For example, agents can interact with one 

another when they are in the same station or train car. Under 

such circumstances, the infectious agent would be able to 

transmit the disease to the nearby susceptible agent (Gomez et 

al., 2021; Gaudou et al., 2020).  

Furthermore, ABMs can capture various disease spreading 

scenarios that result from the combination of individual 

behaviors in a model governed by a set of coded rules. Tang et 

al. (2009) conducted a study that compared two different 

disease spreading scenarios to accurately demonstrate the 

transmission of Severe Acute Respiratory Syndrome (SARS). In 

the first scenario, they assumed that every agent's neighbor has 

the same chance of becoming infected because the agent 

(infected people) move randomly, which is known as random-

diffusion While the second scenario assumed that only the 

neighbor along the shortest path can get infected by the agent 

and all the other neighbors have no chance where it referred as 

objective traveling. The results show that the second scenario 

infected a larger population because objective travel will most 

likely go through hubs (frequently visited places) and random 

diffusion will only go to neighboring nodes (Wang et al., 2014). 

Since the hubs get more infected people than other locations, 

traveling through them carries a higher risk of transmission 

(Rose et al., 2006; Gonzalez et al., 2008; Balcan et al., 2009). 

Moreover, this scenario may more accurately depict the real 

situation in which humans usually take the shortest path and do 

not engage in a random walk process (drunk man behavior). 

Such agent-based models were commonly used to test new anti-

epidemic policies and estimate the outcomes of various 

transmission scenarios. However, these models mostly focus on 

travel modes such as buses, airplanes, cruise ships, rather than 

metro systems. In fact, very few researchers (Ben-Zion et al., 

2010; Takeuchi et al., 2007; Zhou et al., 2012) have 

incorporated metro data into micro-level simulations that would 

include thousands of metro users clustered into several 

subgroups to increase the transmission disease risk. 

After defining the scenario, some previous paper also suggest 

to use the mobility data to evaluate the transition risk, and 

emphasize the relative risk of the public transportation usage (Li 

et al., 2021; Kumar et al., 2021; Xu et al., 2013). Most related 

research used mobile phone data to investigate the migration of 

people. Furthermore, Wei et al., 2021 also used daily population 

flow of mobile phone to build city wise COVID-19 epidemic 

model. However, in our case, these kinds of data are expensive 

and hard to collect. Therefore, we utilized the Taipei metro 

ticket data to describe the movement of people/passengers 

through the various stations. In our data, hourly passenger 

volume data was utilized to generate the number of agents per 

hour and their aggregated O-D for each station was then 

determined. Following this default setting, we built an agent-

based model that incorporates a susceptible and infectious 

individual who enter the metro station, wait, and then take the 

train to their destinations. The infectious individual, who will be 

assigned randomly, may transmit the disease to the susceptible 

one if they are at the same station at the same time. Then, 

according to the final simulation results out of over 100, the 

order of stations in which the infectious individual came into 

contact can be determined. 
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  In comparison of macro and micro level methods, previous 

studies compared the equation-based model (EBM) and agent-

based model (ABM) performance in simulating the infection 

disease spreading (Hunter et al., 2018; Skvortsov et al., 2007). 

The comparison was conducted by using a simulation data of 

human airborne infection diseases with population number in a 

town of Ireland. For the ABM, it followed the objective 

traveling scenario. While the EBM was based on the population 

compartmental model. This model is most common type of 

EBM used for infectious disease modelling, which included the 

susceptible, exposed, infected, and recovered (SEIR) population 

in their equation. The result shows that ABM was able to 

capture stochasticity of real world and agent interactions 

enables it to give a better overall view of an outbreak. However, 

Sreenivas et al., (2012) argue that EBM may produce similar 

conclusion compared to ABM when larger sample sizes were 

applied. Considering the ABM takes longer to setup and run, 

the EBM tend to be less computationally intensive and provides 

more general result which may preferred by the policy makers. 

2. METHODOLOGY

The Taipei Metropolitan Mass Rapid Transit system (MRT), 

the site of our study, is the first and largest in MRT system 

Taiwan. This system includes six main lines (Wenhu Line, 

Tamsui Xinyi Line, Songshan Xindian Line, Zhonghe Xinlu 

Line, Bannan Line, and Ring Line.), two sublines, and 131 

stations. Approximately two million passengers use the MRT 

system per day. With a total length of 152 km, its service area 

covers all of Taipei City and parts of New Taipei City. The 

hours of operation are from 5:00 am to 24:00 pm. 

In order to simulate possible future Covid-19 spread 

scenarios, we used typical weekday ticket data (May 1, 2019). 

1,780,712 trips took place during the study period. To illustrate 

the passenger movement and the possible paths of COVID-19 

spread to various MRT stations, we assumed that the metro 

speed is 50 mph and used GIS to generate the metro line map 

based on the coordinates of the stations. It is shown as Figure 1. 

Figure 1: MRT network (shape file with real world station 

location information, and green triangle is the MRT stations). 

The MRT ticket dataset was provided by the Department of 

Transportation, Taipei City Government. The raw dataset was 

generated by MRT ticket sales records. In the record, the 

entry/exit station ID shows where these users enter/exit the 

metro system. Finally, the price column indicates the cost of the 

trip. This dataset was used to calculate the passenger volume of 

each MRT station during the study period. Otherwise, the 

descriptive statistic of passenger volume data is shown in Table 

1, and the table summarized the passenger volume of in/out 

stations and OD pairs. The top 8 of maximum passenger volume 

in/out station are same, and it includes  Taipei Main 

Station(Origin passenger volume : 126474; Destination 

passenger volume : 122568), Ximen(O:66470;D:67610), Taipei 

City Hall(O:51987; D:51499), Zhongxiao Fuxing(O:47507; 

D:47103), Zhongshan(O:40580; D:42528), Banqiao(O:35910; 

D:38480), Xinpu(O:34493; D:33103) and Dingxi(O:30387; 

D:31641), and the top six passenger volume OD pairs are 

composed of those station, such as from Taipei Main Station to 

Ximen and from Taipei City Hall to Taipei Main Station. The 

lowest in/out traffic volume station is Wanfang Community 

station(O:1759; D:1486), and there are 167 OD pairs only have 

one trip, such as Qizhang to Wanfang Community, Sanchong to 

Xinhai and Dahu park to Xiangshan.  We utilized the effective 

distance method and the agent based model to calculate the O-D 

flow matric of each station in order to ascertain how COVID-19 

spreads in the following three scenarios: (1) the disease source 

is randomly distributed; (2) the disease source passenger is 

weighted and randomly distributed.  

Variable Mean SD Min Max 

Origin 

Passenger 

Volume 

16316.00 15365.59 1759 126474 

Destination 

Passenger 

Volume 

16316.00 15176.54 1486 122568 

OD 

Passenger 

Volume 

154.20 296.88 1 7394 

Table 1: Descriptive Statistic of MRT trip data. 

In order to describe the relationship between high dependence 

on the metro system and the spread of the coronavirus to 

various stations in Taipei, we used the agent-based model (a 

micro-level simulation) and the effective distance method (a 

macro-level estimator). The results were compared to the Covid 

-19 arrival order for each station.  

ABMs are useful tools in epidemiology because they can 

simulate individual agents in complex systems who move 

through and interact with other agents and the environment by 

following a set of defined rules based on their own 

characteristics. Although ABMs are constructed from an 

individual point of view, the output of simulations speaks to a 

global perspective. Several scholars have developed these 

models specifically for Covid-19 scenarios. For example, 

Gaudou (et al., 2020) developed the COVID-19 Modeling Kit 

(COMOKIT) in order to simulate agents with complex social 

and geographical characteristics. This model can track detailed 

interactions between agents and estimate the effect of various 

policies. Gomez (et al., 2021) also built a detailed agent-based 

model to explore the risk of infection in crowded transportation 

routes. Unlike existing models, our agent-based model focuses 

exclusively on the Taipei MRT system to most effectively 

determine the order in which each station becomes infected with 

the Covid virus and compare this result with those obtained 

from the effective distance method. Due to the fact that large 
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scale analysis of complex travel networks and modes are 

beyond the scope of this study, we chose GAMA software to 

obtain the agent-based simulations. Although there are other 

free and open-source ABM platforms, we prefer GAMA 

because it can read and is compatible with the GIS dataset. In 

addition, its simple code language (GAML: GAma Modeling 

Language) and user-friendly platform make it beneficial for 

future studies. It should be noted that in this study, the focus is 

on the spread of the virus in the MRT station not in the cars 

because there was no seating or detailed passenger location 

information available. 

In this model, passenger agents enter the Taipei metro system 

and take the train to their destination stations. These agents 

were generated based on the hourly passenger volume of MRT 

data in order to make our simulation as realistic as possible. The 

simulation time was from 5:00 to 23:55, and the simulation 

cycle was set to five minutes. In order to speed up the 

simulation and reduce the burden on the computer, one agent 

represented 10 people moving through the MRT in the 

simulation video. The number of people entering and exiting 

each station was based on real O-D flow data. The agents walk 

to their destination stations at an average rate of 35 kilometers 

per hour, which is based on the average speed of MRT. 

Furthermore, the infection rate, the probability that the infected 

individual will transmit the disease, was set to 0.05. We 

assumed that the susceptible individual would be in the same 

location as the original disease source. For example, we 

assumed that one   infected individuals would transmit Covid-

19 via contact in the station with an infection rate of 0.05. Their 

entry points into various stations, including the Taipei main 

station, are random, and based on the passenger volume. 

According to our criteria, we performed the simulation 100 

times to calculate the average order in which MRT stations 

become infected. 

Proposed by Brockmann (2013), effective distance is based 

on passenger volume and the meta-population model, which 

incorporates the SEIR model and movement between cities or 

stations. It is assumed that the virus will appear more quickly in 

stations with higher instances of passenger interaction than 

those without.  

dij
eff = 1 − ln

𝑤𝑖𝑗

∑ 𝑤𝑗
, (1) 

where 𝑤𝑖𝑗 = the passenger flow from i to j

∑ 𝑤𝑗  = the total passenger flow from station j.

𝐷𝑖𝑗
𝑆𝑃 = minΓij

∑ 𝑑𝑘𝑙
𝑒𝑓𝑓

(k,l) ϵ Γij
, (2) 

where  Γij  = the set of all possible paths from i to j

∑ 𝑤𝑗  = the total passenger flow from station j.

In Equation 1, ∑ 𝒘𝒋  is the total passenger flow from station j.

In Equation 2, Γij represents the set of all possible paths from

station i to station j, through which all nodes cannot pass more 

than once. A path is composed of consecutive links (k,l). 

3. RESULTS

Using the most basic setting, our results showed the order of 

infection at the top 15 MRT stations, according to three 

different methods. Because the agent-based model requires 

multiple simulations (100) times, the order of infection was 

based on the average of several simulations. It should be noted 

that the order value is relative and is only useful for ranking.  

Table 2 shows the top 15 stations with the lowest average 

order, according to the agent-based model. The Taipei main 

station is the hub and the earliest to become infected, according 

to this model. Others include major commuting or transfer 

stations, such as Zhongxiao Fuxing and Zhongxiao Xinsheng. 

Some stations lead to tourist attractions or the central business 

district, such as Ximen. 

Rank 
Station 

Name 

Average 

Order 

1 Taipei Main Station 8.4 

2 Ximen 13.49 

3 Zhongxiao Fuxing 16.67 

4 Zhongshan 17.61 

5 Taipei City Hall 19.45 

6 Zhongxiao Xinsheng 19.69 

7 Guting 23.06 

8 Chiang Kai-Shek Memorial Hall 23.7 

9 Longshan Temple 24.36 

10 Dongmen 24.4 

11 Shandao Temple 24.83 

12 Zhongxiao Dunhua 25.52 

13 Shuanglian 25.55 

14 NTU Hospital 26.47 

15 Yuanshan 27.42 

Table 2: a list of infection order, according to the agent-based 

model. 

Table 3 shows the top 15 stations with the lowest average 

order, according to the effective distance method. The Taipei 

main station was determined to be infected first, according to 

both models. However, the results of random walk effective 

distance was slightly different than those of the agent-based 

model and the shortest path effective distance.  
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Rank 
Shortest 

Path 

Average 

Order 

Shortest 

Path 

Passenger 

volume 

weighted 

Average 

Order 

1 

Taipei 

Main 

Station 

2.92 

Taipei 

Main 

Station 

2.02 

2 Ximen 10.16 Ximen 6.46 

3 Zhongshan 13.31 Zhongshan 11.40 

4 
Zhongxiao 

Fuxing 
13.38 

Zhongxiao 

Fuxing 
12.39 

5 
Taipei 

City Hall 
18.07 

Taipei 

City Hall 
15.64 

6 Dingxi 21.94 Dingxi 17.20 

7 
Zhongxiao 

Xinsheng 
22.23 Banqiao 19.79 

8 
Songliang 

Nanjing 
24.07 

Zhongxiao 

Xinsheng 
20.20 

9 
Nanjing 

Fuxing 
24.68 Guting 22.62 

10 Dongmen 24.75 Dongmen 22.70 

11 Banqiao 25.59 Jiantan 22.96 

12 Guting 27.11 
Longshan 

Temple 
23.71 

13 
Xhongxiao 

Dunhua 
27.50 

Xhongxiao 

Dunhua 
24.38 

14 Jiantan 28.04 Xinpu 24.77 

15 

Chiang 

Kai-Shek 

Memorial 

Hall 

28.42 

Chiang 

Kai-Shek 

Memorial 

Hall 

25.01 

Table 3. the order of infection using effective distance models. 

The results indicated that the hub station, Taipei main station, 

was one of the earliest to become infected, probably due to its 

extremely high passenger volume. Moreover, it is also a major 

transfer station to railway, high speed rail, and buses, which 

indicates that the infection rate should be even higher than our 

estimations. This station was the first to be infected in five 

different scenarios, meaning that no matter how many infectious 

individuals enter the Taipei metro system randomly, weighted 

by passenger volume, Covid-19 follows the shortest path or 

random walk. Therefore, Taipei main station was the first to be 

affected. 

4. CONCLUSIONS

The order of infection results according to the macro 

(effective distance shortest path) and the micro (agent-based 

model) methods were similar. The top 15 infected MRT station 

includes high passenger volume stations, such as Taipei Main 

Station, Ximen, Zhongshan, Zhongxiao Fuxing, Taipei City 

Hall, Dingxi and Banqiao stations. To prevent the disease 

spreading, the authority can implement  anti-epidemic strategies, 

such as more frequent and rigid cleaning of station seat and 

equipment surfaces, temperature checks for staff and  

passengers, and improving the ventilation of station. For the 

other stations with lower traffic volume but high covid-19 risk, 

we can stop-skipping strategy to decrease the transition 

risk.(Gkiotsalitis et al., 2021)  However, those results from the 

macro method (effective distance random walk) were somewhat 

different. The reason for this may be that random walk accounts 

for all possible transmission paths, which also allow individuals 

to reach one station more than once. This kind of complexity is 

absent in the agent-based model. However, we might be able to 

ignore the random walk results because metro systems are 

different from other transportation systems, such as airplanes, 

which are affected by complicated routes due to the airline hubs 

and networks. In other words, most metro passengers tend to 

choose the shortest path to reach their destination. Therefore, it 

is reasonable that the agent of this study was designed to move 

from one station to another via the shortest path in the MRT 

network.  

Future studies may include other scenarios, such as determining 

the disease source entry in different time periods, such as early 

morning, peak hours in the morning, noon, afternoon, and night. 

Scholars may also wish to analyze a longer timeframe, such as 

weekday/weekend and holidays/events. Infected individuals not 

only transmit disease to susceptible individuals in stations but 

also in train cars, which is a similar result to that found using 

the agent-based model in this study.  

Our results indicate that the macro and micro models can 

accurately estimate order of infections in the Taipei metro 

stations. However, their estimator was different from that used 

for the random walk method.  A limitation of our study was that 

it failed to account for external/internal environmental 

conditions within the stations and the risk of infection inside the 

cars of the metro system. Future scholars may wish to collect 

more data and design more complex settings to better simulate 

real world conditions. 
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